1
|
Tian D, Teng C, Lv Y, Duan X, Wang Y, Song X, Jiang Q, Huang D, Xin T, Yang Y, Li L. Photodynamic therapy with intratumoral injection of photosensitizers combined with immunotherapy brings hope to patients with refractory cutaneous malignant ulcers. Discov Oncol 2024; 15:522. [PMID: 39365490 PMCID: PMC11452570 DOI: 10.1007/s12672-024-01342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is common among the elderly, typically treated with surgery. However, for surgery-ineligible patients or those with non-healing wounds progressing to malignant ulcers, non-surgical local treatments are viable. This case details an 80-year-old with recurrent back CSCC and intractable malignant ulcers post-radiotherapy and chemotherapy. Treatment involved Hematoporphyrin Derivative (HpD) Photodynamic Therapy (PDT) with low-dose cindilimab immunotherapy (intravenous and intralesional). Two cycles achieved lesion remission, altering peripheral immune cell counts. HpD-PDT combined with immunotherapy is promising for treating CSCC, particularly with malignant ulcers.
Collapse
Affiliation(s)
- Dan Tian
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Chong Teng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yanju Lv
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaozhuo Duan
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yi Wang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaowei Song
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Qiuying Jiang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dayong Huang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Tao Xin
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Yu Yang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Li Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Morais JAV, Barros PHA, Brigido MDM, Marina CL, Bocca A, Mariano ADLES, Souza PEND, Paiva KLR, Simões MM, Bao SN, Camargo LC, Longo JPF, Morais AAC, Azevedo RBD, Fonseca MJP, Muehlmann LA. Direct and Abscopal Antitumor Responses Elicited by AlPcNE-Mediated Photodynamic Therapy in a Murine Melanoma Model. Pharmaceutics 2024; 16:1177. [PMID: 39339213 PMCID: PMC11435272 DOI: 10.3390/pharmaceutics16091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Melanoma, the most aggressive form of skin cancer, presents a major clinical challenge due to its tendency to metastasize and recalcitrance to traditional therapies. Despite advances in surgery, chemotherapy, and radiotherapy, the outlook for advanced melanoma remains bleak, reinforcing the urgent need for more effective treatments. Photodynamic therapy (PDT) has emerged as a promising alternative, leading to targeted tumor destruction with minimal harm to surrounding tissues. In this study, the direct and abscopal antitumor effects of PDT in a bilateral murine melanoma model were evaluated. Although only one of the two tumors was treated, effects were observed in both. Our findings revealed significant changes in systemic inflammation and alterations in CD4+ and CD8+ T cell populations in treated groups, as evidenced by blood analyses and flow cytometry. High-throughput RNA sequencing (RNA-Seq) further unveiled shifts in gene expression profiles in both treated and untreated tumors. This research sheds light on the novel antitumor and abscopal effects of nanoemulsion of aluminum chloride phthalocyanine (AlPcNE)-mediated PDT in melanoma, highlighting the potential of different PDT protocols to modulate immune responses and to achieve more effective and targeted cancer treatments.
Collapse
Affiliation(s)
- José Athayde Vasconcelos Morais
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia Ceilandia Sul, Brasilia 72220-275, DF, Brazil
- Laboratory of Gene Regulation and Mutagenesis, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Pedro H A Barros
- Laboratory of Molecular Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcelo de Macedo Brigido
- Laboratory of Molecular Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Clara Luna Marina
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Anamelia Bocca
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - André de Lima E Silva Mariano
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Paulo E N de Souza
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Karen L R Paiva
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marina Mesquita Simões
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Sonia Nair Bao
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luana C Camargo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - João P Figueiró Longo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Amanda Alencar Cabral Morais
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Ricardo B de Azevedo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcio J P Fonseca
- Laboratory of Gene Regulation and Mutagenesis, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luis A Muehlmann
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia Ceilandia Sul, Brasilia 72220-275, DF, Brazil
| |
Collapse
|
3
|
Molon AC, Heguedusch D, Nunes FD, Cecatto RB, Dos Santos Franco AL, de Oliveira Rodini Pegoraro C, Rodrigues MFSD. A 5-ALA mediated photodynamic therapy increases natural killer cytotoxicity against oral squamous cell carcinoma cell lines. JOURNAL OF BIOPHOTONICS 2024:e202400176. [PMID: 39023037 DOI: 10.1002/jbio.202400176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancers, known for its aggressiveness and poor prognosis. Photodynamic therapy (PDT) has emerged as a promising adjuvant therapy and is linked to immunogenic cell death, activating innate and adaptive anti-tumor responses. Natural Killer (NK) cells, key players in malignant cell elimination, have not been extensively studied in PDT. This study evaluates whether PDT increases OSCC cell lines' susceptibility to NK cell cytotoxicity. PDT, using 5-aminolevulinic acid (5-ALA) and LED irradiation, was applied to Ca1 and Luc4 cell lines. Results showed a dose-dependent viability decrease post-PDT. Gene expression analysis revealed upregulation of NK cell-activating ligands (ULBP1-4, MICA/B) and decreased MHC class I expression in Ca1, suggesting increased NK cell susceptibility. Enhanced NK cell cytotoxicity was confirmed in Ca1 but not in Luc4 cells. These findings indicate that PDT may enhance NK cell-mediated cytotoxicity in OSCC, offering potential for improved treatment strategies.
