1
|
Khaliq NU, Lee J, Kim S, Sung D, Kim H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023; 15:2102. [PMID: 37631316 PMCID: PMC10458801 DOI: 10.3390/pharmaceutics15082102] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pluronics are amphiphilic triblock copolymers composed of two hydrophilic poly (ethylene oxide) (PEO) chains linked via a central hydrophobic polypropylene oxide (PPO). Owing to their low molecular weight polymer and greater number of PEO segments, Pluronics induce micelle formation and gelation at critical micelle concentrations and temperatures. Pluronics F-68 and F-127 are the only United States (U.S.) FDA-approved classes of Pluronics and have been extensively used as materials for living bodies. Owing to the fascinating characteristics of Pluronics, many studies have suggested their role in biomedical applications, such as drug delivery systems, tissue regeneration scaffolders, and biosurfactants. As a result, various studies have been performed using Pluronics as a tool in nanomedicine and targeted delivery systems. This review sought to describe the delivery of therapeutic cargos using Pluronic F-68 and F-127-based cancer nanomedicines and their composites for combination therapy.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| |
Collapse
|
2
|
Vasanthi T, Balasubramanian V, Balamuralikrishnan S, Vijayakumar VN. Influence of Methylene Blue on Optical and Thermal Properties of Dye-Doped Hydrogen-Bonded Liquid Crystal Mixture. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422130209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Tan G, Xu J, Yu Q, Yang Z, Zhang H. The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports. Photodiagnosis Photodyn Ther 2022; 40:103093. [PMID: 36031143 DOI: 10.1016/j.pdpdt.2022.103093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is an aggressive malignant bone tumour with high mortality. A poor prognosis is noted in patients with distal metastases or multidrug resistance. As an emerging antitumor strategy, photodynamic therapy (PDT) mediated by visible and near infrared light has attracted intensive attention given its target selectivity, remote controllability, minimal or non-invasive features. However, PDT also has obvious limitations. Specifically, due to the limited penetration of light, it is mainly used in the clinical treatment of superficial malignant tumours, such as musculoskeletal sarcomas and melanoma, but it has not been applied to the clinical treatment of deep malignant bone tumours except for a very small number of experiments on deep canine OS models. MATERIALS AND METHODS We searched for studies that focused on the effectiveness and safety of PDT for OS based on in vitro experiments and animal models in the last decade. A systematic search was conducted using electronic databases, including PubMed, ClinicalTrials.gov, and the Cochrane Library. INCLUSION CRITERIA (1) original research articles about PDT for OS; (2) articles in English; (3) in vitro or animal model research; and (4) detailed information, including cell name, fluence, irradiation wavelength, time of incubation with PS, duration between PS treatment and irradiation, and duration between irradiation and viability assays. EXCLUSION CRITERIA (1) study was a review/systemic review article, patent, letter, or conference abstract/paper; (2) articles were not published in English; (3) studies containing overlapping or insufficient data. RESULTS We identified 201 publications, and 44 articles met the inclusion criteria and were included in the synthesis. Unfortunately, there are no relevant clinical reports of the use of PDT in the treatment of human OS. In these studies, 8 studies only employed in vivo experiments to evaluate the efficiency of PDT in an OS animal model, 19 studies exclusively performed in vitro viability assays of cells treated with PDT under different conditions, and 17 studies included in vitro cell experiments and in vivo animal OS models to evaluate the effect of PDT on OS in vivo and in vitro. All studies have shown that PDT is cytotoxic to OS cells or can inhibit the growth of OS in heterologous or homologous animal OS models but exhibits minimal cytotoxicity at a certain range of dosages. CONCLUSION Based on this systematic review, PDT can eradicate OS cells in cell culture and there is some evidence for efficacy in animal models. However, the ability for PDT to control human OS is unclear, the animal and human reports do not show evidence of human OS control, they just do show feasibility. The major issues concerning the potential for treatment of osteosarcoma with PDT are that adequate light should be transmitted to tumor loci and if the disease is caught before metastasis and irradiation of tumor sites is feasible, curative potential is there. Otherwise, PDT may be mainly palliative. To determine whether PDT can safely and efficiently be used in the clinical treatment of OS, many preclinical orthotopic animal OS models and OS models of multiple systemic metastases must be performed and interstitial PDT or intraoperative PDT may be a good and potential candidate for human OS treatment. If these problems can be well solved, PDT may be a potentially effective strategy for the treatment of OS patients.
