1
|
Chenyao Z, Haiyin H, Menglong S, Yucong M, Fauci AJ, Lee MS, Xiaolei W, Junhua Z, Zhaochen J. Commercial Chinese polyherbal preparation: current status and future perspectives. Front Pharmacol 2024; 15:1404259. [PMID: 39119615 PMCID: PMC11306874 DOI: 10.3389/fphar.2024.1404259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Objective With the modernization of traditional Chinese medicine (TCM) industry, the investment in research and development of new commercial Chinese polyherbal preparations (CCPPs) is increasing, and the varieties of CCPPs are growing. CCPPs play an increasingly important role in the TCM industry. This study has comprehensively summarized and analyzed the current situation of CCPPs that has been on the market in China, and provided suggestions for the research and promotion of CCPPs. Methods This study took the CCPPs approved for marketing in domestic drug database of the National Medical Products Administration (NMPA) as the research object, and combined with the publication of related randomized controlled trials (RCTs) of CCPPs in 2020-2022 and the sales of CCPPs in domestic chain pharmacies, statistical analysis was carried out on the drug name, pharmaceutical companies, dosage form, number of flavors, CBDs, ICD-11 classification of diseases treated, etc. Results Currently, 58,409 approvals for CCPPs have been issued in China, involving 9,986 varieties of CCPPs, 2,896 pharmaceutical companies and 39 dosage forms. The number of flavors of prescriptions of CCPPs varies from 1 to 90, among which Glycyrrhiza glabra L. [Fabaceae; Glycyrrhizae radix et rhizoma] and Angelica sinensis (Oliv.) Diels [Apiaceae; Angelicae sinensis radix] are the most widely used. The study found that the CCPPs with the most diverse variety is CCPPs for the treatment of respiratory diseases, some CCPPs can treat multiple system diseases. According to the survey, the sales of CCPPs for respiratory diseases in the chain pharmacies account for more than 1/3 of the total sales of the chain pharmacies, while the number of published randomized controlled trials (RCTs) on CCPPs for circulatory diseases was the largest. Conclusion The approval process of CCPPs should be further standardized, and the transformation of TCM prescriptions into CCPPs should be promoted. In the approval process of CCPPs, it is suggested to strengthen the supervision of drug names to clarify the differences between the CCPPs of same name but different prescriptions. Improve the effectiveness and safety of CCPPs by improving the quality of CBDs. It is suggested to optimize the design of new drug research program of CCPPs to avoid waste of research resources.
Collapse
Affiliation(s)
- Zhang Chenyao
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hu Haiyin
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shi Menglong
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ma Yucong
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Alice Josephine Fauci
- Italian National Institute of Health, Rome, Italy
- Joint Sino-Italian Laboratory of Traditional Chinese Medicine, Italian National Institute of Health, Rome, Italy
| | - Myeong Soo Lee
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Wu Xiaolei
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhang Junhua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ji Zhaochen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Joint Sino-Italian Laboratory of Traditional Chinese Medicine, Italian National Institute of Health, Rome, Italy
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Rho S, Sanders HS, Smith BD, O'Sullivan TD. Miniature wireless LED-device for photodynamic-induced cell pyroptosis. Photodiagnosis Photodyn Ther 2024; 47:104209. [PMID: 38734196 PMCID: PMC11336689 DOI: 10.1016/j.pdpdt.2024.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The inability of visible light to penetrate far through biological tissue limits its use for phototherapy and photodiagnosis of deep-tissue sites of disease. This is unfortunate because many visible dyes are excellent photosensitizers and photocatalysts that can induce a wide range of photochemical processes, including photogeneration of reactive oxygen species. One potential solution is to bring the light source closer to the site of disease by using a miniature implantable LED. With this goal in mind, we fabricated a wireless LED-based device (volume of 23 mm3) that is powered by RF energy and emits light with a wavelength of 573 nm. It has the capacity to excite the green absorbing dye Rose Bengal, which is an efficient type II photosensitizer. The wireless transfer of RF power is effective even when the device is buried in chicken breast and located 6 cm from the transmitting antenna. The combination of a wireless device as light source and Rose Bengal as photosensitizer was found to induce cell death of cultured HT-29 human colorectal adenocarcinoma cells. Time-dependent generation of protruding bubbles was observed in the photoactivated cells suggesting cell death by light-induced pyroptosis and supporting evidence was gained by cell staining with the fluorescence probes Annexin-V FITC and Propidium Iodide. The results reveal a future path towards a wireless implanted LED-based device that can trigger photodynamic immunogenic cell death in deep-seated cancerous tissue.