Collapse
Affiliation(s)
- Angela Cristina Molon
- Post Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Rebeca Boltes Cecatto
- Post Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | | | | | | |
Collapse
|
4
|
Dudzik T, Domański I, Makuch S. The impact of photodynamic therapy on immune system in cancer - an update. Front Immunol 2024; 15:1335920. [PMID: 38481994 PMCID: PMC10933008 DOI: 10.3389/fimmu.2024.1335920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic approach that has gained significant attention in recent years with its promising impact on the immune system. Recent studies have shown that PDT can modulate both the innate and adaptive arms of the immune system. Currently, numerous clinical trials are underway to investigate the effectiveness of this method in treating various types of cancer, as well as to evaluate the impact of PDT on immune system in cancer treatment. Notably, clinical studies have demonstrated the recruitment and activation of immune cells, including neutrophils, macrophages, and dendritic cells, at the treatment site following PDT. Moreover, combination approaches involving PDT and immunotherapy have also been explored in clinical trials. Despite significant advancements in its technological and clinical development, further studies are needed to fully uncover the mechanisms underlying immune activation by PDT. The main objective of this review is to comprehensively summarize and discuss both ongoing and completed studies that evaluate the impact of PDT of cancer on immune response.
Collapse
Affiliation(s)
- Tomasz Dudzik
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Igor Domański
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
5
|
Gierlich P, Donohoe C, Behan K, Kelly DJ, Senge MO, Gomes-da-Silva LC. Antitumor Immunity Mediated by Photodynamic Therapy Using Injectable Chitosan Hydrogels for Intratumoral and Sustained Drug Delivery. Biomacromolecules 2024; 25:24-42. [PMID: 37890872 PMCID: PMC10778090 DOI: 10.1021/acs.biomac.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Indexed: 10/29/2023]
Abstract
Photodynamic therapy (PDT) is an anticancer therapy with proven efficacy; however, its application is often limited by prolonged skin photosensitivity and solubility issues associated with the phototherapeutic agents. Injectable hydrogels which can effectively provide intratumoral delivery of photosensitizers with sustained release are attracting increased interest for photodynamic cancer therapies. However, most of the hydrogels for PDT applications are based on systems with high complexity, and often, preclinical validation is not provided. Herein, we provide a simple and reliable pH-sensitive hydrogel formulation that presents appropriate rheological properties for intratumoral injection. For this, Temoporfin (m-THPC), which is one of the most potent clinical photosensitizers, was chemically modified to introduce functional groups that act as cross-linkers in the formation of chitosan-based hydrogels. The introduction of -COOH groups resulted in a water-soluble derivative, named PS2, that was the most promising candidate. Although PS2 was not internalized by the target cells, its extracellular activation caused effective damage to the cancer cells, which was likely mediated by lipid peroxidation. The injection of the hydrogel containing PS2 in the tumors was monitored by high-frequency ultrasounds and in vivo fluorescence imaging which confirmed the sustained release of PS2 for at least 72 h. Following local administration, light exposure was conducted one (single irradiation protocol) or three (multiple irradiation protocols) times. The latter delivered the best therapeutic outcomes, which included complete tumor regression and systemic anticancer immune responses. Immunological memory was induced as ∼75% of the mice cured with our strategy rejected a second rechallenge with live cancer cells. Additionally, the failure of PDT to treat immunocompromised mice bearing tumors reinforces the relevance of the host immune system. Finally, our strategy promotes anticancer immune responses that lead to the abscopal protection against distant metastases.