Collapse
Affiliation(s)
- Gang Tan
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Yu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeyu Yang
- Rotex Tech.Ltd.Co. Room 1104, floor 11, building 6, No. 599, Shijicheng South Road, high tech Zone, Chengdu, Sichuan, China.
| | - Hui Zhang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
5
|
Comparative analysis of Radachlorin accumulation, localization, and photobleaching in three cell lines by means of holographic and fluorescence microscopy. Photodiagnosis Photodyn Ther 2022; 39:102973. [PMID: 35738552 DOI: 10.1016/j.pdpdt.2022.102973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
Abstract
In this paper we compare the response of cells of established lines of different origin: HeLa, A549 and 3T3 to photodynamic treatment with Radachlorin photosensitizer. The analysis was performed on different aspects of the treatment procedure including photosensitizer accumulation, localization and photobleaching in cells and post-treatment dynamics of changes in cellular morphology at different treatment doses. It was shown that in the three cell lines Radachlorin accumulated in lysosomes to much greater extent than in mitochondria. The cells' response to treatment was analyzed by identification of their death pathways and evaluation of average phase shift dynamics using digital holographic microscopy. The analysis performed on the three cell lines allowed us to evaluate treatment doses specific for each pathway in each line. Among the three lines HeLa cells were found to be the most susceptible to treatment while 3T3 cells the most resistant. The comparison of these results with the data on Radachlorin accumulation, localization and photobleaching rates showed that the observed higher sensitivity of HeLa cells to photodynamic treatment correlated with higher photosensitizer uptake and more intensive photobleaching while lower sensitivity of 3T3 cells correlated with lower uptake and less intensive photobleaching.
Collapse
|
6
|
Lim DJ. Methylene Blue-Based Nano and Microparticles: Fabrication and Applications in Photodynamic Therapy. Polymers (Basel) 2021; 13:3955. [PMID: 34833254 PMCID: PMC8618133 DOI: 10.3390/polym13223955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Methylene blue (MB) has been used in the textile industry since it was first extracted by the German chemist Heinrich Caro. Its pharmacological properties have also been applied toward the treatment of certain diseases such as methemoglobinemia, ifosfamide-induced encephalopathy, and thyroid conditions requiring surgery. Recently, the utilization of MB as a safe photosensitizer in photodynamic therapy (PDT) has received attention. Recent findings demonstrate that photoactivated MB exhibits not only anticancer activity but also antibacterial activity both in vitro and in vivo. However, due to the hydrophilic nature of MB, it is difficult to create MB-embedded nano- or microparticles capable of increasing the clinical efficacy of the PDT. This review aims to summarize fabrication techniques for MB-embedded nano and microparticles and to provide both in vitro and in vivo examples of MB-mediated PDT, thereby offering a future perspective on improving this promising clinical treatment modality. We also address examples of MB-mediated PDT in both cancer and infection treatments. Both in-vitro and in-vivo studies are summarized here to document recent trends in utilizing MB as an effective photosensitizer in PDT. Lastly, we discuss how developing efficient MB-carrying nano- and microparticle platforms would be able to increase the benefits of PDT.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| |
Collapse
|
7
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
8
|
Turchiello RF, Oliveira CS, Fernandes AU, Gómez SL, Baptista MS. Methylene blue-mediated Photodynamic Therapy in human retinoblastoma cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112260. [PMID: 34304071 DOI: 10.1016/j.jphotobiol.2021.112260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Retinoblastoma is a malignant tumor of the retinal precursor cells and one of the rarest types of pediatric tumor, often occurring in the earliest years of life. Symptoms are conditioned by tumor size and location; one of the most recurrent symptoms is a white reflex in the pupillary area, called leukocoria or cat's eye reflex. In the present work, we studied the in vitro effectiveness of Photodynamic treatment (Pdt) in two types of human retinoblastoma, Y79 and WERI-Rb cell lines, using methylene blue (MB), a photosensitizer (PS) from the phenothiazine group. The two cell lines were incubated with varying concentrations of MB (3, 7, 10, 15, 20, 25, 30, 40, and 50 μM), in the absence of light (dark cytotoxicity) and, in the presence of 664 nm laser light (phototoxicity) with fluences of 1, 1.5, 3, 5, 7, 10, and 15 J/cm2. The Y79 cell line showed higher cellular uptake values for MB than the WERI-Rb cell line. After three hours of incubation, the Y79 and WERI-Rb took up 48% and 34% of the total photosensitizer present in the medium, respectively. Using MTT assay, the results showed that the Y79 cell line was more affected by the photo treatment as demonstrated by the combination of MB concentration and light doses compared with WERI-Rb cell line. The results were correlated with the more pronounced singlet oxygen emission observed in Y79 cells. While MB does show efficacy for eradication of retinoblastoma in vitro, only studies in appropriate animal models will reveal whether the selectivity of photokilling at tolerable drug and light doses is sufficient to suggest clinical trials.
