1
|
Burloiu AM, Manda G, Lupuliasa D, Socoteanu RP, Mihai DP, Neagoe IV, Anghelache LI, Surcel M, Anastasescu M, Olariu L, Gîrd CE, Barbuceanu SF, Ferreira LFV, Boscencu R. Assessment of Some Unsymmetrical Porphyrins as Promising Molecules for Photodynamic Therapy of Cutaneous Disorders. Pharmaceuticals (Basel) 2023; 17:62. [PMID: 38256895 PMCID: PMC10818616 DOI: 10.3390/ph17010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
In order to select for further development novel photosensitizers for photodynamic therapy in cutaneous disorders, three unsymmetrical porphyrins, namely 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2), 5-(2-hydroxy-5-methoxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl) porphyrin (P3.2), and 5-(2,4-dihydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P4.2), along with their fully symmetrical counterparts 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1) and 5,10,15,20-tetrakis-(4-carboxymethylphenyl) porphyrin (P3.1) were comparatively evaluated. The absorption and fluorescence properties, as well as atomic force microscopy measurements were performed to evaluate the photophysical characteristics as well as morphological and textural properties of the mentioned porphyrins. The cellular uptake of compounds and the effect of photodynamic therapy on the viability, proliferation, and necrosis of human HaCaT keratinocytes, human Hs27 skin fibroblasts, human skin SCL II squamous cell carcinoma, and B16F10 melanoma cells were assessed in vitro, in correlation with the structural and photophysical properties of the investigated porphyrins, and with the predictions regarding diffusion through cell membranes and ADMET properties. All samples were found to be isotropic and self-similar, with slightly different degrees of aggregability, had a relatively low predicted toxicity (class V), and a predicted long half-life after systemic administration. The in vitro study performed on non-malignant and malignant skin-relevant cells highlighted that the asymmetric P2.2 porphyrin qualified among the five investigated porphyrins to be a promising photosensitizer candidate for PDT in skin disorders. P2.2 was shown to accumulate well within cells, and induced by PDT a massive decrease in the number of metabolically active skin cells, partly due to cell death by necrosis. P2.2 had in this respect a better behavior than the symmetric P.2.1 compound and the related asymmetric compound P4.2. The strong action of P2.2-mediated PDT on normal skin cells might be an important drawback for further development of this compound. Meanwhile, the P3.1 and P3.2 compounds were not able to accumulate well in skin cells, and did not elicit significant PDT in vitro. Taken together, our experiments suggest that P2.2 can be a promising candidate for the development of novel photosensitizers for PDT in skin disorders.
Collapse
Affiliation(s)
- Andreea Mihaela Burloiu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Gina Manda
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania; (I.V.N.); (L.-I.A.); (M.S.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Radu Petre Socoteanu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania; (R.P.S.); (M.A.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Ionela Victoria Neagoe
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania; (I.V.N.); (L.-I.A.); (M.S.)
| | | | - Mihaela Surcel
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania; (I.V.N.); (L.-I.A.); (M.S.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania; (R.P.S.); (M.A.)
| | - Laura Olariu
- “SC. Biotehnos SA”, 3-5 Gorunului St., 075100 Bucharest, Romania;
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Stefania Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Luis Filipe Vieira Ferreira
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| |
Collapse
|
2
|
Makuch S, Dróżdż M, Makarec A, Ziółkowski P, Woźniak M. An Update on Photodynamic Therapy of Psoriasis—Current Strategies and Nanotechnology as a Future Perspective. Int J Mol Sci 2022; 23:ijms23179845. [PMID: 36077239 PMCID: PMC9456335 DOI: 10.3390/ijms23179845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis (PS) is an immune-mediated skin disease with substantial negative effects on patient quality of life. Despite significant progress in the development of novel treatment options over the past few decades, a high percentage of patients with psoriasis remain undertreated and require new medications with superior long-term efficacy and safety. One of the most promising treatment options against psoriatic lesions is a form of phototherapy known as photodynamic therapy (PDT), which involves either the systemic or local application of a cell-targeting photosensitizing compound, followed by selective illumination of the lesion with visible light. However, the effectiveness of clinically incorporated photosensitizers in psoriasis treatment is limited, and adverse effects such as pain or burning sensations are frequently reported. In this study, we performed a literature review and attempted to provide a pooled estimate of the efficacy and short-term safety of targeted PDT in the treatment of psoriasis. Despite some encouraging results, PDT remains clinically underutilized. This highlights the need for further studies that will aim to evaluate the efficacy of a wider spectrum of photosensitizers and the potential of nanotechnology in psoriasis treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Mateusz Dróżdż