Collapse
Affiliation(s)
- Sunghoon Rho
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA
| | - Hailey S Sanders
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Thomas D O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA.
| |
Collapse
|
3
|
Och A, Lemieszek MK, Cieśla M, Jedrejek D, Kozłowska A, Pawelec S, Nowak R. Berberis vulgaris L. Root Extract as a Multi-Target Chemopreventive Agent against Colon Cancer Causing Apoptosis in Human Colon Adenocarcinoma Cell Lines. Int J Mol Sci 2024; 25:4786. [PMID: 38732003 PMCID: PMC11084310 DOI: 10.3390/ijms25094786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Berberis vulgaris L. (Berberidaceae) is a shrub that has been widely used in European folk medicine as an anti-inflammatory and antimicrobial agent. The purpose of our study was to elucidate the mechanisms of the chemopreventive action of the plant's methanolic root extract (BVR) against colon cancer cells. Studies were conducted in human colon adenocarcinoma cell lines (LS180 and HT-29) and control colon epithelial CCD841 CoN cells. According to the MTT assay, after 48 h of cell exposure, the IC50 values were as follows: 4.3, 46.1, and 50.2 µg/mL for the LS180, HT-29, and CCD841 CoN cells, respectively, showing the greater sensitivity of the cancer cells to BVR. The Cell Death Detection ELISAPLUS kit demonstrated that BVR induced programmed cell death only against HT-29 cells. Nuclear double staining revealed the great proapoptotic BVR properties in HT-29 cells and subtle effect in LS180 cells. RT-qPCR with the relative quantification method showed significant changes in the expression of genes related to apoptosis in both the LS180 and HT-29 cells. The genes BCL2L1 (126.86-421.43%), BCL2L2 (240-286.02%), CASP3 (177.19-247.83%), and CASP9 (157.99-243.75%) had a significantly elevated expression, while BCL2 (25-52.03%) had a reduced expression compared to the untreated control. Furthermore, in a panel of antioxidant tests, BVR showed positive effects (63.93 ± 0.01, 122.92 ± 0.01, and 220.29 ± 0.02 mg Trolox equivalents (TE)/g in the DPPH•, ABTS•+, and ORAC assays, respectively). In the lipoxygenase (LOX) inhibition test, BVR revealed 62.60 ± 0.87% of enzyme inhibition. The chemical composition of BVR was determined using a UHPLC-UV-CAD-MS/MS analysis and confirmed the presence of several known alkaloids, including berberine, as well as other alkaloids and two derivatives of hydroxycinnamic acid (ferulic and sinapic acid hexosides). The results are very promising and encourage the use of BVR as a comprehensive chemopreventive agent (anti-inflammatory, antioxidant, and pro-apoptotic) in colorectal cancer, and were widely discussed alongside data from the literature.