Collapse
Affiliation(s)
- Piotr Gierlich
- Medicinal
Chemistry, Trinity St. James’s Cancer Institute, Trinity Translational
Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
- CQC,
Coimbra Chemistry Center, University of
Coimbra, Rua Larga 3004-535, Coimbra, Portugal
| | - Claire Donohoe
- Medicinal
Chemistry, Trinity St. James’s Cancer Institute, Trinity Translational
Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
- CQC,
Coimbra Chemistry Center, University of
Coimbra, Rua Larga 3004-535, Coimbra, Portugal
| | - Kevin Behan
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2 D02R590, Ireland
| | - Daniel J. Kelly
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2 D02R590, Ireland
| | - Mathias O. Senge
- Medicinal
Chemistry, Trinity St. James’s Cancer Institute, Trinity Translational
Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2 D02R590, Ireland
| | | |
Collapse
|
6
|
Yu Y, Xu B, Xiang L, Ding T, Wang N, Yu R, Gu B, Gao L, Maswikiti EP, Wang Y, Li H, Bai Y, Zheng P, Ma C, Wang B, Wang X, Zhang T, Chen H. Photodynamic therapy improves the outcome of immune checkpoint inhibitors via remodelling anti-tumour immunity in patients with gastric cancer. Gastric Cancer 2023; 26:798-813. [PMID: 37335366 DOI: 10.1007/s10120-023-01409-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) plays an immunoregulatory role in tumours. Here, we conducted a retrospective patient analysis to evaluate the effectiveness of PDT plus immune checkpoint inhibitors (ICIs) in gastric cancer. Further, we performed a dynamic analysis of gastric cancer patients receiving PDT to clarify its effects on anti-tumour immunity. METHODS Forty ICI-treated patients that received PDT or not were retrospectively analysed. Five patients with gastric adenocarcinoma were enrolled for sample collection before and after PDT. Single-cell RNA/T cell receptor (TCR) sequencing, flow cytometry and histological exanimation were used to analyse the collected specimens. RESULTS Patients in PDT group had a significantly better OS after ICI treatment than those in No PDT group. Single-cell analysis identified ten cell types in gastric cancer tissues and four sub-populations of T cells. Immune cell infiltration increased in the tumours after PDT and the circular immune cells showed consistent alterations. TCR analysis revealed a specific clonal expansion after PDT in cytotoxic T lymphocytes (CTL), but a constriction in Tregs. The B2M gene is upregulated in tumour cells after PDT and is associated with immune cell infiltration. Several pathways involving the positive regulation of immunity were enriched in tumour cells in the post-PDT group. The interactions following PDT were increased between tumour cells and effector cells but decreased between Tregs and other immune cells. Some co-stimulatory signaling emerged, whereas co-inhibitory signaling disappeared in intercellular communication after PDT. CONCLUSIONS PDT elicits an anti-tumour response through various mechanisms and is promising as an adjuvant to enhance ICI benefit.
Collapse
Affiliation(s)
- Yang Yu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bo Xu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lin Xiang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianlong Ding
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Na Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rong Yu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lei Gao
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ewetse Paul Maswikiti
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haiyuan Li
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuping Bai
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Peng Zheng
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chenhui Ma
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bofang Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xueyan Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hao Chen
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
7
|
Penetra M, Arnaut LG, Gomes-da-Silva LC. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology 2023; 12:2226535. [PMID: 37346450 PMCID: PMC10281486 DOI: 10.1080/2162402x.2023.2226535] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical treatment used to target solid tumors, where the administration of a photosensitizing agent and light generate reactive oxygen species (ROS), thus resulting in strong oxidative stress that selectively damages the illuminated tissues. Several preclinical studies have demonstrated that PDT can prime the immune system to recognize and attack cancer cells throughout the body. However, there is still limited evidence of PDT-mediated anti-tumor immunity in clinical settings. In the last decade, several clinical trials on PDT for cancer treatment have been initiated, indicating that significant efforts are being made to improve current PDT protocols. However, most of these studies disregarded the immunological dimension of PDT. The immunomodulatory properties of PDT can be combined with standard therapy and/or emerging immunotherapies, such as immune checkpoint blockers (ICBs), to achieve better disease control. Combining PDT with immunotherapy has shown synergistic effects in some preclinical models. However, the value of this combination in patients is still unknown, as the first clinical trials evaluating the combination of PDT with ICBs are just being initiated. Overall, this Trial Watch provides a summary of recent clinical information on the immunomodulatory properties of PDT and ongoing clinical trials using PDT to treat cancer patients. It also discusses the future perspectives of PDT for oncological indications.