Collapse
Affiliation(s)
- R F Turchiello
- Department of Physics, Federal University of Technology of Paraná, Ponta Grossa, PR, Brazil.
| | - C S Oliveira
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - S L Gómez
- Department of Physics, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - M S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Chen YA, Li JJ, Lin SL, Lu CH, Chiu SJ, Jeng FS, Chang CW, Yang BH, Chang MC, Ke CC, Liu RS. Effect of Cerenkov Radiation-Induced Photodynamic Therapy with 18F-FDG in an Intraperitoneal Xenograft Mouse Model of Ovarian Cancer. Int J Mol Sci 2021; 22:4934. [PMID: 34066508 PMCID: PMC8125334 DOI: 10.3390/ijms22094934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) metastases frequently occur through peritoneal dissemination, and they contribute to difficulties in treatment. While photodynamic therapy (PDT) has the potential to treat OC, its use is often limited by tissue penetration depth and tumor selectivity. Herein, we combined Cerenkov radiation (CR) emitted by 18F-FDG accumulated in tumors as an internal light source and several photosensitizer (PS) candidates with matched absorption bands, including Verteporfin (VP), Chlorin e6 (Ce6) and 5'-Aminolevulinic acid (5'-ALA), to evaluate the anti-tumor efficacy. The in vitro effect of CR-induced PDT (CR-PDT) was evaluated using a cell viability assay, and the efficiency of PS was assessed by measuring the singlet oxygen production. An intraperitoneal ES2 OC mouse model was used for in vivo evaluation of CR-PDT. Positron emission tomography (PET) imaging and bioluminescence-based imaging were performed to monitor the biologic uptake of 18F-FDG and the therapeutic effect. The in vitro studies demonstrated Ce6 and VP to be more effective PSs for CR-PDT. Moreover, VP was more efficient in the generation of singlet oxygen and continued for a long time when exposed to fluoro-18 (18F). Combining CR emitted by 18F-FDG and VP treatment not only significantly suppressed tumor growth, but also prolonged median survival times compared to either monotherapy.
Collapse
Affiliation(s)
- Yi-An Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
| | - Jia-Je Li
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (J.-J.L.); (S.-L.L.); (B.-H.Y.)
| | - Syue-Liang Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (J.-J.L.); (S.-L.L.); (B.-H.Y.)
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Biomedical Engineering Research and Development Center Industrial, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Hsiu Lu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
- Industrial Ph.D Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sain-Jhih Chiu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
| | - Fong-Shya Jeng
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
| | - Chi-Wei Chang
- National PET and Cyclotron Center (NPCC), Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (J.-J.L.); (S.-L.L.); (B.-H.Y.)
- National PET and Cyclotron Center (NPCC), Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Ming-Cheng Chang
- Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan County 325, Taiwan;
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ren-Shyan Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (J.-J.L.); (S.-L.L.); (B.-H.Y.)
- Industrial Ph.D Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
| |
Collapse
|
10
|
Fadel M, Kassab K, Samy N, Abdelfadeel D, Yassin G, Nasr M. Nanovesicular Photodynamic Clinical Treatment of Resistant Plantar Warts. Curr Drug Deliv 2020; 17:396-405. [DOI: 10.2174/1567201817666200324142221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 03/10/2020] [Indexed: 11/22/2022]
Abstract
Background:
Photodynamic therapy which involves the use of photosensitizer molecule activated
by a light source was proven very promising for the treatment of dermatological diseases, especially
the resistant ones such as recalcitrant Plantar Warts (PW).
Objective:
However, its efficacy is hindered by the poor permeation of the photosensitizer molecule
required to initiate skin photo-induced effects.
Methods:
In this manuscript, the efficiency of the nano-vesicular system (transfersomes) as a potential
topical drug delivery system for the photosensitizer methylene blue (MB) was investigated following
clinical Photodynamic Therapy (PDT) in patients suffering from PW.