Collapse
Affiliation(s)
- Anna Och
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| | | | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Aleksandra Kozłowska
- Department of Radiotherapy, Medical University of Lublin, 13 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Sylwia Pawelec
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
5
|
Meng T, Liu J, Chang H, Qie R. Reverse predictive analysis of Rhizoma Pinelliae and Rhizoma Coptidis on differential miRNA target genes in lung adenocarcinoma. Medicine (Baltimore) 2023; 102:e32999. [PMID: 36800601 PMCID: PMC9936040 DOI: 10.1097/md.0000000000032999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
To use bioinformatics and network analysis to reveal the mechanism of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma. The target and pathway of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were explored by online databases and network analysis tools, and the potential biomarkers of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were predicted in reverse. A total of 59 traditional Chinese medicine compounds and 510 drug targets were screened in this study. A total of 25 micro-RNAs and 15,323 disease targets were obtained through GEO2R software analysis. In the end, 294 therapeutic targets and 47 core targets were obtained. A total of 186 gene ontology enrichment assays were obtained, and core therapeutic targets play multiple roles in biological processes, molecular functions, and cellular composition. Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that the core targets were mainly enriched in cancer-related pathways, immune-related pathways, endocrine-related pathways, etc, among which the non-small cell lung cancer pathway was the most significant core pathway. Molecular docking shows that the compound and the target have good binding ability. "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair plays a mechanism of action in the treatment of lung adenocarcinoma through multiple targets and pathways. miR-5703, miR-3125, miR-652-5P, and miR-513c-5p may be new biomarkers for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Tianwei Meng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiawen Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
- * Correspondence: Hong Chang, Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China (e-mail: )
| | - Rui Qie
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Aires-Fernandes M, Botelho Costa R, Rochetti do Amaral S, Mussagy CU, Santos-Ebinuma VC, Primo FL. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment-From Benchtop to Clinical Practice. Molecules 2022; 27:molecules27206848. [PMID: 36296441 PMCID: PMC9609562 DOI: 10.3390/molecules27206848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic approach that has been applied in studies for the treatment of various diseases. In this context, PDT has been suggested as a new therapy or adjuvant therapy to traditional cancer therapy. The mode of action of PDT consists of the generation of singlet oxygen (¹O2) and reactive oxygen species (ROS) through the administration of a compound called photosensitizer (PS), a light source, and molecular oxygen (3O2). This combination generates controlled photochemical reactions (photodynamic mechanisms) that produce ROS, such as singlet oxygen (¹O2), which can induce apoptosis and/or cell death induced by necrosis, degeneration of the tumor vasculature, stimulation of the antitumor immune response, and induction of inflammatory reactions in the illuminated region. However, the traditional compounds used in PDT limit its application. In this context, compounds of biotechnological origin with photosensitizing activity in association with nanotechnology are being used in PDT, aiming at its application in several types of cancer but with less toxicity toward neighboring tissues and better absorption of light for more aggressive types of cancer. In this review, we present studies involving innovatively developed PS that aimed to improve the efficiency of PDT in cancer treatment. Specifically, we focused on the clinical translation and application of PS of natural origin on cancer.
Collapse
Affiliation(s)
- Mariza Aires-Fernandes
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Ramon Botelho Costa
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Stéphanie Rochetti do Amaral
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Valéria C. Santos-Ebinuma
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3301-4661
| |
Collapse
|
7
|
Wang W, Gu W, He C, Zhang T, Shen Y, Pu Y. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115085. [PMID: 35150814 DOI: 10.1016/j.jep.2022.115085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) was first recorded in a Chinese medical classic, Treatise on Febrile Diseases and Miscellaneous Diseases, which was written in the Eastern Han dynasty of China. This ancient prescription consists of seven kinds of Chinese herbal medicine, namely, Pinellia ternata, Rhizoma Coptidis, Radix scutellariae, Rhizoma Zingiberis, Ginseng, Jujube, and Radix Glycyrrhizaepreparata. In clinic practice, its original application in China mainly has focused on the treatment of chronic gastritis for several hundred years. BXD is also effective in treating other gastrointestinal diseases (GIDs) in modern medical application. Despite available literature support and clinical experience, the treatment mechanisms or their relationships with the bioactive compounds in BXD responsible for its pharmacological actions, still need further explorations in more diversified channels. According to the analysis based on the five-flavor theory of TCM, BXD is traditionally viewed as the most representative prescription for pungent-dispersion, bitter-purgation and sweet-tonification. Consequently, based on the flavor-oriented analysis, the compositive herbs in BXD can be divided into three flavor groups, namely, the pungent, bitter, and sweet groups, each of which has specific active ingredients that are possibly relevant to GID treatment. AIM OF THE REVIEW This paper summarized recent literatures on BXD and its bioactive components used in GID treatment, and provided the pharmacological or chemical basis for the further exploration of the ancient prescription and the relative components. METHOD ology: Relevant literature was collected from various electronic databases such as Pubmed, Web of Science, and China National Knowledge Infrastructure (CNKI). Citations were based on peer-reviewed articles published in English or Chinese during the last decade. RESULTS Multiple components were found in the pungent, bitter, and sweet groups in BXD. The corresponding bioactive components include gingerol, shogaol, stigmasterol, and β-sitosterol in the pungent group; berberine, palmatine, coptisine, baicalein, and baicalin in the bitter group; and ginsenosides, polysaccharides, liquiritin, and glycyrrhetinic acid in the sweet group. These components have been found directly or indirectly responsible for the remarkable effects of BXD on GID. CONCLUSION This review provided some valuable reference to further clarify BXD treatment for GID and their possible material basis, based on the perspective of the flavor-oriented analysis.
