1
|
Thomson C. Near-infrared-guided Thoracoscopic Surgery and Future Near-infrared Targets. Vet Clin North Am Small Anim Pract 2024; 54:685-695. [PMID: 38508966 DOI: 10.1016/j.cvsm.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Intraoperative near-infrared fluorescence imaging allows for real time, noninvasive visualization of anatomic structures (blood vessels, lymphatic vessels) or diseased states (cancer, inflammation). This technique is easily adapted to thoracoscopy and has allowed for improved detection of lung tumors and other various cancers, thoracic lymphatics, and cardiothoracic vasculature.
Collapse
Affiliation(s)
- Chris Thomson
- Surgical Oncology, Veterinary Specialty Hospital - North County, by Ethos Veterinary Health, 2055 Montiel Road. #104, San Marcos, CA 92069, USA.
| |
Collapse
|
2
|
Aebisher D, Rogóż K, Myśliwiec A, Dynarowicz K, Wiench R, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. The use of photodynamic therapy in medical practice. Front Oncol 2024; 14:1373263. [PMID: 38803535 PMCID: PMC11129581 DOI: 10.3389/fonc.2024.1373263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Kacper Rogóż
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| |
Collapse
|
3
|
Bader N, Peschmann C, Kast RE, Heiland T, Merz T, McCook O, Alfieri A, Karpel-Massler G, Capanni F, Halatsch ME. Globus Lucidus: A porcine study of an intracranial implant designed to deliver closed, repetitive photodynamic and photochemical therapy in glioblastoma. Photodiagnosis Photodyn Ther 2024; 46:104059. [PMID: 38548041 DOI: 10.1016/j.pdpdt.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Herein we describe initial results in a porcine model of a fully implantable device designed to allow closed, repetitive photodynamic treatment of glioblastoma (GBM). METHODS This implant, Globus Lucidus, is a transparent quartz glass sphere with light-emitting diodes releasing wavelengths of 630 nm (19.5 mW/cm2), 405 nm (5.0 mW/cm2) or 275 nm (0.9 mW/cm2). 5-aminolevulinic acid was the photosensitizing prodrug chosen for use with Globus Lucidus, hence the implants illuminated at 630 nm or 405 nm. An additional 275 nm wavelength-emittance was included to explore the effects of photochemical therapy (PCT) by ultraviolet (UV) light. Twenty healthy domestic pigs underwent right-frontal craniotomies. The Globus Lucidus device was inserted into a surgically created right-frontal lobe cavity. After postoperative recovery, irradiation for up to 30 min daily for up to 14 d, or continuous irradiation for up to 14.6 h was conducted. RESULTS Surgery, implants, and repeated irradiations using the different wavelengths were generally well tolerated. Social behavior, wound healing, body weight, and temperature remained unaffected. Histopathological analyses revealed consistent leukocyte infiltration around the intracerebral implant sites with no significant differences between experimental and control groups. CONCLUSION This Globus Lucidus porcine study prepares the groundwork for adjuvant, long-term, repeated PDT of the GBM infiltration zone. This is the first report of a fully implantable PDT/PCT device for the potential treatment of GBM. A preclinical effectivity study of Globus Lucidus PDT/PCT is warranted and in advanced stages of planning.
Collapse
Affiliation(s)
- Nicolas Bader
- Biomechatronics Research Group, Ulm University of Applied Sciences, Ulm, Germany
| | - Christian Peschmann
- Department of Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
| | | | - Tim Heiland
- Spine Center Lake Constance, Meckenbeuren, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland; Advanced Treatment Concepts against Glioblastoma (ATCG), Kreuzlingen, Switzerland
| | | | - Felix Capanni
- Biomechatronics Research Group, Ulm University of Applied Sciences, Ulm, Germany
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland; Advanced Treatment Concepts against Glioblastoma (ATCG), Kreuzlingen, Switzerland.
| |
Collapse
|
4
|
Bhattacharya S, Prajapati BG, Singh S, Anjum MM. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: a critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol 2023; 149:17607-17634. [PMID: 37776358 DOI: 10.1007/s00432-023-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment that kills cancer cells selectively by stimulating reactive oxygen species generation with photosensitizers exposed to specific light wavelengths. 5-aminolevulinic acid (5-ALA) is a widely used photosensitizer. However, its limited tumour penetration and targeting reduce its therapeutic efficacy. Scholars have investigated nano-delivery techniques to improve 5-ALA administration and efficacy in PDT. This review summarises recent advances in biological host biosynthetic pathways and regulatory mechanisms for 5-ALA production. The review also highlights the potential therapeutic efficacy of various 5-ALA nano-delivery modalities, such as nanoparticles, liposomes, and gels, in treating various cancers. Although promising, 5-ALA nano-delivery methods face challenges that could impair targeting and efficacy. To determine their safety and biocompatibility, extensive preclinical and clinical studies are required. This study highlights the potential of 5-ALA-NDSs to improve PDT for cancer treatment, as well as the need for additional research to overcome barriers and improve medical outcomes.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, Kherva, 384012, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
5
|
Bartusik-Aebisher D, Serafin I, Dynarowicz K, Aebisher D. Photodynamic therapy and associated targeting methods for treatment of brain cancer. Front Pharmacol 2023; 14:1250699. [PMID: 37841921 PMCID: PMC10568033 DOI: 10.3389/fphar.2023.1250699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Brain tumors, including glioblastoma multiforme, are currently a cause of suffering and death of tens of thousands of people worldwide. Despite advances in clinical treatment, the average patient survival time from the moment of diagnosis of glioblastoma multiforme and application of standard treatment methods such as surgical resection, radio- and chemotherapy, is less than 4 years. The continuing development of new therapeutic methods for targeting and treating brain tumors may extend life and provide greater comfort to patients. One such developing therapeutic method is photodynamic therapy. Photodynamic therapy is a progressive method of therapy used in dermatology, dentistry, ophthalmology, and has found use as an antimicrobial agent. It has also found wide application in photodiagnosis. Photodynamic therapy requires the presence of three necessary components: a clinically approved photosensitizer, oxygen and light. This paper is a review of selected literature from Pubmed and Scopus scientific databases in the field of photodynamic therapy in brain tumors with an emphasis on glioblastoma treatment.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
6
|
Bartusik-Aebisher D, Woźnicki P, Dynarowicz K, Aebisher D. Photosensitizers for Photodynamic Therapy of Brain Cancers-A Review. Brain Sci 2023; 13:1299. [PMID: 37759900 PMCID: PMC10526171 DOI: 10.3390/brainsci13091299] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
On average, there are about 300,000 new cases of brain cancer each year. Studies have shown that brain and central nervous system tumors are among the top ten causes of death. Due to the extent of this problem and the percentage of patients suffering from brain tumors, innovative therapeutic treatment methods are constantly being sought. One such innovative therapeutic method is photodynamic therapy (PDT). Photodynamic therapy is an alternative and unique technique widely used in dermatology and other fields of medicine for the treatment of oncological and nononcological lesions. Photodynamic therapy consists of the destruction of cancer cells and inducing inflammatory changes by using laser light of a specific wavelength in combination with the application of a photosensitizer. The most commonly used photosensitizers include 5-aminolevulinic acid for the enzymatic generation of protoporphyrin IX, Temoporfin-THPC, Photofrin, Hypericin and Talaporfin. This paper reviews the photosensitizers commonly used in photodynamic therapy for brain tumors. An overview of all three generations of photosensitizers is presented. Along with an indication of the limitations of the treatment of brain tumors, intraoperative photodynamic therapy and its possibilities are described as an alternative therapeutic method.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
7
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Bartusik-Aebisher D, Żołyniak A, Barnaś E, Machorowska-Pieniążek A, Oleś P, Kawczyk-Krupka A, Aebisher D. The Use of Photodynamic Therapy in the Treatment of Brain Tumors-A Review of the Literature. Molecules 2022; 27:molecules27206847. [PMID: 36296440 PMCID: PMC9607067 DOI: 10.3390/molecules27206847] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