Results:
Results revealed that MB transfersomal gel displayed a higher complete healing percentage for
the lesions compared to the free MB gel (86.67% versus 53.57%) achieved at a lower number of treatment
sessions (2.2 versus 4.14). Patients reported no signs of pain or inflammation, with no recurrence
of the lesions during the follow up period of 8 months.
Conclusion:
PDT using transfersomal MB is an effective and safe therapeutic modality for the treatment
of PW.
Collapse
Affiliation(s)
- Maha Fadel
- Pharmaceutical Nanotechnology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Kawser Kassab
- Photobiology and Cell Photosensitization Unit, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Nevien Samy
- Dermatology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Doaa Abdelfadeel
- Pharmaceutical Nanotechnology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ghada Yassin
- Pharmaceutical Nanotechnology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Xiao Q, Lin H, Wu J, Pang X, Zhou Q, Jiang Y, Wang P, Leung W, Lee H, Jiang S, Yao SQ, Gao L, Liu G, Xu C. Pyridine-Embedded Phenothiazinium Dyes as Lysosome-Targeted Photosensitizers for Highly Efficient Photodynamic Antitumor Therapy. J Med Chem 2020; 63:4896-4907. [DOI: 10.1021/acs.jmedchem.0c00280] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juan Wu
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Pang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quanming Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Jiang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Pan Wang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wingnang Leung
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hungkay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
New planar light source for the induction and monitoring of photodynamic processes in vitro. J Biol Phys 2020; 46:121-131. [PMID: 32170534 DOI: 10.1007/s10867-020-09544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 01/22/2023] Open
Abstract
We recently developed a new light source that allows for the continuous monitoring of light-induced changes using common spectrophotometric devices adapted for microplate analyses. This source was designed primarily to induce photodynamic processes in cell models. Modern light components, such as LED chips, were used to improve the irradiance homogeneity. In addition, this source forms a small hermetic chamber and thus allows for the regulation of the surrounding atmosphere, which plays a significant role in these light-dependent reactions. The efficacy of the new light source was proven via kinetic measurements of reactive oxygen species generated during the photodynamic reaction of chloroaluminium phthalocyanine disulfonate (ClAlPcS2) in three cell lines: human melanoma cells (G361), human breast adenocarcinoma cells (MCF7), and human fibroblasts (BJ).
Collapse
|
13
|
Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagnosis Photodyn Ther 2020; 29:101640. [DOI: 10.1016/j.pdpdt.2019.101640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
|
14
|
Carina V, Costa V, Sartori M, Bellavia D, De Luca A, Raimondi L, Fini M, Giavaresi G. Adjuvant Biophysical Therapies in Osteosarcoma. Cancers (Basel) 2019; 11:cancers11030348. [PMID: 30871044 PMCID: PMC6468347 DOI: 10.3390/cancers11030348] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone sarcoma, manifesting as osteogenesis by malignant cells. Nowadays, patients’ quality of life has been improved, however continuing high rates of limb amputation, pulmonary metastasis and drug toxicity, remain unresolved issues. Thus, effective osteosarcoma therapies are still required. Recently, the potentialities of biophysical treatments in osteosarcoma have been evaluated and seem to offer a promising future, thanks in this field as they are less invasive. Several approaches have been investigated such as hyperthermia (HT), high intensity focused ultrasound (HIFU), low intensity pulsed ultrasound (LIPUS) and sono- and photodynamic therapies (SDT, PDT). This review aims to summarize in vitro and in vivo studies and clinical trials employing biophysical stimuli in osteosarcoma treatment. The findings underscore how the technological development of biophysical therapies might represent an adjuvant role and, in some cases, alternative role to the surgery, radio and chemotherapy treatment of OS. Among them, the most promising are HIFU and HT, which are already employed in OS patient treatment, while LIPUS/SDT and PDT seem to be particularly interesting for their low toxicity.