Collapse
Affiliation(s)
- Weiwei Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Center of Biomedicine Development, Shanghai, 201203, China.
| | - Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Network Pharmacology-Based Analysis of the Effects of Corydalis decumbens (Thunb.) Pers. in Non-Small Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4341517. [PMID: 34497656 PMCID: PMC8421182 DOI: 10.1155/2021/4341517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant tumors worldwide. The main treatment for NSCLC is based on Western medicine; however, the overall effect is unsatisfactory. This study aimed to investigate the potential therapeutic targets and pharmacological mechanisms of action of the traditional Chinese medicine Corydalis decumbens (Thunb.) Pers. in NSCLC based on network pharmacology and bioinformatics. The overlapping genes between Corydalis decumbens (Thunb.) Pers. and NSCLCs were screened using Venn analysis. Cytoscape 3.7.1 software was used to analyze the overlapping target protein-protein interaction (PPI) network. Gene ontology and pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomics database were performed to exploring biological functions of the overlapping genes. The gene expression profiling interactive analysis dataset was used to analyze the correlation between hub gene expression and disease. This study revealed 38 nodes with 191 edges, which may be therapeutic targets for NSCLC. PPI network analysis showed that the most likely association was between the genes AR and NCOA2, NCOA2, and RXRA and ESR1 and NCOA2. These overlapping genes were mainly enriched in the estrogen signaling pathway, calcium signaling pathway, cholinergic synapse, and PI3K-Akt signaling pathway. ESR2 mRNA levels were significantly downregulated in patients with lung adenocarcinoma (LUAD) getting worse, and KDR levels were lower in lung squamous cell carcinoma (LUSC) than those in normal tissue. PTGS2 expression was correlated with the median survival time of LUAD, and ESR1 expression was correlated with the median survival time of LUSC. The application of network pharmacology revealed the potential mechanism underlying the effects of Corydalis decumbens (Thunb.) Pers. in NSCLC treatment and provided a theoretical basis for further in-depth research in this field.
Collapse
|
9
|
An YW, Jin HT, Yuan B, Wang JC, Wang C, Liu HQ. Research progress of berberine mediated photodynamic therapy. Oncol Lett 2021; 21:359. [PMID: 33747216 PMCID: PMC7967931 DOI: 10.3892/ol.2021.12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Berberine (BBR) is a plant secondary metabolite that has been used in photodynamic therapy (PDT) in the last few decades. The present review aimed to discuss the research progress of BBR-mediated photodynamic actions. The following key words were searched in several databases: 'Berberine' combined with 'photodynamic therapy', 'sonodynamic therapy (SDT)', 'ultraviolet', 'reactive oxygen' and 'singlet oxygen'. The results demonstrated that both type I and type II reactions participated in the photodynamic progression of BBR derivatives. In addition, the photochemical characteristics of BBR derivatives were affected by the polarity, pH and O2 content of solvents. DNA binding increases the lifespan of the photoexcited BBR state and generation of singlet oxygen (1O2). The chemical properties of substituents in different positions of the BBR skeleton are pivotal for its photochemical properties, particularly the methylenedioxy group at the C-2 and C-3 positions. BBR is a promising agent for mediating both PDT- and SDT-treated diseases, particularly in tumors. However, further studies are required to validate their biological effects. In addition, the molecular mechanisms underlying the antitumor effects of BBR-PDT remain unclear and warrant further investigation. The structural modification and targeted delivery of BBR have made it possible to broaden its applications; however, experimental verification is required. Overall, BBR acts as a sensitizer for PDT and has promising development prospects.