The treatment of neoplastic disease of the brain is still a challenge for modern medicine. Therefore, advanced methodologies are needed that can rationally and successfully contribute to the early diagnosis of primary and metastatic tumors growing within the brain. Photodynamic therapy (PDT) seems to be a valuable method of treatment for precancerous and cancerous lesions including brain tumors. The main advantage of PDT is its high efficiency, minimal invasiveness and no serious side effects, compared with chemotherapy and radiotherapy. This review was conducted through a comprehensive search of articles, scientific information databases and the websites of organizations dealing with cancer treatment. Key points from clinical trials conducted by other researchers are also discussed. The common databases such as PubMed, Google Scholar, EBSCO, Scopus, and Elsevier were used. Articles in the English language of reliable credibility were mainly analyzed. The type of publications considered included clinical and preclinical studies, systematic reviews, and case reports. Based on these collected materials, we see that scientists have already demonstrated the potential of PDT application in the field of brain tumors. Therefore, in this review, the treatment of neoplasm of the Central Nervous System (CNS) and the most common tumor, glioblastoma multiforme (GBM), have been explored. In addition, an overview of the general principles of PDT, as well as the mechanism of action of the therapy as a therapeutic platform for brain tumors, is described. The research was carried out in June 2022.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Aleksandra Żołyniak
- Students Biochemistry Science Club, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Edyta Barnaś
- Institute of Health Sciences, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
| | - Agnieszka Machorowska-Pieniążek
- Department of Orthodontics, Division of Medical Sciences in Zabrze, Medical University of Silesia, 15 Poniatowskiego Street, 40-055 Katowice, Poland
| | - Piotr Oleś
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
| |
Collapse
|
9
|
Liu Y, Liu CZ, Wang ZK, Zhou W, Wang H, Zhang YC, Zhang DW, Ma D, Li ZT. Supramolecular organic frameworks improve the safety of clinically used porphyrin photodynamic agents and maintain their antitumor efficacy. Biomaterials 2022; 284:121467. [DOI: 10.1016/j.biomaterials.2022.121467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
|
10
|
Gull HH, Karadag C, Senger B, Sorg RV, Möller P, Mellert K, Steiger HJ, Hänggi D, Cornelius JF. Ciprofloxacin enhances phototoxicity of 5-aminolevulinic acid mediated photodynamic treatment for chordoma cell lines. Photodiagnosis Photodyn Ther 2021; 35:102346. [PMID: 34038764 DOI: 10.1016/j.pdpdt.2021.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chordoma are uncommon aggressive tumors of the skeleton. Surgical resection is often subtotal and adjuvant treatment possibilities are limited as chordomas are highly chemo- and radioresistant. In the present study we examined the impact of 5-ALA PDT on different human chordoma cell lines. Furthermore, we investigated the variation of two parameters: (1.) 5-ALA incubation time and (2.) supplemental use of ciprofloxacin as iron chelator. METHODS Experiments were realized in vitro with three different human chordoma cell lines: U-CH2, U-CH2B and U-CH14. After pre-incubation for 24 h with various concentrations of ciprofloxacin (1.5 - 5.0 μg/ml), different amounts of 5-ALA (15 - 50 μg/ml) were applied to the cells either for a brief (4 h) or a long (6 h) incubation time. Subsequently cells were exposed to photodynamic radiation. Cell viability was exploited by WST-1 assay. Thus, for each of the three cell lines, two drug combinations (ciprofloxacin plus 5-ALA and 5-ALA only) and two incubation times (short, 4 h and long, 6 h) were tested. Negative control groups were also examined. RESULTS Supplemental use of ciprofloxacin led to increased cell death in each of the cell lines. Different 5-ALA incubation times (4 h vs. 6 h) showed no significant differences in cell viability except for U-CH2. CONCLUSION Ciprofloxacin as an ordinary applied antibiotic, enhanced the effect of 5-ALA PDT on different human chordoma cell lines in vitro. The impact was dependent on the dose of ciprofloxacin-5-ALA. There were no notable differences for the tested 5-ALA incubation times. In human chordoma cell lines 5-ALA PDT may effectively be amended by ciprofloxacin.
Collapse
Affiliation(s)
- Hanah Hadice Gull
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurosurgery and Spine Surgery, University Hospital of Essen, Germany.
| | - Cihat Karadag
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Brigitte Senger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
11
|
Chen B, Li J, Feng Y, Le K, Zai Y, Tang X, Sun Y, Zeng X, Lin L. Green and mild production of 5-aminolevulinic acid from algal biomass. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0774-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Systematic Review and Meta-Analysis of In Vitro Anti-Human Cancer Experiments Investigating the Use of 5-Aminolevulinic Acid (5-ALA) for Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14030229. [PMID: 33800109 PMCID: PMC8000125 DOI: 10.3390/ph14030229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.
Collapse
|
13
|
Kim EH, Park S, Kim YK, Moon M, Park J, Lee KJ, Lee S, Kim YP. Self-luminescent photodynamic therapy using breast cancer targeted proteins. SCIENCE ADVANCES 2020; 6:eaba3009. [PMID: 32917700 PMCID: PMC7486108 DOI: 10.1126/sciadv.aba3009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Despite the potential of photodynamic therapy (PDT), its comprehensive use in cancer treatment has not been achieved because of the nondegradable risks of photosensitizing drugs and limits of light penetration and instrumentation. Here, we present bioluminescence (BL)-induced proteinaceous PDT (BLiP-PDT), through the combination of luciferase and a reactive oxygen species (ROS)-generating protein (Luc-RGP), which is self-luminescent and degradable. After exposure to coelenterazine-h as a substrate for luciferase without external light irradiation, Luc-RGP fused with a small lead peptide-induced breast cancer cell death through the generation of BL-sensitive ROS in the plasma membrane. Even with extremely low light energy, BLiP-PDT exhibited targeted effects in primary breast cancer cells from patients and in in vivo tumor xenograft mouse models. These findings suggest that BLiP-PDT is immediately useful as a promising theranostic approach against various cancers.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Sangwoo Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Yun Kyu Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Minwoo Moon
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jeongwon Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Mastrangelopoulou M, Grigalavicius M, Raabe TH, Skarpen E, Juzenas P, Peng Q, Berg K, Theodossiou TA. Predictive biomarkers for 5-ALA-PDT can lead to personalized treatments and overcome tumor-specific resistances. Cancer Rep (Hoboken) 2020; 5:e1278. [PMID: 32737955 PMCID: PMC9780429 DOI: 10.1002/cnr2.1278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive, clinically approved therapy with numerous advantages over other mainstream cancer therapies. 5-aminolevulinic acid (5-ALA)-PDT is of particular interest, as it uses the photosensitiser PpIX, naturally produced in the heme pathway, following 5-ALA administration. Even though 5-ALA-PDT shows high specificity to cancers, differences in treatment outcomes call for predictive biomarkers to better stratify patients and to also diversify 5-ALA-PDT based on each cancer's phenotypic and genotypic individualities. AIMS The present study seeks to highlight key biomarkers that may predict treatment outcome and simultaneously be exploited to overcome cancer-specific resistances to 5-ALA-PDT. METHODS AND RESULTS We submitted two glioblastoma (T98G and U87) and three breast cancer (MCF7, MDA-MB-231, and T47D) cell lines to 5-ALA-PDT. Glioblastoma cells were the most resilient to 5-ALA-PDT, while intracellular production of 5-ALA-derived protoporphyrin IX (PpIX) could not account for the recorded PDT responses. We identified the levels of expression of ABCG2 transporters, ferrochelatase (FECH), and heme oxygenase (HO-1) as predictive biomarkers for 5-ALA-PDT. GPX4 and GSTP1 expression vs intracellular glutathione (GSH) levels also showed potential as PDT biomarkers. For T98G cells, inhibition of ABCG2, FECH, HO-1, and/or intracellular GSH depletion led to profound PDT enhancement. Inhibition of ABCG2 in U87 cells was the only synergistic adjuvant to 5-ALA-PDT, rendering the otherwise resistant cell line fully responsive to 5-ALA-PDT. ABCG2 or FECH inhibition significantly enhanced 5-ALA-PDT-induced MCF7 cytotoxicity, while for MDA-MB-231, ABCG2 inhibition and intracellular GSH depletion conferred profound synergies. FECH inhibition was the only synergism to ALA-PDT for the most susceptible among the cell lines, T47D cells. CONCLUSION This study demonstrates the heterogeneity in the cellular response to 5-ALA-PDT and identifies biomarkers that may be used to predict treatment outcome. The study also provides preliminary findings on the potential of inhibiting specific molecular targets to overcome inherent resistances to 5-ALA-PDT.