Collapse
Affiliation(s)
- Mafalda Penetra
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | - Luís G. Arnaut
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
8
|
Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2023; 6:349-364. [PMID: 36700563 DOI: 10.1021/acsabm.2c00891] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | | | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
9
|
Saad MA, Hasan T. Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjug Chem 2022; 33:2041-2064. [PMID: 36197738 DOI: 10.1021/acs.bioconjchem.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of photoactivating certain molecules, photosensitizers (PS), resulting in photochemical processes, has long been realized in the form of photodynamic therapy (PDT) for the management of several cancerous and noncancerous pathologies. With an improved understanding of the photoactivation process and its broader implications, efforts are being made to exploit the various facets of photoactivation, PDT, and the associated phenomenon of photodynamic priming in enhancing treatment outcomes, specifically in cancer therapeutics. The parallel emergence of nanomedicine, specifically liposome-based nanoformulations, and the convergence of the two fields of liposome-based drug delivery and PDT have led to the development of unique hybrid systems, which combine the exciting features of liposomes with adequate complementation through the photoactivation process. While initially liposomes carrying photosensitizers (PSs) were developed for enhancing the pharmacokinetics and the general applicability of PSs, more recently, PS-loaded liposomes, apart from their utility in PDT, have found several applications including enhanced targeting of drugs, coloading multiple therapeutic agents to enhance synergistic effects, imaging, priming, triggering drug release, and facilitating the escape of therapeutic agents from the endolysosomal complex. This review discusses the design strategies, potential, and unique attributes of these hybrid systems, with not only photoactivation as an attribute but also the ability to encapsulate multiple agents for imaging, biomodulation, priming, and therapy referred to as photoactivatable multiagent/inhibitor liposomes (PMILS) and their targeted versions─targeted PMILS (TPMILS). While liposomes have formed their own niche in nanotechnology and nanomedicine with several clinically approved formulations, we try to highlight how using PS-loaded liposomes could address some of the limitations and concerns usually associated with liposomes to overcome them and enhance their preclinical and clinical utility in the future.
Collapse
Affiliation(s)
- Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Cheng X, Wei Y, Jiang X, Wang C, Liu M, Yan J, Zhang L, Zhou Y. Insight into the Prospects for Tumor Therapy Based on Photodynamic Immunotherapy. Pharmaceuticals (Basel) 2022; 15:1359. [PMID: 36355531 PMCID: PMC9693017 DOI: 10.3390/ph15111359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2024] Open
Abstract
Malignancy is one of the common diseases with high mortality worldwide and the most important obstacle to improving the overall life expectancy of the population in the 21st century. Currently, single or combined treatments, including surgery, chemotherapy, and radiotherapy, are still the mainstream regimens for tumor treatment, but they all present significant side effects on normal tissues and organs, such as organ hypofunction, energy metabolism disorders, and various concurrent diseases. Based on this, theranostic measures for the highly selective killing of tumor cells have always been a hot area in cancer-related fields, among which photodynamic therapy (PDT) is expected to be an ideal candidate for practical clinical application due to its precise targeting and excellent safety performance, so-called PDT refers to a therapeutic method mainly composed of photosensitizers (PSs), laser light, and reactive oxygen species (ROS). Photoimmunotherapy (PIT), a combination of PDT and immunotherapy, can induce systemic antitumor immune responses and inhibit continuing growth and distant metastasis of residual tumor cells, demonstrating a promising application prospect. This article reviews the types of immune responses that occur in the host after PDT treatment, including innate and adaptive immunity. To further help PIT-related drugs improve their pharmacokinetic properties and bioavailability, we highlight the potential improvement of photodynamic immunotherapy from three aspects: immunostimulatory agents, tumor-associated antigens (TAAs) as well as different immune cells. Finally, we focus on recent advances in various strategies and shed light on their corresponding mechanisms of immune activation and possible clinical applications such as cancer vaccines. Having discovered the inherent potential of PDT and the mechanisms that PDT triggers host immune responses, a variety of immunotherapeutic strategies have been investigated in parallel with approaches to improve PDT efficiency. However, it remains to be further elucidated under what conditions the immune effect induced by PDT can achieve tumor immunosuppression and to what extent PDT-induced antitumor immunity will lead to complete tumor rejection. Currently, PIT presents several outstanding intractable challenges, such as the aggregation ability of PSs locally in tumors, deep tissue penetration ability of laser light, immune escape, and biological toxicity, and it is hoped that these issues raised will help to point out the direction of preclinical research on PIT and accelerate its transition to clinical practice.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Chunli Wang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Mengyu Liu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Jiaxin Yan