Collapse
Affiliation(s)
- Ya-Wen An
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Hong-Tao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Bo Yuan
- Department of Neurology, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Jian-Chun Wang
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Cheng Wang
- Department of Neurology, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Han-Qing Liu
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| |
Collapse
|
10
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
11
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
12
|
Qi F, Sun Y, Lv M, Qin F, Cao W, Bi L. Effects of palmatine hydrochloride mediated photodynamic therapy on oral squamous cell carcinoma. Photochem Photobiol Sci 2019; 18:1596-1605. [PMID: 31099374 DOI: 10.1039/c9pp00040b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor, accounting for about 7% of all malignant tumors. Palmatine hydrochloride (PaH) is the alkaloid constituent of Fibraurea tinctoria Lour. The present study aims to investigate the antitumor effect of photodynamic therapy (PDT) with PaH (PaH-PDT) on human OSCC cell lines both in vitro and in vivo. The results indicate that PaH-PDT exhibited a potent phototoxic effect in cell proliferation and produced cell apoptosis. PaH-PDT increased the percentage of cells in the G0/G1 phase and decreased the CDK2 and Cyclin E1 protein level. In addition, PaH-PDT markedly increased the generation of intracellular ROS, which can be suppressed using the ROS scavenger N-acetylcysteine (NAC). Furthermore, PaH-PDT increased the expression of p53 protein in vitro and in vivo. In vivo experiments revealed that the PaH-PDT resulted in an effective inhibition of tumor growth and prolonged the survival time of tumor-bearing mice. Moreover, no obvious signs of side effects or a drop in body weight was observed. These results suggested that PaH was a promising sensitizer that can be combined with light to produce significant anti-tumor effects in oral squamous cell carcinoma via enhanced ROS production and up-regulated expression of p53.
Collapse
Affiliation(s)
- Feng Qi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | | | | | | | | | | |
Collapse
|
13
|
Johnson-Ajinwo OR, Richardson A, Li WW. Palmatine from Unexplored Rutidea parviflora Showed Cytotoxicity and Induction of Apoptosis in Human Ovarian Cancer Cells. Toxins (Basel) 2019; 11:toxins11040237. [PMID: 31027283 PMCID: PMC6521182 DOI: 10.3390/toxins11040237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer ranks amongst the deadliest cancers in the gynaecological category of cancers. This research work aims to evaluate in vitro anti-ovarian cancer activities and identify phytochemical constituents of a rarely explored plant species—Rutidea parviflora DC. The aqueous and organic extracts of the plant were evaluated for cytotoxicity using sulforhodamine B assay in four ovarian cancer cell lines and an immortalized human ovarian epithelial (HOE) cell line. The bioactive compounds were isolated and characterized by gas/liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. Caspase 3/7 activity assay, western blotting and flow cytometry were carried out to assess apoptotic effects of active compounds. The extracts/fractions of R. parviflora showed promising anti-ovarian cancer activities in ovarian cancer cell lines. A principal cytotoxic alkaloid was identified as palmatine whose IC50 was determined as 5.5–7.9 µM. Palmatine was relatively selective towards cancer cells as it was less cytotoxic toward HOE cells, also demonstrating interestingly absence of cross-resistance in cisplatin-resistant A2780 cells. Palmatine further induced apoptosis by increasing caspase 3/7 activity, poly-ADP-ribose polymerase cleavage, and annexin V and propidium iodide staining in OVCAR-4 cancer cells. Our studies warranted further investigation of palmatine and R. parviflora extracts in preclinical models of ovarian cancer.
Collapse
Affiliation(s)
- Okiemute Rosa Johnson-Ajinwo
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK.