Collapse
Affiliation(s)
- Maria Mastrangelopoulou
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Mantas Grigalavicius
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Tine H. Raabe
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Ellen Skarpen
- Department of Molecular Cell BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Petras Juzenas
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Qian Peng
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Kristian Berg
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | | |
Collapse
|
15
|
Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 30:101694. [PMID: 32109615 DOI: 10.1016/j.pdpdt.2020.101694] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Due to the ability to induce the generation of reactive oxygen species (ROS) under light irradiation, ZnO nanoparticles show great potential in photodynamic therapy (PDT). Photo-triggered ROS production by ZnO nanoparticles and the resulting phototoxicity are efficient in killing cancer cells. This review highlights the recent exciting progress on the nanoscale ZnO-based photosensitizers (PSs) for PDT. Both the semplice ZnO nanoparticles as the PSs and the various chemicals (organic PS, dopant, metal and chemotherapeutic drugs) modified ZnO nanoparticles as the PSs show good ROS generation efficiency. The productive rate of ROS, the wavelength of exciting lights, and the therapeutic effect can be altered by doping different chemicals into ZnO nanoparticles at will. Additionally, we give some outlook on the design and functionalization of next-generation ZnO nanoparticles for more effective anti-cancer applications.
Collapse
|
16
|
Liu L, Zhu X, Yu A, Ward CM, Pace BS. δ-Aminolevulinate induces fetal hemoglobin expression by enhancing cellular heme biosynthesis. Exp Biol Med (Maywood) 2019; 244:1220-1232. [PMID: 31475864 DOI: 10.1177/1535370219872995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) and β-thalassemia are inherited blood disorders caused by genetic defects in the β-globin gene on chromosome 11, producing severe disease in people worldwide. Induction of fetal hemoglobin consisting of two α-globin and two γ-globin chains ameliorates the clinical symptoms of both disorders. In the present study, we investigated the ability of δ-aminolevulinate (ALA), the heme precursor, to activate γ-globin gene expression as well as its effects on cellular functions in erythroid cell systems. We demonstrated that ALA induced γ-globin expression at both the transcriptional and protein levels in the KU812 erythroid cell line. Using inhibitors targeting two enzymes in the heme biosynthesis pathway, we showed that cellular heme biosynthesis was involved in ALA-mediated γ-globin activation. Moreover, the transcription factor NRF2 (nuclear factor [erythroid-derived 2]-like 2), a critical regulator of the cellular antioxidant response, was activated by ALA and contributed to mechanisms of γ-globin activation; ALA did not affect cell proliferation and was not toxic to cells. Subsequent studies demonstrated ALA-induced γ-globin activation in erythroid progenitors generated from normal human CD34+ stem cells. These data support future study to explore the potential of stimulating intracellular heme biosynthesis by ALA or similar compounds as a novel therapeutic strategy for treating SCD and β-thalassemia. Impact statement Inherited mutations in the β-globin-like genes result in the most common forms of genetic blood disease including sickle cell disease (SCD) and β-thalassemia worldwide. Therefore, effective inexpensive therapies that can be distributed widely are highly desirable. Currently, drug-mediated fetal hemoglobin (HbF) induction can ameliorate clinical symptoms of SCD and β-thalassemia and is the most effective strategy for developing new therapeutic options. In the current study, we confirmed that δ-Aminolevulinate (ALA), the precursor of heme, induces γ-globin expression at both the transcriptional and translational levels in primary human erythroid progenitors. Moreover, the results indicate activation of the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2) by ALA to enhance HbF expression. These data support future study to explore the potential of stimulating intracellular heme biosynthesis by ALA or similar compounds as a novel therapeutic strategy for treating SCD and β-thalassemia.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Alexander Yu
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Christina M Ward
- Department of Biochemistry and Molecular Biology, Boston University, Boston, MA 02118, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
17
|
Dupont C, Baert G, Mordon S, Vermandel M. Parallelized Monte-Carlo dosimetry using graphics processing units to model cylindrical diffusers used in photodynamic therapy: From implementation to validation. Photodiagnosis Photodyn Ther 2019; 26:351-360. [DOI: 10.1016/j.pdpdt.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 12/28/2022]
|
18
|
Fahey JM, Korytowski W, Girotti AW. Upstream signaling events leading to elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med 2019; 137:37-45. [PMID: 30991141 PMCID: PMC6526063 DOI: 10.1016/j.freeradbiomed.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) generated endogenously by inducible nitric oxide synthase (iNOS) promotes growth and migration/invasion of glioblastoma cells and also fosters resistance to chemotherapy and ionizing radiotherapy. Our recent studies revealed that glioblastoma cell iNOS/NO also opposes the cytotoxic effects of non-ionizing photodynamic therapy (PDT), and moreover stimulates growth/migration aggressiveness of surviving cells. These negative responses, which depended on PI3K/Akt/NF-κB activation, were strongly suppressed by blocking iNOS transcription with JQ1, a BET bromodomain inhibitor. In the present study, we sought to identify additional molecular events that precede iNOS transcriptional upregulation. Akt activation, iNOS induction, and viability loss in PDT-challenged glioblastoma U87 cells were all strongly inhibited by added l-histidine, consistent with primary involvement of photogenerated singlet oxygen (1O2). Transacetylase p300 not only underwent greater Akt-dependent activation after PDT, but greater interaction with NF-κB subunit p65, which in turn exhibited greater K310 acetylation. In addition, PDT promoted intramolecular disulfide formation and inactivation of tumor suppressor PTEN, thereby favoring Akt and p300 activation leading to iNOS upregulation. Importantly, deacetylase Sirt1 was down-regulated by PDT stress, consistent with the observed increase in p65-acK310 level, which fostered iNOS transcription. This study provides new mechanistic insights into how glioblastoma tumors can exploit iNOS/NO to not only resist PDT, but to attain a more aggressive survival phenotype.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA
| | | | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA.