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Pathology Department, Jiaozuo Second People’s Hospital, Jiaozuo 454001, China
| |
Collapse
|
11
|
Liu H, Lei D, Li J, Xin J, Zhang L, Fu L, Wang J, Zeng W, Yao C, Zhang Z, Wang S. MMP-2 Inhibitor-Mediated Tumor Microenvironment Regulation Using a Sequentially Released Bio-Nanosystem for Enhanced Cancer Photo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41834-41850. [PMID: 36073504 DOI: 10.1021/acsami.2c14781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combining photodynamic therapy (PDT) with natural killer (NK) cell-based immunotherapy has shown great potential against cancers, but the shedding of NK group 2, member D ligands (NKG2DLs) on tumor cells inhibited NK cell activation in the tumor microenvironment. Herein, we assembled microenvironment-/light-responsive bio-nanosystems (MLRNs) consisting of SB-3CT-containing β-cyclodextrins (β-CDs) and photosensitizer-loaded liposomes, in which SB-3CT was considered to remodel the tumor microenvironment. β-CDs and liposomes were linked by metalloproteinase 2 (MMP-2) responsive peptides, enabling sequential release of SB-3CT and chlorin e6 triggered by the MMP-2-abundant tumor microenvironment and 660 nm laser irradiation, respectively. Released SB-3CT blocked tumor immune escape by antagonizing MMP-2 and promoting the NKG2D/NKG2DL pathway, while liposomes were taken up by tumor cells for PDT. MLRN-mediated photo-immunotherapy significantly induced melanoma cell cytotoxicity (83.31%), inhibited tumor growth (relative tumor proliferation rate: 1.13% of that of normal saline) in the xenografted tumor model, and enhanced tumor-infiltrating NK cell (148 times) and NKG2DL expression (9.55 and 16.52 times for MICA and ULBP-1, respectively), achieving a synergistic effect. This study not only provided a simple insight into the development of new nanomedicine for programed release of antitumor drugs and better integration of PDT and immunotherapy but also a novel modality for clinical NK cell-mediated immunotherapy against melanoma.
Collapse
Affiliation(s)
- Huifang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jiong Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Lei Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Weihui Zeng
- Department of Dermatology, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| |
Collapse
|
12
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
13
|
Muñoz-Mata LS, López-Cárdenas MT, Espinosa-Montesinos A, Sosa-Delgado SM, Rosales-García VH, Moreno-Lafont MC, Ramón-Gallegos E. Photodynamic therapy stimulates IL-6 and IL-8 in responding patients with HPV infection associated or not with LSIL. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
14
|
Papayan G, Akopov A. Photodynamic Theranostics of Central Lung Cancer: Capabilities of Early Diagnosis and Minimally Invasive Therapy (Review). Sovrem Tekhnologii Med 2021; 13:78-86. [PMID: 35265362 PMCID: PMC8858399 DOI: 10.17691/stm2021.13.6.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of the study was to assess the prospects for central lung cancer (CLC) screening using fluorescent diagnostics and its treatment by endobronchial photodynamic therapy (PDT). Bronchoscopic fluorescent diagnostics using chlorin e6 photosensitizers and a developed instrumental system enable to reveal tumor changes in large bronchi mucosa at early stages, and a developed PDT technique performed under fluorescent control helps achieve personalized treatment. Such an approach is considered as a theranostic technique - photodynamic theranostics. central lung cancer screening requires a fluorescent dye characterized by availability and can be used directly within the examination. Indocyanine green can be used as a dye, its peculiarity is the necessity to excite and record fluorescence in the near-infrared (NIR) wavelength band. First experiments using NIR bands to diagnose a bronchoscopic system showed the detectability of tumor areas using on-site bronchoscopic photodynamic theranostics, which consists in NIR imaging of tumor foci when a standard dose of indocyanine green is administered during the examination. Conclusion Further progress of early diagnostics and minimally invasive CLC therapy will be determined by the development of new photosensitizers, which should be characterized by a high absorption band in NIR area, quick accumulation in a tumor, high yield of single oxygen in NIR illumination, bright fluorescence, high potential in terms of the induction of an anti-tumor immune response.