Collapse
Affiliation(s)
- Valeria Carina
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Viviana Costa
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Maria Sartori
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Daniele Bellavia
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Angela De Luca
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Lavinia Raimondi
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gianluca Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
15
|
Martins WK, Santos NF, Rocha CDS, Bacellar IOL, Tsubone TM, Viotto AC, Matsukuma AY, Abrantes ABDP, Siani P, Dias LG, Baptista MS. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 2019; 15:259-279. [PMID: 30176156 PMCID: PMC6333451 DOI: 10.1080/15548627.2018.1515609] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Cells challenged by photosensitized oxidations face strong redox stresses and rely on autophagy to either survive or die. However, the use of macroautophagy/autophagy to improve the efficiency of photosensitizers, in terms of inducing cell death, remains unexplored. Here, we addressed the concept that a parallel damage in the membranes of mitochondria and lysosomes leads to a scenario of autophagy malfunction that can greatly improve the efficiency of the photosensitizer to cause cell death. Specific damage to these organelles was induced by irradiation of cells pretreated with 2 phenothiazinium salts, methylene blue (MB) and 1,9-dimethyl methylene blue (DMMB). At a low concentration level (10 nM), only DMMB could induce mitochondrial damage, leading to mitophagy activation, which did not progress to completion because of the parallel damage in lysosome, triggering cell death. MB-induced photodamage was perceived almost instantaneously after irradiation, in response to a massive and nonspecific oxidative stress at a higher concentration range (2 µM). We showed that the parallel damage in mitochondria and lysosomes activates and inhibits mitophagy, leading to a late and more efficient cell death, offering significant advantage (2 orders of magnitude) over photosensitizers that cause unspecific oxidative stress. We are confident that this concept can be used to develop better light-activated drugs. Abbreviations: ΔΨm: mitochondrial transmembrane inner potential; AAU: autophagy arbitrary units; ATG5, autophagy related 5; ATG7: autophagy related 7; BAF: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CF: carboxyfluorescein; CTSB: cathepsin B; CVS: crystal violet staining; DCF: dichlorofluorescein; DCFH2: 2',7'-dichlorodihydrofluorescein; DMMB: 1,9-dimethyl methylene blue; ER: endoplasmic reticulum; HaCaT: non-malignant immortal keratinocyte cell line from adult human skin; HP: hydrogen peroxide; LC3B-II: microtubule associated protein 1 light chain 3 beta-II; LMP: lysosomal membrane permeabilization; LTG: LysoTracker™ Green DND-26; LTR: LysoTracker™ Red DND-99; 3-MA: 3-methyladenine; MB: methylene blue; mtDNA: mitochondrial DNA; MitoSOX™: red mitochondrial superoxide probe; MTDR: MitoTracker™ Deep Red FM; MTO: MitoTracker™ Orange CMTMRos; MT-ND1: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; MTT: methylthiazolyldiphenyl-tetrazolium bromide; 1O2: singlet oxygen; OH. hydroxil radical; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PBS: phosphate-buffered saline; PI: propidium iodide; PDT: photodynamic therapy; PS: photosensitizer; QPCR: gene-specific quantitative PCR-based; Rh123: rhodamine 123; ROS: reactive oxygen species RTN: rotenone; SQSTM1/p62: sequestosome 1; SUVs: small unilamellar vesicles; TBS: Tris-buffered saline.
Collapse
Affiliation(s)
- Waleska K. Martins
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação Stricto Sensue Pesquisa, Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Nayra Fernandes Santos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Cleidiane de Sousa Rocha
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação Stricto Sensue Pesquisa, Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Isabel O. L. Bacellar
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Tayana Mazin Tsubone
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cláudia Viotto
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | | | - Aline B. de P. Abrantes
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Siani
- FFCLRP, Departamento de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luís Gustavo Dias
- FFCLRP, Departamento de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio S. Baptista
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Wu PT, Lin CL, Lin CW, Chang NC, Tsai WB, Yu J. Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 9:E14. [PMID: 30583581 PMCID: PMC6359461 DOI: 10.3390/nano9010014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/16/2023]
Abstract
Methylene blue (MB) is a widely used dye and photodynamic therapy (PDT) agent that can produce reactive oxygen species (ROS) after light exposure, triggering apoptosis. However, it is hard for the dye to penetrate through the cell membrane, leading to poor cellular uptake; thus, drug carriers, which could enhance the cellular uptake, are a suitable solution. In addition, the defective vessels resulting from fast vessel outgrowth leads to an enhanced permeability and retention (EPR) effect, which gives nanoscale drug carriers a promising potential. In this study, we applied poly(12-(methacryloyloxy)dodecyl phosphorylcholine), a zwitterionic polymer-lipid, to self-assemble into liposomes and encapsulate MB (MB-liposome). Its properties of high stability and fast intracellular uptake were confirmed, and the higher in vitro ROS generation ability of MB-liposomes than that of free MB was also verified. For in vivo tests, we examined the toxicity in mice via tail vein injection. With the features found, MB-liposome has the potential of being an effective PDT nano agent for cancer therapy.