- Faculty of Pharmaceutical Sciences, University of Port Harcourt, Port Harcourt, PMB 5323, Nigeria.
| | - Alan Richardson
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK.
| | - Wen-Wu Li
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK.
| |
Collapse
|
14
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
15
|
Wang T, Shao J, Da W, Li Q, Shi G, Wu D, Wang C. Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Candida Species and Efflux-Associated Antifungal Mechanism. Front Microbiol 2018; 9:2892. [PMID: 30559726 PMCID: PMC6287112 DOI: 10.3389/fmicb.2018.02892] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023] Open
Abstract
Fungal infections caused by Candida albicans and non-albicans Candida [NAC] species are becoming a growing threat in immunodeficient population, people with long-term antibiotic treatment and patients enduring kinds of catheter intervention. The resistance to one or more than one conventional antifungal agents contributes greatly to the widespread propagation of Candida infections. The severity of fungal infection requires the discovery of novel antimycotics and the extensive application of combination strategy. In this study, a group of Candida standard and clinical strains including C. albicans as well as several NAC species were employed to evaluate the antifungal potentials of palmatine (PAL) alone and in combination with fluconazole (FLC)/itraconazole (ITR) by microdilution method, checkerboard assay, gram staining, spot assay, and rhodamine 6G efflux test. Subsequently, the expressions of transporter-related genes, namely CDR1, CDR2, MDR1, and FLU1 for C. albicans, CDR1 and MDR1 for Candida tropicalis and Candida parapsilosis, ABC1 and ABC2 for Candida krusei, CDR1, CDR2, and SNQ2 for Candida glabrata were analyzed by qRT-PCR. The susceptibility test showed that PAL presented strong synergism with FLC and ITR with fractional inhibitory concentration index (FICI) in a range of 0.0049-0.75 for PAL+FLC and 0.0059-0.3125 for PAL+ITR in planktonic cells, 0.125-0.375 for PAL+FLC and 0.0938-0.3125 for PAL+ITR in biofilms. The susceptibility results were also confirmed by gram staining and spot assay. After combinations, a vast quantity of rhodamine 6G could not be pumped out as considerably intracellular red fluorescence was accumulated. Meanwhile, the expressions of efflux-associated genes were evaluated and presented varying degrees of inhibition. These results indicated that PAL was a decent antifungal synergist to promote the antifungal efficacy of azoles (such as FLC and ITR), and the underlying antifungal mechanism might be linked with the inhibition of efflux pumps and the elevation of intracellular drug content.
Collapse
Affiliation(s)
- Tianming Wang
- Laboratory of Biochemistry and Molecular Biology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Wenyue Da
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Xing Z, He Z, Wang S, Yan Y, Zhu H, Gao Y, Zhao Y, Zhang L. Ameliorative effects and possible molecular mechanisms of action of fibrauretine from Fibraurea recisa Pierre on d-galactose/AlCl 3-mediated Alzheimer's disease. RSC Adv 2018; 8:31646-31657. [PMID: 35548215 PMCID: PMC9085853 DOI: 10.1039/c8ra05356a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/26/2018] [Indexed: 12/23/2022] Open
Abstract
Fibrauretine is one of the main active ingredients from the rattan stems of Fibraurea recisa Pierre It exhibits a series of significant pharmacological effects. The present study aimed to evaluate the potential anti Alzheimer's disease (AD) effects of fibrauretine on a d-galactose/AlCl3-induced mouse model, and the underlying mechanisms of action were further investigated for the first time. Our results showed that pretreatment with fibrauretine significantly improved the ability of spatial short-term working memory in the model mice during the Y-maze test, as well as the abilities of spatial learning and memory during the Morris water maze. The levels of brain tissue amyloid (Aβ), P-Tau, Tau and acetylcholinesterase (AchE) were evidently increased in d-galactose/AlCl3-intoxicated mice, and these effects were reversed by fibrauretine. In contrast, a significant increase in the