| |
Collapse
|
19
|
Zai Y, Feng Y, Zeng X, Tang X, Sun Y, Lin L. Synthesis of 5-aminolevulinic acid with nontoxic regents and renewable methyl levulinate. RSC Adv 2019; 9:10091-10093. [PMID: 35520939 PMCID: PMC9062401 DOI: 10.1039/c9ra01517e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/02/2022] Open
Abstract
Synthesis of 5-aminolevulinic acid (5-ALA) was presented with novel bromination of biobased methyl levulinate (ML), followed by ammoniation and hydrolysis. Copper bromide (CuBr2) was employed as the bromination reagent with higher selectivity and activity instead of the conventional liquid bromine (Br2). 5-ALA was obtained in a high yield (64%) and purity (>95%) by optimum design, which is of great potential in industrialization. Synthesis of 5-aminolevulinic acid (5-ALA) was presented with novel bromination of biobased methyl levulinate (ML), followed by ammoniation and hydrolysis.![]()
Collapse
Affiliation(s)
- Yuxia Zai
- College of Energy, Xiamen University Xiamen 361102 China +86-592-2880701 +86-592-2880701
| | - Yunchao Feng
- College of Energy, Xiamen University Xiamen 361102 China +86-592-2880701 +86-592-2880701
| | - Xianhai Zeng
- College of Energy, Xiamen University Xiamen 361102 China +86-592-2880701 +86-592-2880701.,Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass Xiamen 361102 China.,Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass Xiamen 361102 China
| | - Xing Tang
- College of Energy, Xiamen University Xiamen 361102 China +86-592-2880701 +86-592-2880701.,Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass Xiamen 361102 China.,Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass Xiamen 361102 China
| | - Yong Sun
- College of Energy, Xiamen University Xiamen 361102 China +86-592-2880701 +86-592-2880701.,Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass Xiamen 361102 China.,Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass Xiamen 361102 China
| | - Lu Lin
- College of Energy, Xiamen University Xiamen 361102 China +86-592-2880701 +86-592-2880701.,Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass Xiamen 361102 China.,Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass Xiamen 361102 China
| |
Collapse
|
20
|
Fahey JM, Girotti AW. Nitric Oxide Antagonism to Anti-Glioblastoma Photodynamic Therapy: Mitigation by Inhibitors of Nitric Oxide Generation. Cancers (Basel) 2019; 11:E231. [PMID: 30781428 PMCID: PMC6406633 DOI: 10.3390/cancers11020231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/14/2022] Open
Abstract
Many studies have shown that low flux nitric oxide (NO) produced by inducible NO synthase (iNOS/NOS2) in various tumors, including glioblastomas, can promote angiogenesis, cell proliferation, and migration/invasion. Minimally invasive, site-specific photodynamic therapy (PDT) is a highly promising anti-glioblastoma modality. Recent research in the authors' laboratory has revealed that iNOS-derived NO in glioblastoma cells elicits resistance to 5-aminolevulinic acid (ALA)-based PDT, and moreover endows PDT-surviving cells with greater proliferation and migration/invasion aggressiveness. In this contribution, we discuss iNOS/NO antagonism to glioblastoma PDT and how this can be overcome by judicious use of pharmacologic inhibitors of iNOS activity or transcription.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
21
|
Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM, Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol 2019; 141:595-607. [PMID: 30659522 PMCID: PMC6538286 DOI: 10.1007/s11060-019-03103-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Photodynamic therapy (PDT) is a two-step treatment involving the administration of a photosensitive agent followed by its activation at a specific light wavelength for targeting of tumor cells. MATERIALS/METHODS A comprehensive review of the literature was performed to analyze the indications for PDT, mechanisms of action, use of different photosensitizers, the immunomodulatory effects of PDT, and both preclinical and clinical studies for use in high-grade gliomas (HGGs). RESULTS PDT has been approved by the United States Food and Drug Administration (FDA) for the treatment of premalignant and malignant diseases, such as actinic keratoses, Barrett's esophagus, esophageal cancers, and endobronchial non-small cell lung cancers, as well as for the treatment of choroidal neovascularization. In neuro-oncology, clinical trials are currently underway to demonstrate PDT efficacy against a number of malignancies that include HGGs and other brain tumors. Both photosensitizers and photosensitizing precursors have been used for PDT. 5-aminolevulinic acid (5-ALA), an intermediate in the heme synthesis pathway, is a photosensitizing precursor with FDA approval for PDT of actinic keratosis and as an intraoperative imaging agent for fluorescence-guided visualization of malignant tissue during glioma surgery. New trials are underway to utilize 5-ALA as a therapeutic agent for PDT of the intraoperative resection cavity and interstitial PDT for inoperable HGGs. CONCLUSION PDT remains a promising therapeutic approach that requires further study in HGGs. Use of 5-ALA PDT permits selective tumor targeting due to the intracellular metabolism of 5-ALA. The immunomodulatory effects of PDT further strengthen its use for treatment of HGGs and requires a better understanding. The combination of PDT with adjuvant therapies for HGGs will need to be studied in randomized, controlled studies.
Collapse
Affiliation(s)
- K Mahmoudi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K L Garvey
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Stepp
- Laser-Research Laboratory, LIFE-Center, Department of Urology, University Hospital of Munich, Munich, Germany
| | - J G Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - C G Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA.
| |
Collapse
|
22
|
Lewis DY, Mair R, Wright A, Allinson K, Lyons SK, Booth T, Jones J, Bielik R, Soloviev D, Brindle KM. [ 18F]fluoroethyltyrosine-induced Cerenkov Luminescence Improves Image-Guided Surgical Resection of Glioma. Theranostics 2018; 8:3991-4002. [PMID: 30083276 PMCID: PMC6071532 DOI: 10.7150/thno.23709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/26/2018] [Indexed: 01/27/2023] Open
Abstract
The extent of surgical resection is significantly correlated with outcome in glioma; however, current intraoperative navigational tools are useful only in a subset of patients. We show here that a new optical intraoperative technique, Cerenkov luminescence imaging (CLI) following intravenous injection of O‑(2-[18F]fluoroethyl)-L-tyrosine (FET), can be used to accurately delineate glioma margins, performing better than the current standard of fluorescence imaging with 5-aminolevulinic acid (5-ALA). Methods: Rats implanted orthotopically with U87, F98 and C6 glioblastoma cells were injected with FET and 5-aminolevulinic acid (5-ALA). Positive and negative tumor regions on histopathology were compared with CL and fluorescence images. The capability of FET CLI and 5-ALA fluorescence imaging to detect tumor was assessed using receptor operator characteristic curves and optimal thresholds (CLIOptROC and 5-ALAOptROC) separating tumor from healthy brain tissue were determined. These thresholds were used to guide prospective tumor resections, where the presence of tumor cells in the resected material and in the remaining brain were assessed by Ki-67 staining. Results: FET CLI signal was correlated with signal in preoperative PET images (y = 1.06x - 0.01; p < 0.0001) and with expression of the amino acid transporter SLC7A5 (LAT1). FET CLI (AUC = 97%) discriminated between glioblastoma and normal brain in human and rat orthografts more accurately than 5-ALA fluorescence (AUC = 91%), with a sensitivity >92% and specificity >91%, and resulted in a more complete tumor resection. Conclusion: FET CLI can be used to accurately delineate glioblastoma tumor margins, performing better than the current standard of fluorescence imaging following 5-ALA administration, and is therefore a promising technique for clinical translation.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Richard Mair
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alan Wright
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Scott K. Lyons
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Tom Booth
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Julia Jones
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Robert Bielik
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Fahey JM, Stancill JS, Smith BC, Girotti AW. Nitric oxide antagonism to glioblastoma photodynamic therapy and mitigation thereof by BET bromodomain inhibitor JQ1. J Biol Chem 2018; 293:5345-5359. [PMID: 29440272 DOI: 10.1074/jbc.ra117.000443] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Endogenous nitric oxide (NO) generated by inducible NO synthase (iNOS) promotes glioblastoma cell proliferation and invasion and also plays a key role in glioblastoma resistance to chemotherapy and radiotherapy. Non-ionizing photodynamic therapy (PDT) has anti-tumor advantages over conventional glioblastoma therapies. Our previous studies revealed that glioblastoma U87 cells up-regulate iNOS after a photodynamic challenge and that the resulting NO not only increases resistance to apoptosis but renders surviving cells more proliferative and invasive. These findings were largely based on the effects of inhibiting iNOS activity and scavenging NO. Demonstrating now that iNOS expression in photostressed U87 cells is mediated by NF-κB, we hypothesized that (i) recognition of acetylated lysine (acK) on NF-κB p65/RelA by bromodomain and extra-terminal (BET) protein Brd4 is crucial; and (ii) by suppressing iNOS expression, a BET inhibitor (JQ1) would attenuate the negative effects of photostress. The following evidence was obtained. (i) Like iNOS, Brd4 protein and p65-acK levels increased severalfold in photostressed cells. (ii) JQ1 at minimally toxic concentrations had no effect on Brd4 or p65-acK up-regulation after PDT but strongly suppressed iNOS, survivin, and Bcl-xL up-regulation, along with the growth and invasion spurt of PDT-surviving cells. (iii) JQ1 inhibition of NO production in photostressed cells closely paralleled that of growth/invasion inhibition. (iv) Finally, at 1% the concentration of iNOS inhibitor 1400W, JQ1 reduced post-PDT cell aggressiveness to a far greater extent. This is the first evidence for BET inhibitor targeting of iNOS expression in cancer cells and how such targeting can markedly improve therapeutic efficacy.