Collapse
Affiliation(s)
- Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Chih-Ling Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Che-Wei Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Ning-Chu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| |
Collapse
|
17
|
Junqueira Garcia MT, Pedralino Gonçalves T, São Félix Martins É, Silva Martins T, Carvalho de Abreu Fantini M, Regazi Minarini PR, Costa Fernandez S, Cassone Salata G, Biagini Lopes L. Improvement of cutaneous delivery of methylene blue by liquid crystals. Int J Pharm 2018; 548:454-465. [DOI: 10.1016/j.ijpharm.2018.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
|
18
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
19
|
Abdulrehman G, Xv K, Li Y, Kang L. Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials. Lasers Med Sci 2018; 33:1581-1590. [PMID: 29796953 PMCID: PMC6133037 DOI: 10.1007/s10103-018-2524-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/22/2018] [Indexed: 01/10/2023]
Abstract
The aim of this study is to investigate the antitumor effects and possible mechanisms of meta-tetrahydroxyphenylchlorin-mediated photodynamic therapy (m-THPC-PDT) on human primary (SW480) and metastatic (SW620) colon cancer cell lines. SW480 and SW620 cells were incubated with various concentrations of m-THPC, followed by photodynamic irradiation. Subcellular localization of m-THPC in cells was observed with confocal laser scanning microscopy (CLSM). Photocytotoxicity of m-THPC in the two cells was investigated by using MTT assay. The flow cytometry was employed to detect the cell apoptosis. The migration and long-term recovery ability were determined by scratch test and colony formation assay respectively. CLSM showed that m-THPC was mainly distributed within the endoplasmic reticulum (ER) and lysosome of SW480 cells and within the lysosome and mitochondria of SW620 cells. m-THPC-PDT induced a dose-dependent and light energy-dependent cytotoxicity in SW480 and SW620 cells. Apoptosis rate was approximately 65 and 25% in SW480 and SW620 respectively when the concentration of m-THPC increased to 11.76 μM. However, the rate of necrotic cells had no significant changes in two cell lines. The colony formation and migration ability of the two cell lines were decreased with m-THPC-PDT treatment in a dose-dependent manner. PDT with m-THPC not only could effectively inhibit cell proliferation and decrease migration ability and colony formation ability, but also could effectively kill SW480 and SW620 cells in a dose-dependent manner in vitro. These results suggest that m-THPC is a promising sensitizer that warrants further development and extensive studies towards clinical use of colorectal cancer.
Collapse
Affiliation(s)
- Gulinur Abdulrehman
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Kaiyue Xv
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Yuhua Li
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China.
| |
Collapse
|
20
|
Kofler B, Romani A, Pritz C, Steinbichler TB, Schartinger VH, Riechelmann H, Dudas J. Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines. Int J Mol Sci 2018; 19:ijms19041107. [PMID: 29642437 PMCID: PMC5979508 DOI: 10.3390/ijms19041107] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) is suggested to have an impact on the treatment of early stage head and neck cancers (HNSCC). We investigated the effect of PDT with methylene blue (MB) and a diode laser (660 nm) as the laser source on HNSCC cell lines as an in vitro model of surface oral squamous cell carcinoma. Cell-cultures were exposed to 160 µM MB for 4 min and to laser light for 8 min. Viability was proven via cell viability assay and clonogenic survival via clone counting assay. The combination of MB and diode laser evidenced high efficient loss of cell viability by 5% of the control, while treatment with the same concentration of MB for 4 min alone showed a viability of 46% of the control. In both SCC-25 and Detroit 562 HNSCC cells, MB combined with the laser allowed a significant abrogation of clonogenic growth (p < 0.01), especially in the case of Detroit 562 cells less than 1% of the suspension plated cells were able to grow tumor cell nests. Multiresistant (Detroit 562) HNSCC cells expressing cancer stem cell markers are sensitive to MB/red laser combined PDT.