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Alicja Makarec
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
3
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1342-1352. [DOI: 10.1093/jpp/rgac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
|
4
|
Bernardes MTCP, Agostini SBN, Pereira GR, da Silva LP, da Silva JB, Bruschi ML, Novaes RD, Carvalho FC. Preclinical study of methotrexate-based hydrogels versus surfactant based liquid crystal systems on psoriasis treatment. Eur J Pharm Sci 2021; 165:105956. [PMID: 34314841 DOI: 10.1016/j.ejps.2021.105956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Psoriasis is an autoimmune, inflammatory and chronic skin disease in which cell growth and proliferation are increased, causing erythema, lesions and skin's peeling. Oral methotrexate (MTX) is the first-choice drug when phototherapy or retinoid treatment are not effective. Topical administration can be advantageous to better orientate the drug's delivery; however, the stratum corneum performs as a barrier for hydrofilic drugs penetration. This study sought to evaluate two different types of vehicles for MTX on the psoriasis treatment - hydrogel and liquid crystal systems (LCs). Lamellar and hexagonal liquid crystalline phases were selected from a ternary phase diagram based on polysorbate 80, isopropyl miristate and water. The hydrogel was based on alkylated carbomer (ACH). Rheological analysis showed ACH was more elastic than lamellar and hexagonal phases. ACH interacted better with pig skin than LCs in bioadhesion assay. Preclinical study revealed the ACH decreased inflammation in mice with induced psoriasis, being as effective as dexamethasone to regulate epidermis thickness, COX-2 and myeloperoxidase activity and TNF-α level, while LCs demonstrated inflammatory effect. Therefore, MTX-loaded hydrogel based platforms are indicated for local treatment of psoriasis and present great potential for further studies.
Collapse
Affiliation(s)
| | | | - Gislaine Ribeiro Pereira
- Faculdade de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| | - Laíla Pereira da Silva
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Jéssica Bassi da Silva
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Rômulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Flávia Chiva Carvalho
- Faculdade de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil.
| |
Collapse
|
5
|
Damrongrungruang T, Rattanayatikul S, Sontikan N, Wuttirak B, Teerakapong A, Kaewrawang A. Effect of Different Irradiation Modes of Azulene-mediated Photodynamic Therapy on Singlet Oxygen and PGE 2 Formation. Photochem Photobiol 2020; 97:427-434. [PMID: 33075141 DOI: 10.1111/php.13346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Azulene samples in ethanol/distilled water (1, 10 and 100 µm) were irradiated with a 638 nm red laser (0.5 watts, light-to-target distance 2 cm, energy density 4 or 40 J cm-2 ) by either continuous, fractionation or pulse mode. Singlet oxygen in the samples was measured using 10 µm 9,10-dimethyl anthracene (positive control 10 μm erythrosine) and relative fluorescence intensities were measured at 375/436 nm excitation/emission. Peripheral blood mononuclear cells (PBMCs, 1 × 105 cells/well) preincubated with 0.01 μg mL-1 rhTNF-α for 6 h were cultured with irradiated azulene samples in RPMI-1640 under standard conditions. PGE2 was quantified by rhPGE2 ELISA kit using a Varioscan® microplate reader at an excitation wavelength of 420 nm. Kruskal Wallis with Dunn`s test was performed at a significance level of P < 0.05. The highest singlet oxygen amount was found in 10 µm azulene samples irradiated at 40 J cm-2 under continuous mode (P = 0.001 when compared with 10 µm erythrosine). PGE2 expression in rhTNF-α-induced PBMCs was reduced to 45% of control by 1 µm azulene irradiated at 40 J cm-2 under fractionation mode. Fractionation mode with intermediate laser energy density in the presence of low concentration of azulene could increase singlet oxygen and tend to reduce PGE2 .
Collapse
Affiliation(s)
- Teerasak Damrongrungruang
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen, Thailand.,Melatonin Research Group, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | - Aroon Teerakapong
- Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen, Thailand.,Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Arkom Kaewrawang
- Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
De Annunzio SR, Costa NCS, Mezzina RD, Graminha MAS, Fontana CR. Chlorin, Phthalocyanine, and Porphyrin Types Derivatives in Phototreatment of Cutaneous Manifestations: A Review. Int J Mol Sci 2019; 20:ijms20163861. [PMID: 31398812 PMCID: PMC6719085 DOI: 10.3390/ijms20163861] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Recent scientific research has shown the use of chlorin, phthalocyanines, and porphyrins derivatives as photosensitizers in photodynamic therapy in the treatment of various pathologies, including some of the major skin diseases. Thus, the main goal of this critical review is to catalog the papers that used these photosensitizers in the treatment of acne vulgaris, psoriasis, papillomavirus infections, cutaneous leishmaniasis, and skin rejuvenation, and to explore the photodynamic therapy mechanisms against these conditions alongside their clinical benefits.