levels of the neurotransmitter acetylcholine (Ach) and choline acetyl transferase (ChAT) was observed in the fibrauretine-treated groups compared with the model group. Neuronal oxidative stress, evidenced by increased malondialdehyde (MDA) and nitric oxide (NO) levels and a decline in glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) activity, was significantly alleviated by fibrauretine pretreatment. The suppression of the neuroinflammatory response by fibrauretine was realized not only by the decrease in the levels of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the brain tissues and by the enzyme-linked immunosorbent assay (ELISA) but also by the protein expression levels of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), which were measured by immunohistochemistry and western blotting. In addition, the protein expression levels of inflammatory factors interleukin-33 (IL-33) and ST2 in the brain tissues were detected by immunohistochemistry. Furthermore, the effects of western blotting demonstrated that the administration of fibrauretine significantly suppressed the protein expression levels of caspase-3, cleaved caspase-3, and Bax and increased the protein expression levels of Bcl-2, and the results of the H&E and TUNEL assay all suggested the inhibition of apoptosis in the neurons. The results clearly suggest that the underlying molecular mechanisms of action of the fibrauretine-mediated alleviation of d-galactose/AlCl3-induced Alzheimer's disease may involve antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Zhiheng Xing
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Zhongmei He
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Shuning Wang
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Yu Yan
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Hongyan Zhu
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Yugang Gao
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Yan Zhao
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Lianxue Zhang
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| |
Collapse
|
17
|
Jamali Z, Khoobi M, Hejazi SM, Eivazi N, Abdolahpour S, Imanparast F, Moradi-Sardareh H, Paknejad M. Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line. Photodiagnosis Photodyn Ther 2018; 23:190-201. [PMID: 29969678 DOI: 10.1016/j.pdpdt.2018.06.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/16/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
In this study, antibody-conjugated biodegradable polymeric nanoparticles were developed to enhance the photodaynamic efficiency of curcumin (CUR) on glioblastoma tumor cells. Poly (D, l-lactic-co-glycolic acid) nanoparticles (PLGA NPs) were synthesized and stabilized by polyvinyl alcohol (PVA). Poly(ethylene-alt-maleic anhydride) (PEMA) was used to provide carboxyl groups on the surface of NPs. The CUR or FITC (fluorescein isothiocyanate) was encapsulated in PLGA NPs using the nanoprecipitation method. The carboxylic groups on the surface of the PLGA NPs were covalently conjugated to the amino groups of a monoclonal antibody against EGFRvIII (A-EGFRvIII-f). The prepared NPs were fully characterized by Zetasizer, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR), and then entrapment efficiency (EE), drug loading efficiency (DLE), CUR release, cell internalization, intrinsic cytotoxicity, and phototoxicity were evaluated. Furthermore, the effect of monoclonal antibody (MAb) on the tyrosine phosphorylation of EGFRvIII after photodynamic therapy (PDT) was assessed. The immunoreactivity of the antibody in MAb-PLGA NPs was preserved during the process of conjugation. The selective cellular internalization of MAb-PLGA NPs (FITC or CUR loaded) into the DKMG/EGFRvIII cells (EGFRvIII overexpressed human glioblastoma cell line) in comparison with DK-MGlow (human glioblastoma cell line with low level of EGFRvIII) was also confirmed. MAb-CUR-PLGA NPs were able to show more effective photodynamic toxicity (56% vs. 24%) on the DKMG/EGFRvIII cells compared to CUR-PLGA NPs. These results suggest that the anti-EGFRvIII MAb-CUR-PLGA NPs have potential of targeted drug delivery system for PDT in the overexpressed EGFRvIII tumor cells.