Collapse
Affiliation(s)
- Barbara Kofler
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Angela Romani
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Christian Pritz
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | | | - Volker Hans Schartinger
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Chitosan-based mucoadhesive gel for oral mucosal toluidine blue O delivery: The influence of a non-ionic surfactant. Photodiagnosis Photodyn Ther 2017; 20:48-54. [DOI: 10.1016/j.pdpdt.2017.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/09/2017] [Accepted: 08/13/2017] [Indexed: 12/29/2022]
|
22
|
Gontijo SM, Felizali RC, Guimarães PP, Santos RA, Sinisterra RD, Cortés ME, Araújo PV. Sub-additive effects of photodynamic therapy combined with erlotinib for the treatment of epidermoid carcinoma: An in vitro study. Photodiagnosis Photodyn Ther 2017; 18:252-256. [DOI: 10.1016/j.pdpdt.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
23
|
dos Santos AF, Terra LF, Wailemann RAM, Oliveira TC, Gomes VDM, Mineiro MF, Meotti FC, Bruni-Cardoso A, Baptista MS, Labriola L. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer 2017; 17:194. [PMID: 28298203 PMCID: PMC5353937 DOI: 10.1186/s12885-017-3179-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. METHODS In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm2. We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. RESULTS We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. CONCLUSIONS Finally, our observations underscore the potential of MB-PDT as a highly efficient strategy which could use as a powerful adjunct therapy to surgery of breast tumours, and possibly other types of tumours, to safely increase the eradication rate of microscopic residual disease and thus minimizing the chance of both local and metastatic recurrence.
Collapse
Affiliation(s)
- Ancély F. dos Santos
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Letícia F. Terra
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Rosangela A. M. Wailemann
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Talita C. Oliveira
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Vinícius de Morais Gomes
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Marcela Franco Mineiro
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Flávia Carla Meotti
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Alexandre Bruni-Cardoso
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Maurício S. Baptista
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Leticia Labriola
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| |
Collapse
|
24
|
Wu J, Xiao Q, Zhang N, Xue C, Leung AW, Zhang H, Xu C, Tang QJ. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells. Photodiagnosis Photodyn Ther 2016; 15:53-8. [PMID: 27181460 DOI: 10.1016/j.pdpdt.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Palmatine hydrochloride (PaH) is a natural active compound from a traditional Chinese medicine (TCM). The present study aims to evaluate the effect of PaH as a new photosensitizer on colon adenocarcinoma HT-29 cells upon light irradiation. Firstly, the absorption and fluorescence spectra of PaH were measured using a UV-vis spectrophotometer and RF-1500PC spectrophotometer, respectively. Singlet oxygen ((1)O2) production of PaH was determined using 1, 3-diphenylisobenzofuran (DPBF). Dark toxicity of PaH was estimated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake of PaH in HT-29 cells was detected at different time intervals. Subellular localization of PaH in HT-29 cells was observed using confocal laser fluorescence microscopy. For photodynamic treatment, HT-29 cells were incubated with PaH and then irradiated by visible light (470nm) from a LED light source. Photocytotoxicity was investigated 24h after photodynamic treatment using MTT assay. Cell apoptosis was observed 18h after photodynamic treatment using a flow cytometry with Annexin V/PI staining. Results showed that PaH has an absorption peak in the visible region from 400nm to 500nm and a fluorescence emission peak at 406nm with an excitation wavelength of 365nm. PaH was activated by the 470nm visible light from a LED light source to produce (1)O2. Dark toxicity showed that PaH alone treatment had no cytotoxicity to HT-29 cancer cells and NIH-3T3 normal cells after incubation for 24h. After incubation for 40min, the cellular uptake of PaH reached to the maximum and PaH was located in mitochondria. Photodynamic treatment of PaH demonstrated a significant photocytotoxicity on HT-29 cells. The rate of cell death increased significantly in a PaH concentration-dependent and light dose-dependent manner. Further evaluation revealed that the early and late apoptotic rate of HT-29 cells increased remarkably up to 21.54% and 5.39% after photodynamic treatment of PaH at the concentration of 5μM and energy density of 10.8J/cm(2). Our findings demonstrated that PaH as a naturally occurring photosensitizer has potential in photodynamic therapy on colon adenocarcinoma.
Collapse
Affiliation(s)
- Juan Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Na Zhang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Qing-Juan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
25
|
Lin D, Wang Y, Zhang Q, Zhou J, Zhou L, Wei S. The substituted amino group type dependent sensitivity enhancing of cationic phthalocyanine derivatives for photodynamic activity. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|