Collapse
Affiliation(s)
- Jonathan M Fahey
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Jennifer S Stancill
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Brian C Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Albert W Girotti
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| |
Collapse
|
24
|
Cornelius JF, Eismann L, Ebbert L, Senger B, Petridis AK, Kamp MA, Sorg RV, Steiger HJ. 5-Aminolevulinic acid-based photodynamic therapy of chordoma: In vitro experiments on a human tumor cell line. Photodiagnosis Photodyn Ther 2017; 20:111-115. [PMID: 28951177 DOI: 10.1016/j.pdpdt.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/14/2017] [Accepted: 09/17/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chordomas are very rare tumors of the skull base and the sacrum. They show infiltrating and destructive growth and are known to be chemo- and radio-resistant. After surgical resection, the recurrence rate is high and overall survival limited. As current adjuvant treatments are ineffective, new treatment concepts are urgently needed. 5-aminolevulinic acid-based photodynamic therapy (5-ALA based PDT) showed promising results for malignant gliomas. However, it is unknown so far, whether chordomas accumulate protoporphyrin IX (PPIX) after application of 5-ALA and whether they are sensitive to subsequent 5-ALA based PDT. METHODS The immortalized human chordoma cells U-CH2 were used as in vitro model. After incubation for 4h or 6h with different 5-ALA concentrations, PPIX accumulation was determined by flow cytometry. To assess sensitivity to PDT, chordoma cells were incubated at 30.000cells/well (high cell density) or 15.000cells/well (low cell density) with graded doses of 5-ALA (0-50μg/ml) in 96-well plates and subsequently exposed to laser light of 635nm wavelength (18.75J/cm2). Cell survival was measured 24h after exposure to laser light using the WST-1 assay. RESULTS U-CH2 cells dose-dependently accumulated PPIX (ANOVA; p<0.0001). PPIX fluorescence was significantly higher, when cells were incubated with 5-ALA for 6h compared to 4h at higher 5-ALA concentrations (ANOVA/Bonferroni; p≤0.05 for≥30μg/ml 5-ALA). For both cell densities, a 5-ALA dose-dependent decline in viability was observed (ANOVA; p<0.0001). Viability was significantly lower at higher 5-ALA concentrations, when 30.000 cells/wells were treated compared to 15.000cells/well (ANOVA/Bonferroni; p≤0.001 for≥30μg/ml 5-ALA). LD50 was 30.25μg/ml 5-ALA. CONCLUSION The human UCH-2 cell line was a very useful in vitro model to study different effects of 5-ALA based PDT. For the first time, it could be shown that human chordoma cells may be destroyed by 5-ALA/PDT.
Collapse
Affiliation(s)
- Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Lennert Eismann
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany; Neuro-oncological Research Laboratory, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lara Ebbert
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Brigitte Senger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany; Neuro-oncological Research Laboratory, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Athanasios K Petridis
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Marcel Alexander Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Hans Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Belykh E, Yagmurlu K, Martirosyan NL, Lei T, Izadyyazdanabadi M, Malik KM, Byvaltsev VA, Nakaji P, Preul MC. Laser application in neurosurgery. Surg Neurol Int 2017; 8:274. [PMID: 29204309 PMCID: PMC5691557 DOI: 10.4103/sni.sni_489_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/18/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. METHODS We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. RESULTS Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. CONCLUSION Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ting Lei
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kashif M. Malik
- University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
26
|
Jamali Z, Hejazi SM, Ebrahimi SM, Moradi-Sardareh H, Paknejad M. Effects of LED-Based photodynamic therapy using red and blue lights, with natural hydrophobic photosensitizers on human glioma cell line. Photodiagnosis Photodyn Ther 2017; 21:50-54. [PMID: 29126958 DOI: 10.1016/j.pdpdt.2017.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Photodynamic therapy (PDT) has received high attention in cancer treatment due to its minimal side effects, specific cancer-targeting, non-invasion and low cost. It utilizes a specific group of anti-cancer drugs called photosensitizers (PS), which can be only activated under a certain wavelength light illumination and kills cancer cells. To screen the potential of PS and setup of PDT treatment protocol, it is essential to assess the PDT efficacy in vitro. In this study, a light-emitting diode- (LED-) based illumination system at two wavelengths (red & blue) with homogeneous and stable irradiation, and constant temperature conditions in 96-well plates was provided. The photodynamic effect of curcumin (CUR) and methyl ester of 5-aminolevulinic acid (MAL) using LED light on human glioma cell line was investigated. The obtained results indicate that this homemade LED-based illumination system is a favorable light source for in vitro PDT in 96-well plates. The PDT using CUR and MAL was efficient at final concentrations of 25μM and 2mM, and light doses of 60J/cm2 and 40J/cm2 respectively. The blue PDT efficiency was dependent on the light and PS doses. MAL-PDT and CUR-PDT using blue LED significantly decreased cell viability in the treatment groups compared with control groups. Furthermore, MAL-PDT using blue LEDs was more effective in comparison with conventional red LEDs on the human glioma cell line.
Collapse
Affiliation(s)
- Zahra Jamali
- Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Marjaneh Hejazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Bio Optical Imaging Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ebrahimi
- Bio Optical Imaging Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hemen Moradi-Sardareh
- Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Dupont C, Mordon S, Deleporte P, Reyns N, Vermandel M. A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment. Future Oncol 2017; 13:2441-2454. [PMID: 28942677 DOI: 10.2217/fon-2017-0261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Photodynamic therapy (PDT) appears to be a valuable new treatment modality for cancer therapy. Studies have reported successful application of PDT for glioblastoma. Here, we introduce a new device dedicated to intraoperative PDT delivered early after fluoro-guided resection combined with a transfer function that determines the treatment time based on the size of the surgical resection cavity. MATERIALS & METHODS First, we describe the device, which is composed of a trocar, a balloon filled with a diffusing solution, and a fiber guide in which a cylindrical light diffuser is inserted. Ex vivo experiments were performed to measure the fluence rate inside biological tissues. A calibration factor was defined to convert power measurements into fluence rate values. Calf brains were used to simulate light propagation in human brain tissue, and the photosensitizer administration effect on optical properties was discussed. The temperature elevation during illumination was evaluated. RESULTS Light power was measured in tissues surrounding the device during ex vivo experiments. Using the previously characterized calibration factor, power measurements were converted to fluence rate values to obtain the transfer function. No thermal elevation was observed during a 2-h temperature test, and the impact of protoporphyrin IX on brain optical properties was considered negligible. CONCLUSION A discussion of experimental precision is presented. The light duration determined by the abacus had a standard deviation of <1 min. This value is weak compared with the total illumination time necessary to treat one patient. The main advantage of our device lies in its straightforward implementation of intraoperative PDT for neurosurgery with acceptable dosimetry and easy treatment time.