Collapse
Affiliation(s)
- Zahra Jamali
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Nanobiomaterials Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Marjaneh Hejazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Bio Optical Imaging Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Eivazi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Abdolahpour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Imanparast
- Department of Medical Biochemistry, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hemen Moradi-Sardareh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Assessment of in vivo experiments: The newly synthesized porphyrin with proper light source enhanced effectiveness of PDT comparing to 5-ALA-mediated PDT. Photodiagnosis Photodyn Ther 2017; 18:179-184. [DOI: 10.1016/j.pdpdt.2017.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 01/02/2023]
|
19
|
Zhang MY, Yu YY, Wang SF, Zhang Q, Wu HW, Wei JY, Yang W, Li SY, Yang HJ. Cardiotoxicity evaluation of nine alkaloids from Rhizoma Coptis. Hum Exp Toxicol 2017; 37:185-195. [PMID: 29233041 DOI: 10.1177/0960327117695633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Alkaloids derived from Rhizoma Coptis (RC) has been widely applied to clinical treatments in China. However, the toxicity of RC and the alkaloids from RC remained controversial. The research is designed to clarify the cardiotoxic compounds found in RC. METHODS In this study, the real-time cellular analysis cardio system and the high-content analysis were applied to monitor the function of cardiomyocytes (CMs) in the treatment of nine alkaloids in RC. Luciferase-coupled adenosine triphosphate (ATP) assay was used to detect cell viability. RESULTS The results showed that berberine, palmatine, berbamine, and oxyberberine were cardiotoxic, which resulted in arrhythmia and cardiac arrest on CMs in a time- and dose-dependent manner. Meanwhile, berbamine and oxyberberine caused shrinkage and detachment on CMs at 10 μM. Cytotoxicity was induced by these two compounds with decline in cell index and ATP depletion. Cardiotoxicity or cytotoxicity was not observed in the other five alkaloids within 10 μM. CONCLUSION For the first time, the cardiotoxicity of the nine alkaloids was evaluated to clarify the cardiotoxic components in RC. Furthermore, the experimental evidences were provided to support the safety of drug application.
Collapse
Affiliation(s)
- M Y Zhang
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2 Post-Doctoral Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Y Y Yu
- 3 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - S F Wang
- 3 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Q Zhang
- 3 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - H W Wu
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - J Y Wei
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - W Yang
- 4 ACEA Biosciences incorporated, Hangzhou, Zhejiang, China
| | - S Y Li
- 5 Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - H J Yang
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Comparison of photodynamic treatment produced cell damage between human breast cancer cell MCF-7 and its multidrug resistance cell. Photodiagnosis Photodyn Ther 2016; 16:1-8. [DOI: 10.1016/j.pdpdt.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023]
|
21
|
Wu J, Xiao Q, Zhang N, Xue C, Leung AW, Zhang H, Tang QJ, Xu C. Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action. Photodiagnosis Photodyn Ther 2016; 15:133-8. [PMID: 27444887 DOI: 10.1016/j.pdpdt.2016.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 11/18/2022]
Abstract
Breast cancer is one of the commonest malignant tumors threatening to women. The present study aims to investigate the effect of photodynamic action of palmatine hydrochloride (PaH), a naturally occurring photosensitizer isolated from traditional Chinese medicine (TCM), on apoptosis of breast cancer cells. Firstly, cellular uptake of PaH in MCF-7 cells was measured and the cytotoxicity of PaH itself on breast cancer MCF-7 cells was estimated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Subcellular localization of PaH in MCF-7 cells was observed using confocal laser scanning microscopy (CLSM). For photodynamic treatment, MCF-7 cells were incubated with PaH and then irradiated by visible light (470nm) from a LED light source. Photocytotoxicity was investigated 24h after photodynamic treatment using MTT assay. Cell apoptosis was analyzed 18h after photodynamic treatment using flow cytometry with Annexin V/PI staining. Nuclear was stained using Hoechst 33342 and observed under a fluorescence microscope. Intracellular production of reactive oxygen species (ROS) was studied by measuring the fluorescence of 2, 7-dichlorofluorescein (DCF) using a flow cytometry. Results showed that PaH treatment alone had no or minimum cytotoxicity to MCF-7 cells after incubation for 24h in the dark. After incubation for 40min, the cellular uptake of PaH reached to the maximum, and PaH mainly located in mitochondria and endoplasmic reticulum of MCF-7 cells. Photodynamic treatment of PaH demonstrated a significant photocytotoxicity on MCF-7 cells, induced remarkable cell apoptosis and significantly increased intracellular ROS level. Our findings demonstrated that PaH as a naturally occurring photosensitizer induced cell apoptosis and significantly killed MCF-7 cells.
Collapse
Affiliation(s)
- Juan Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Na Zhang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qing-Juan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|