Collapse
Affiliation(s)
- Sarah Raquel De Annunzio
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, Rod. Araraquara-Jaú, km 01, Campus Ville, Araraquara 14800-903, São Paulo, Brazil
| | - Natalia Caroline Silva Costa
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, Rod. Araraquara-Jaú, km 01, Campus Ville, Araraquara 14800-903, São Paulo, Brazil
| | - Rafaela Dalbello Mezzina
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, Rod. Araraquara-Jaú, km 01, Campus Ville, Araraquara 14800-903, São Paulo, Brazil
| | - Márcia A S Graminha
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, Rod. Araraquara-Jaú, km 01, Campus Ville, Araraquara 14800-903, São Paulo, Brazil
| | - Carla Raquel Fontana
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, Rod. Araraquara-Jaú, km 01, Campus Ville, Araraquara 14800-903, São Paulo, Brazil.
| |
Collapse
|
7
|
Vieira DL, Leite AF, Figueiredo PTDS, Vianna LM, Moreira-Mesquita CR, de Melo NS. A Conservative Approach for Localized Spongiotic Gingivitis Hyperplasia Using Photodynamic Therapy: A Case Report and Review of the Literature. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:57-61. [DOI: 10.1089/photob.2018.4454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Danielle Leal Vieira
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - André Ferreira Leite
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | | | - Leonora Maciel Vianna
- Department of Pathology, Pathological Anatomy Center, University Hospital of Brasilia, University of Brasília, Brasília, Brazil
| | | | - Nilce Santos de Melo
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
8
|
Vieira DL, Leite AF, de Souza Figueiredo PT, Vianna LM, Moreira-Mesquita CR, de Melo NS. A Conservative Approach for Localized Spongiotic Gingivitis Hyperplasia Using Photodynamic Therapy: A Case Report and Review of the Literature. Photomed Laser Surg 2018:pho.2018.4454. [PMID: 30335567 DOI: 10.1089/pho.2018.4454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To describe a clinical case of successful conservative management of Localized Juvenile Spongiotic Gingivitis Hyperplasia (LJSGH) using photodynamic therapy (PDT) and reviews the current literature on this pathology. BACKGROUND DATA LJSGH is a recently described rare disease with controversial treatment results. As of today, 13 publications report surgical treatment approaches. The use of CO2 laser and cryotherapy was reported only in one study. The use of PDT was not previously reported. PATIENTS AND METHODS A 9-year-old male patient was referred to our institution with the chief complaint of asymptomatic "inflamed gingiva" starting 1 year before. Clinical examination revealed an erythematous line accompanying the gingival contour, with a certain degree of hyperplasia. The diagnosis of LJSGH was performed based on clinical features and later confirmed histopathologically. A novel approach using PDT was then proposed. The photosensitizer was methylene blue, and a semiconductor laser diode was used. RESULTS One week after starting PDT, gingival hyperplasia was partially reduced. Immediately after the end of treatment, a significant reduction of gingival hyperplasia was observed. PDT proved to be safe, quick and painless, with no esthetic harm. CONCLUSIONS This case illustrates the benefit of a more conservative approach as opposed to surgical procedure, with good clinical response and decreased morbidity over a 2-year follow-up period.
Collapse
Affiliation(s)
- Danielle Leal Vieira
- 1 Department of Dentistry, Faculty of Health Sciences, University of Brasília , Brasília, Brazil
| | - André Ferreira Leite
- 1 Department of Dentistry, Faculty of Health Sciences, University of Brasília , Brasília, Brazil
| | | | - Leonora Maciel Vianna
- 2 Department of Pathology, Pathological Anatomy Center, University Hospital of Brasilia, University of Brasília , Brasília, Brazil
| | | | - Nilce Santos de Melo
- 1 Department of Dentistry, Faculty of Health Sciences, University of Brasília , Brasília, Brazil
| |
Collapse
|
9
|
Malatesti N, Munitic I, Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys Rev 2017; 9:149-168. [PMID: 28510089 PMCID: PMC5425819 DOI: 10.1007/s12551-017-0257-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) combines a photosensitiser, light and molecular oxygen to induce oxidative stress that can be used to kill pathogens, cancer cells and other highly proliferative cells. There is a growing number of clinically approved photosensitisers and applications of PDT, whose main advantages include the possibility of selective targeting, localised action and stimulation of the immune responses. Further improvements and broader use of PDT could be accomplished by designing new photosensitisers with increased selectivity and bioavailability. Porphyrin-based photosensitisers with amphiphilic properties, bearing one or more positive charges, are an effective tool in PDT against cancers, microbial infections and, most recently, autoimmune skin disorders. The aim of the review is to present some of the recent examples of the applications and research that employ this specific group of photosensitisers. Furthermore, we will highlight the link between their structural characteristics and PDT efficiency, which will be helpful as guidelines for rational design and evaluation of new PSs.