Collapse
Affiliation(s)
- Clément Dupont
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| | - Serge Mordon
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| | - Pascal Deleporte
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| | - Nicolas Reyns
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| | - Maximilien Vermandel
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| |
Collapse
|
28
|
Dupont C, Vignion A, Mordon S, Reyns N, Vermandel M. Photodynamic therapy for glioblastoma: A preliminary approach for practical application of light propagation models. Lasers Surg Med 2017; 50:523-534. [DOI: 10.1002/lsm.22739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Clément Dupont
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Anne‐Sophie Vignion
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Serge Mordon
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Nicolas Reyns
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Maximilien Vermandel
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| |
Collapse
|
29
|
Huang H, Wang W, Zou J, Nakajima O, Zhang L, He Q, Diao Y, Liang H, Zhou L, Peng Y. Over expression of 5-aminolevulinic acid synthase 2 increased protoporphyrin IX in nonerythroid cells. Photodiagnosis Photodyn Ther 2017; 17:22-28. [DOI: 10.1016/j.pdpdt.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
|
30
|
5-ALA Photodynamic Therapy in Neurosurgery, Towards the Design of a Treatment Planning System: A Proof of Concept. Ing Rech Biomed 2017. [DOI: 10.1016/j.irbm.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Zhou Y, Chan CF, Kwong DWJ, Law GL, Cobb S, Wong WK, Wong KL. αvβ3-Isoform specific erbium complexes highly specific for bladder cancer imaging and photodynamic therapy. Chem Commun (Camb) 2017; 53:557-560. [DOI: 10.1039/c6cc09246b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have synthesized a bifunctional erbium–porphyrin tumor imaging and PDT agent (Er–R3) that is capable of killing bladder cancer cellsviaits selective binding to the integrin αvβ3isoform overexpressed on the cell membrane.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chi-Fai Chan
- Department of Applied Biology and Chemical Technology
- Hong Kong Polytechnic University
- Hung Hum
- China
| | | | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology
- Hong Kong Polytechnic University
- Hung Hum
- China
| | - Steven Cobb
- Department of Chemistry
- Durham University
- Durham
- UK
| | - Wai-Kwok Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Ka-Leung Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|
32
|
He J, Yang L, Yi W, Fan W, Wen Y, Miao X, Xiong L. Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer. Mol Imaging 2017; 16:1536012117722911. [PMID: 28849712 PMCID: PMC5580848 DOI: 10.1177/1536012117722911] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/07/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Specific visualization of body parts is needed during surgery. Fluorescence-guided surgery (FGS) uses a fluorescence contrast agent for in vivo tumor imaging to detect and identify both malignant and normal tissues. There are several advantages and clinical benefits of FGS over other conventional medical imaging modalities, such as its safety, effectiveness, and suitability for real-time imaging in the operating room. Recent advancements in contrast agents and intraoperative fluorescence imaging devices have led to a greater potential for intraoperative fluorescence imaging in clinical applications. Photodynamic therapy (PDT) is an alternative modality to treat tumors, which uses a light-sensitive drug (photosensitizers) and special light to destroy the targeted tissues. In this review, we discuss the fluorescent contrast agents, some newly developed imaging devices, and the successful clinical application of FGS. Additionally, we present the combined strategy of FGS with PDT to further improve the therapeutic effect for patients with cancer. Taken together, this review provides a unique perspective and summarization of FGS.
Collapse
Affiliation(s)
- Jun He
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Leping Yang
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Yi
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wentao Fan
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongying Miao
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Huang Z, Shi S, Qiu H, Li D, Zou J, Hu S. Fluorescence-guided resection of brain tumor: review of the significance of intraoperative quantification of protoporphyrin IX fluorescence. NEUROPHOTONICS 2017; 4:011011. [PMID: 28097209 PMCID: PMC5227178 DOI: 10.1117/1.nph.4.1.011011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/20/2016] [Indexed: 05/07/2023]
Abstract
Surgical removal of tumor mass is a common approach in the management of brain tumors. However, the precise delineation of normal tissue from tumor tissue for a complete resection of tumor mass in brain tumor surgery remains a difficult task for neurosurgeons. Aminolevulinic acid (ALA)-mediated exgogenous fluorescence of protoporphyrin IX (PpIX) is a sensitive approach for tumor imaging. Recent studies suggest that the use of ALA/PpIX-mediated fluorescence-guided resection (FGR) or fluorescence-guided surgery can enable more accurate and complete resection of brain tumors, especially when used in quantitative fashion. This review will highlight the current progress in PpIX-mediated FGR and discuss technical challenges in intraoperative quantification of intracellular PpIX fluorescence during FGR of brain tumor.
Collapse
Affiliation(s)
- Zheng Huang
- Fujian Normal University, MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, 8 Shangsan Road, Fuzhou 350007, China
- Address all correspondence to: Zheng Huang, E-mail:
| | - Songsheng Shi
- Fujian Medical University, Union Hospital, Department of Neurosurgery, 29 Xinquan Road, Fuzhou 350001, China
| | - Haixia Qiu
- Chinese PLA General Hospital, Department of Laser Medicine, 28 Fuxing Road, Beijing 100039, China
| | - Desheng Li
- Affiliated Hospital of Academy of Military Medical Sciences, Department of Neurosurgery, 8 Dongda Avenue, Beijing 100071, China
| | - Jian Zou
- Fujian Normal University, MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, 8 Shangsan Road, Fuzhou 350007, China
| | - Shaoshan Hu
- The Second Affiliated Hospital of Harbin Medical University, Department of Neurosurgery, 246 Xuefu Road, Harbin 150001, China
| |
Collapse
|
34
|
Leroy HA, Vermandel M, Vignion-Dewalle AS, Leroux B, Maurage CA, Duhamel A, Mordon S, Reyns N. Interstitial photodynamic therapy and glioblastoma: Light fractionation in a preclinical model. Lasers Surg Med 2016; 49:506-515. [PMID: 28012197 DOI: 10.1002/lsm.22620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glioblastoma is a high-grade cerebral tumor with local recurrence and poor outcome. Photodynamic therapy (PDT) is a localized treatment based on the light activation of a photosensitizer (PS) in the presence of oxygen, which results in the formation of cytotoxic species. The delivery of fractionated light may enhance treatment efficacy by reoxygenating tissues. OBJECTIVE To evaluate the efficiency of two light-fractionation schemes using immunohistological data. MATERIALS AND METHODS Human U87 cells were grafted into the right putamen of 39 nude rats. After PS precursor intake (5-ALA), an optic fiber was introduced into the tumor. The rats were randomly divided into three groups: without light, with light split into 2 fractions and with light split into 5 fractions. Treatment effects were assessed using brain immunohistology. RESULTS Fractionated treatments induced intratumoral necrosis (P < 0.001) and peritumoral edema (P = 0.009) associated with a macrophagic infiltration (P = 0.006). The ratio of apoptotic cells was higher in the 5-fraction group than in either the sham (P = 0.024) or 2-fraction group (P = 0.01). Peripheral vascularization increased after treatment (P = 0.017), and these likely new vessels were more frequently observed in the 5-fraction group (P = 0.028). CONCLUSION Interstitial PDT with fractionated light resulted in specific tumoral lesions. The 5-fraction scheme induced more apoptosis but led to greater peripheral neovascularization. Lasers Surg. Med. 49:506-515, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henri-Arthur Leroy
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France.,Department of Neurosurgery, CHU Lille, F-59000, Lille, France
| | - Maximilien Vermandel
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France.,Department of Neurosurgery, CHU Lille, F-59000, Lille, France
| | - Anne-Sophie Vignion-Dewalle
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France
| | | | - Alain Duhamel
- Department of Biostatistics, CHU Lille, EA2694, Université de Lille, F-59000, Lille, France
| | - Serge Mordon
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France
| | - Nicolas Reyns
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France.,Department of Neurosurgery, CHU Lille, F-59000, Lille, France
| |
Collapse
|
35
|
Kanamori T, Sawamura T, Tanaka T, Sotokawa I, Mori R, Inada K, Ohkubo A, Ogura SI, Murayama Y, Otsuji E, Yuasa H. Coating lanthanide nanoparticles with carbohydrate ligands elicits affinity for HeLa and RAW264.7 cells, enhancing their photodamaging effect. Bioorg Med Chem 2016; 25:743-749. [PMID: 27939346 DOI: 10.1016/j.bmc.2016.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 11/29/2022]
Abstract
Lanthanide nanoparticles (LNPs) conjugated with monosaccharides were synthesized as a photon energy-upconverting nanodevice with affinity to cancer cells. The conjugates were designed to selectively damage the cancer cells containing protoporphyrin IX, a photosensitizer endogenously synthesized from priorly administrated 5-aminolevlunic acid (ALA), by a highly tissue-penetrative near-infrared (NIR) irradiation. First of all, the affinities of monosaccharides toward cells (HeLa, RAW264.7, and MKN45) were assessed by a novel cell aggregation assay with trivalent monosaccharide-citric acid conjugates. As a result, HeLa exhibited high affinity for glucose, while RAW264.7 for glucose, galactose, mannose, and fucose. A similar cell-monosaccharide affinity was microscopically observed when the cells were mixed with monosaccharide-LNP conjugates and rinsed, in which the high affinity LNP probes luminesced on the cells. The high affinity monosaccharide-LNPs showed greater photodamaging effects than the unmodified LNP toward the corresponding cells, when the cells were pretreated with ALA and irradiated by NIR. This study demonstrates that carbohydrates can be used as selective ligands for cancer cells in a photodynamic therapy with LNP.
Collapse
Affiliation(s)
- Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Sawamura
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsumi Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Izumi Sotokawa
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Ryota Mori
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kotaro Inada
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Akihiro Ohkubo
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
36
|
Vall-Sagarra A, McMicken B, Nonell S, Brancaleon L. Effects of Visible-Light Irradiation of Protoporphyrin IX on the Self-Assembly of Tubulin Heterodimers. Chemphyschem 2016; 17:3269-3282. [PMID: 27490308 PMCID: PMC5177992 DOI: 10.1002/cphc.201600629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 11/10/2022]
Abstract
The formation and the effects of laser irradiation of the complex formed by protoporphyrin IX (PPIX) and tubulin was investigated. We have used tubulin as a model protein to investigate whether docked photoactive ligands can affect the structure and function of polypeptides upon exposure to visible light. We observed that laser irradiation in the Soret band prompts bleaching of the PPIX, which is accompanied by a sharp decrease in the intensity and average fluorescence lifetime of the protein (dominated by the four tryptophan residues of the tubulin monomer). The kinetics indicate non-trivial effects and suggest that the photosensitization of the PPIX bound to tubulin prompts structural alterations of the protein. These modifications were also observed through changes in the energy transfer between Trp residues and PPIX. The results suggest that laser irradiation produces localized partial unfolding of tubulin and that the changes prompt modification of the formation of microtubules in vitro. Measurements of singlet oxygen formation were inconclusive in determining whether the changes are prompted by reactive oxygen species or other excited state mechanisms.
Collapse
Affiliation(s)
- Alicia Vall-Sagarra
- Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Brady McMicken
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Santi Nonell
- Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Lorenzo Brancaleon
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
37
|
Biophysical characterization of the interaction of human albumin with an anionic porphyrin. Biochem Biophys Rep 2016; 7:295-302. [PMID: 28955918 PMCID: PMC5613655 DOI: 10.1016/j.bbrep.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/16/2016] [Accepted: 07/14/2016] [Indexed: 11/21/2022] Open
Abstract
The manuscript describes the characterization of the interaction between meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) and human serum albumin (HSA). TSPP is a candidate for the photosensitization of structural and functional changes in proteins while HSA provides both an excellent protein model and binding and functional characteristics that could be explored in future applications of the approach. A combination of optical spectroscopic techniques (e.g., fluorescence spectroscopy, fluorescence lifetime, circular dichroism, etc.) and computational docking simulations were applied to better characterize the TSPP/HSA interaction. Recent advances have revealed that the complex formed by TSPP and HSA has become potentially relevant to biomedical applications, biomaterials research and protein photosensitized engineering. The study has determined a likely location of the binding site that places TSPP at a site that overlaps partially with the low affinity site of ibuprofen and places one of the SO3− groups of the ligand in proximity of the Trp214 residue in HSA. The characterization will enable future studies aimed at photosensitizing non-native functions of HSA for biomedical and biomaterial applications. A novel protocol involving extensive dialysis and centrifugation eliminated aggregated protoporphyrins from the solution. Reliable FRET between Trp214 and the porphyrin ligands was established. FRET and docking simulations converge to a model consistent with experimental X-ray data. Photosensitization mediated by the porphyrin ligands prompts localized conformational changes in HSA.
Collapse
|
38
|
|
39
|
Acker G, Palumbo A, Neri D, Vajkoczy P, Czabanka M. F8-SIP mediated targeted photodynamic therapy leads to microvascular dysfunction and reduced glioma growth. J Neurooncol 2016; 129:33-8. [PMID: 27188647 DOI: 10.1007/s11060-016-2143-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
The extra domain A (ED A) of fibronectin has been identified as a tumor vessel specific neovascular marker in glioma. Antibody based vascular targeting against ED A of fibronectin allows precise accumulation of photosensitizer in glioma microvasculature and thereby promises to overcome drawbacks of current photodynamic therapy (PDT) for glioma treatment. Our aim was to characterize microcirculatory consequences of F8-small immunoprotein (SIP) mediated PDT by intravital microscopy (IVM) and to analyze the effects on glioma growth. For IVM SF126 glioma cells were implanted into dorsal skinfold-chamber of nude mice. PDT was performed after intravenous injection of photosensitizer (PS)-coupled F8-SIP or PBS (n = 4). IVM was performed before and after PDT for 4 days. Analysis included total and functional (TVD, FVD) vessel densities, perfusion index (PI), microvascular permeability and blood flow rate (Q). To assess tumor growth SF126 glioma cells were implanted subcutaneously. PDT was performed as a single and repetitive treatment after PS-F8-SIP injection (n = 5). Subcutaneous tumors were treated after uncoupled F8-SIP injection as control group (n = 5). PDT induced microvascular stasis and thrombosis with reduced FVD (24 h: 115.98 ± 0.7 vs. 200.8 ± 61.9 cm/cm(2)) and PI (39 ± 11 vs. 70 ± 10 %), whereas TVD was not altered (298 ± 39.2 vs. 278.2 ± 51 cm/cm(2)). Microvascular dysfunction recovered 4 days after treatment. Microvascular dysfunction led to a temporary reduction of glioma growth in the first 48 h after treatment with complete recovery 5 days after treatment. Repetitive PDT resulted in sustained reduction of tumor growth. F8-SIP mediated PDT leads to microvascular dysfunction and reduced glioma growth in a preclinical glioma model with recovery of microcirculation 4 days after treatment. Repetitive application of PDT overcomes microvascular recovery and leads to prolonged antiglioma effects.
Collapse
Affiliation(s)
- G Acker
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Palumbo
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
| | - D Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
| | - P Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - M Czabanka
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
40
|
A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield. Appl Environ Microbiol 2016; 82:2709-2717. [PMID: 26921424 DOI: 10.1128/aem.00224-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/20/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production. Many engineered metabolic pathways have been constructed; however, the production yields are still low. In this study, several 5-aminolevulinic acid synthases (ALASs) from different sources were evaluated and compared with respect to their ALA production capacities in an engineered Corynebacterium glutamicum CgS1 strain that can accumulate succinyl-coenzyme A (CoA). A codon-optimized ALAS from Rhodobacter capsulatus SB1003 displayed the best potential. Recombinant strain CgS1/pEC-SB produced 7.6 g/liter ALA using a mineral salt medium in a fed-batch fermentation mode. Employing two-stage fermentation, 12.46 g/liter ALA was produced within 17 h, with a productivity of 0.73 g/liter/h, in recombinant C. glutamicum Through overexpression of the heterologous nonspecific ALA exporter RhtA from Escherichia coli, the titer was further increased to 14.7 g/liter. This indicated that strain CgS1/pEC-SB-rhtA holds attractive industrial application potential for the future. IMPORTANCE In this study, a two-stage fermentation strategy was used for production of the value-added nonprotein amino acid 5-aminolevulinic acid from glucose and glycine in a generally recognized as safe (GRAS) host,Corynebacterium glutamicum The ALA titer represented the highest in the literature, to our knowledge. This high production capacity, combined with the potential easy downstream processes, made the recombinant strain an attractive candidate for industrial use in the future.