Collapse
Affiliation(s)
- Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| | - Ivana Munitic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| |
Collapse
|
10
|
Photodynamic therapy using chloro-aluminum phthalocyanine decreases inflammatory response in an experimental rat periodontal disease model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:208-215. [PMID: 28086121 DOI: 10.1016/j.jphotobiol.2016.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Emerging evidence suggests that photodynamic therapy (PDT) can exhibit immunomodulatory activity. The purpose of the present study was to analyse cytokine profiles after application of PDT in gingival tissues of rats with ligature-induced periodontal disease (PD). STUDY DESIGN/MATERIAL AND METHODS Periodontal disease was induced through the introduction of a cotton thread around the first left mandibular molar, while the right side molars did not receive ligatures. After 7days of PD evolution, ligatures were removed from the left side, and the animals were randomically divided into the following treatment groups: I, rats without treatment; II, rats received chloro-aluminum phthalocyanine (AlClPc); III, rats received low-level laser alone; and IV, rats received AlClPc associated with low-level laser (PDT). The animals were killed 7days after the treatments, and the mandibles were histologically processed to assess morphological and immunohistochemical profile, while gingival tissues were removed for quantification of tumor necrosis factor (TNF)-α, interleukin (IL-)1β and IL-10 expression (by ELISA). RESULTS Histomorphological analysis of periodontal tissues demonstrated that PDT-treated animals show tissue necrosis, as well as lower TNF- α expression, compared to ligatured animals treated with AlClPc alone. CONCLUSIONS It was concluded that PDT using AlClPc entrapped in a lipid nanoemulsion may be useful in therapies, because of immunomodulatory effects that decreased the inflammatory response and cause tissue destruction.
Collapse
|
11
|
Slomp AM, Barreira SM, Carrenho LZ, Vandresen CC, Zattoni IF, Ló SM, Dallagnol JC, Ducatti DR, Orsato A, Duarte MER, Noseda MD, Otuki MF, Gonçalves AG. Photodynamic effect of meso -(aryl)porphyrins and meso -(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorg Med Chem Lett 2017; 27:156-161. [DOI: 10.1016/j.bmcl.2016.11.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023]
|
12
|
Tzeng SY, Guo JY, Yang CC, Hsu CK, Huang HJ, Chou SJ, Hwang CH, Tseng SH. Portable handheld diffuse reflectance spectroscopy system for clinical evaluation of skin: a pilot study in psoriasis patients. BIOMEDICAL OPTICS EXPRESS 2016; 7:616-28. [PMID: 26977366 PMCID: PMC4771475 DOI: 10.1364/boe.7.000616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 05/26/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) has been utilized to study biological tissues for a variety of applications. However, many DRS systems are not designed for handheld use and/or relatively expensive which limit the extensive clinical use of this technique. In this paper, we report a handheld, low-cost DRS system consisting of a light source, optical switch, and a spectrometer, that can precisely quantify the optical properties of tissue samples in the clinical setting. The handheld DRS system was employed to determine the skin chromophore concentrations, absorption and scattering properties of 11 patients with psoriasis. The measurement results were compared to the clinical severity of psoriasis as evaluated by dermatologist using PASI (Psoriasis Area and Severity Index) scores. Our statistical analyses indicated that the handheld DRS system could be a useful non-invasive tool for objective evaluation of the severity of psoriasis. It is expected that the handheld system can be used for the objective evaluation and monitoring of various skin diseases such as keloid and psoriasis.
Collapse
Affiliation(s)
- Shih-Yu Tzeng
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jean-Yan Guo
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hung Ji Huang
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Shih-Jie Chou
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Chi-Hung Hwang
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Sheng-Hao Tseng
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
- Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|