Collapse
|
41
|
Interstitial 5-ALA photodynamic therapy and glioblastoma: Preclinical model development and preliminary results. Photodiagnosis Photodyn Ther 2016. [DOI: 10.1016/j.pdpdt.2015.07.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Neumann LM, Beseoglu K, Slotty PJ, Senger B, Kamp MA, Hänggi D, Steiger HJ, Cornelius JF. Efficacy of 5-aminolevulinic acid based photodynamic therapy in pituitary adenomas-experimental study on rat and human cell cultures. Photodiagnosis Photodyn Ther 2016; 14:77-83. [PMID: 26906188 DOI: 10.1016/j.pdpdt.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Incomplete resection of pituitary adenomas may result in recurrence. As adjuvant irradiation is not riskless, alternative treatment options should be investigated. 5-aminolevulinic acid based photodynamic therapy (5-ALA based PDT) showed promising results for malignant gliomas. The present study examined the efficacy of 5-ALA PDT in vitro on benign pituitary adenoma cell cultures. METHODS In group I experiments were performed on immortalized rat pituitary adenoma cells (GH3). The cultured cells were treated with different 5-ALA concentrations ranging from 7.5-16.5μg/ml. In Group II human pituitary adenoma cell cultures were obtained from surgically resected adenoma tissue (n=15). These were incubated with 5-ALA concentrations from 12.5-100μg/ml. The concentration ranges had been determined in preliminary dose-finding tests. For both groups incubation time was four hours and PDT was performed by exposition to laser light (635nm, 625s, 18.75J/cm(2)). Cell viability was examined by WST-1 assay. RESULTS In both groups PDT showed a 5-ALA concentration-dependent effect on cell death. In group I lower 5-ALA concentrations were necessary to destroy all cells as compared to group II. Moreover, in group II, the different subtypes of human adenomas showed different sensitivities to 5-ALA-based PDT (secreting vs. non-secreting). Especially corticotroph adenomas were highly sensitive to 5-ALA PDT. CONCLUSIONS The GH3 cell line was an useful in vitro model to optimize different PDT parameters. Human pituitary adenoma cells could also be killed by 5-ALA PDT, however this required higher 5-ALA concentrations. Furthermore, the results suggested different 5-ALA sensitivities between different human adenoma cell types. More experiments are necessary to confirm these preliminary results.
Collapse
Affiliation(s)
- Lisa Margarete Neumann
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Kerim Beseoglu
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Philipp Joerg Slotty
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Brigitte Senger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Marcel Alexander Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany; Department of Neurosurgery, Medical Faculty, Ruprecht-Karls-University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Hans Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
43
|
Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic Acid-Based Tumor Detection and Therapy: Molecular Mechanisms and Strategies for Enhancement. Int J Mol Sci 2015; 16:25865-80. [PMID: 26516850 PMCID: PMC4632830 DOI: 10.3390/ijms161025865] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/11/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Aminolevulinic acid (ALA) is the first metabolite in the heme biosynthesis pathway in humans. In addition to the end product heme, this pathway also produces other porphyrin metabolites. Protoporphyrin (PpIX) is one heme precursor porphyrin with good fluorescence and photosensitizing activity. Because tumors and other proliferating cells tend to exhibit a higher level of PpIX than normal cells after ALA incubation, ALA has been used as a prodrug to enable PpIX fluorescence detection and photodynamic therapy (PDT) of lesion tissues. Extensive studies have been carried out in the past twenty years to explore why some tumors exhibit elevated ALA-mediated PpIX and how to enhance PpIX levels to achieve better tumor detection and treatment. Here we would like to summarize previous research in order to stimulate future studies on these important topics. In this review, we focus on summarizing tumor-associated alterations in heme biosynthesis enzymes, mitochondrial functions and porphyrin transporters that contribute to ALA-PpIX increase in tumors. Mechanism-based therapeutic strategies for enhancing ALA-based modalities including iron chelators, differentiation agents and PpIX transporter inhibitors are also discussed.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Sawamura T, Tanaka T, Ishige H, Iizuka M, Murayama Y, Otsuji E, Ohkubo A, Ogura SI, Yuasa H. The Effect of Coatings on the Affinity of Lanthanide Nanoparticles to MKN45 and HeLa Cancer Cells and Improvement in Photodynamic Therapy Efficiency. Int J Mol Sci 2015; 16:22415-24. [PMID: 26389895 PMCID: PMC4613315 DOI: 10.3390/ijms160922415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/13/2023] Open
Abstract
An improvement in photodynamic therapy (PDT) efficiency against a human gastric cancer cell line (MKN45) with 5-aminolevulinic acid (ALA) and lanthanide nanoparticles (LNPs) is described. An endogenous photosensitizer, protoporphyrin IX, biosynthesized from ALA and selectively accumulated in cancer cells, is sensitizable by the visible lights emitted from up-conversion LNPs, which can be excited by a near-infrared light. Ten kinds of surface modifications were performed on LNPs, NaYF4(Sc/Yb/Er) and NaYF4(Yb/Tm), in an aim to distribute these irradiation light sources near cancer cells. Among these LNPs, only the amino-functionalized LNPs showed affinity to MKN45 and HeLa cancer cells. A PDT assay with MKN45 demonstrated that amino-modified NaYF4(Sc/Yb/Er) gave rise to a dramatically enhanced PDT effect, reaching almost perfect lethality, whereas NaYF4(Yb/Tm)-based systems caused little improvement in PDT efficiency. The improvement of PDT effect with the amino-modified NaYF4(Sc/Yb/Er) is promising for a practical PDT against deep cancer cells that are reachable only by near-infrared lights.
Collapse
Affiliation(s)
- Takashi Sawamura
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsumi Tanaka
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Hiroyuki Ishige
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Masayuki Iizuka
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Akihiro Ohkubo
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Shun-Ichiro Ogura
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Hideya Yuasa
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-10, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
45
|
Dong Y, Zhou G, Chen J, Shen L, Jianxin Z, Xu Q, Zhu Y. A new LED device used for photodynamic therapy in treatment of moderate to severe acne vulgaris. Photodiagnosis Photodyn Ther 2015; 13:188-195. [PMID: 26116283 DOI: 10.1016/j.pdpdt.2015.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 05/25/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study investigated the efficacy and safety of a newly designed LED device used in photodiagnosis and photodynamic therapy of moderate to severe acne vulgaris in Chinese patients. METHODS Forty-six patients with moderate to severe facial acne showing high degrees of fluorescence by ultraviolet light examination were illuminated during ALA-PDT with two wavelengths of light (543-548 nm, and 630±6 nm, respectively) after 2 h of incubation with ALA. Each patient received treatment once every 30 days for two or three sessions. Two independent investigators assigned an acne severity score at baseline, one week after each treatment, as well as 4, 8, and 12 weeks after the completion of treatment. Adverse effects were recorded during and after each treatment. All patients rated their satisfaction with the results of treatment at a 12-week follow up visit. RESULTS The ALA-PDL treatment regimen showed an overall effectiveness rate of 89.13% (41/46 patients). Some degree of clinical efficacy was seen in 71.42%, 86.67%, and 95.83% of patients with grades IV, V, and VI acne, respectively, and the rate of clinical effectiveness increased with increasing acne severity. When compared with baseline scores, significant reductions in acne scores were obtained at 8, and 12 weeks after completion of treatment. Maximum efficacy was shown at the 12 week follow up. No severe adverse events were observed. CONCLUSION ALA-PDT administered with the newly designed LED device was an effective treatment for moderate to severe acne vulgaris, and side effects were mild and reversible.
Collapse
Affiliation(s)
- Yiyun Dong
- Department of Oral & Maxillofacial-Head & Neck Oncology, Lab of Laser Surgery, Cosmetic Laser Center of the Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guoyu Zhou
- Department of Oral & Maxillofacial-Head & Neck Oncology, Lab of Laser Surgery, Cosmetic Laser Center of the Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jinan Chen
- Cosmetic Laser Center of the Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lingyue Shen
- Department of Oral & Maxillofacial-Head & Neck Oncology, Lab of Laser Surgery, Cosmetic Laser Center of the Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhao Jianxin
- Department of Oral & Maxillofacial-Head & Neck Oncology, Lab of Laser Surgery, Cosmetic Laser Center of the Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Lab of Laser Surgery, Cosmetic Laser Center of the Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yulan Zhu
- Cosmetic Laser Center of the Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
46
|
Leroy HA, Vermandel M, Lejeune JP, Mordon S, Reyns N. Fluorescence guided resection and glioblastoma in 2015: A review. Lasers Surg Med 2015; 47:441-51. [DOI: 10.1002/lsm.22359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Henri-Arthur Leroy
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | - Maximilien Vermandel
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | - Jean-Paul Lejeune
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | | | - Nicolas Reyns
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| |
Collapse
|
47
|
Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2089-100. [PMID: 25926719 PMCID: PMC4403597 DOI: 10.2147/dddt.s79592] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood–brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Lei Xu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Mei Liu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|