Collapse
Affiliation(s)
- G.V. Papayan
- Senior Researcher, Laser Medicine Center; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia; Senior Researcher, Research Department of Myocardial Microcirculation and Metabolism; Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - A.L. Akopov
- Professor, Head of Thoracic Surgery Department, Research Institute for Surgery and Emergency Medicine; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia
| |
Collapse
|
15
|
Pigula M, Mai Z, Anbil S, Choi MG, Wang K, Maytin E, Pogue B, Hasan T. Dramatic Reduction of Distant Pancreatic Metastases Using Local Light Activation of Verteporfin with Nab-Paclitaxel. Cancers (Basel) 2021; 13:5781. [PMID: 34830934 PMCID: PMC8616053 DOI: 10.3390/cancers13225781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Despite substantial drug development efforts, pancreatic adenocarcinoma (PDAC) remains a difficult disease to treat, and surgical resection is the only potentially curative option. Unfortunately, 80% of patients are ineligible for surgery due to the presence of invasive disease and/or distant metastases at the time of diagnosis. Treatment strategies geared towards reclassifying these patients as surgical candidates by reducing metastatic burden represents the most promising approach to improve long-term survival. We describe a photodynamic therapy (PDT) based approach that, in combination with the first-line chemotherapeutic nab-paclitaxel, effectively addresses distant metastases in three separate orthotopic PDAC models in immunodeficient mice. In addition to effectively controlling local tumor growth, PDT plus nab-paclitaxel primes the tumor to elicit systemic effects and reduce or abrogate metastases. This combination dramatically inhibits (up to 100%) the eventual development of metastases in models of early stage PDAC, and completely eliminates metastasis in 55% of animals with already established distant disease in late-stage models. Our findings suggest that this light activation process initiates local biological and/or physiological changes within the tumor microenvironment that can be leveraged to treat both localized and distant disease, and potentially reclassify patients with previously inoperable disease as surgical candidates.
Collapse
Affiliation(s)
- Michael Pigula
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA;
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Sriram Anbil
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Myung-Gyu Choi
- Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-040, Korea;
| | - Kenneth Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA;
| | - Edward Maytin
- Department of Dermatology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Brian Pogue
- Department of Engineering Sciences, Dartmouth College, Hanover, NH 03755, USA;
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
16
|
Anand S, Govande M, Yasinchak A, Heusinkveld L, Shakya S, Fairchild R, Maytin EV. Painless Photodynamic Therapy Triggers Innate and Adaptive Immune Responses in a Murine Model of UV-induced Squamous Skin Pre-cancer. Photochem Photobiol 2021; 97:607-617. [PMID: 33113217 PMCID: PMC10481390 DOI: 10.1111/php.13350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Painless photodynamic therapy (p-PDT), which involves application of photosensitizer and immediate exposure to light to treat actinic keratosis (AK) in patients, causes negligible pain on the day of treatment but leads to delayed inflammation and effective lesion clearance (Kaw et al., J Am Acad Dermatol 2020). To better understand how p-PDT works, hairless mice with UV-induced AK were treated with p-PDT and monitored for 2 weeks. Lesion clearance after p-PDT was similar to clearance after conventional PDT (c-PDT). However, lesion biopsies showed minimal cell death and less production of reactive oxygen species (ROS) in p-PDT treated than in c-PDT-treated lesions. Interestingly, p-PDT triggered vigorous recruitment of immune cells associated with innate immunity. Neutrophils (Ly6G+) and macrophages (F4/80+) appeared at 4 h and peaked at 24 h after p-PDT. Damage-associated molecular patterns (DAMPs), including calreticulin, HMGB1, and HSP70, were expressed at maximum levels around 24 h post-p-PDT. Total T cells (CD3+) were increased at 24 h, whereas large increases in cytotoxic (CD8+) and regulatory (Foxp3+) T cells were observed at 1 and 2 weeks post-p-PDT. In summary, the ability of p-PDT to eliminate AK lesions, despite very little overt cellular damage, appears to involve stimulation of a local immune response.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | - Lauren Heusinkveld
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | - Robert Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Edward V. Maytin
- Department of Biomedical Engineering
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Yang D, Lei S, Pan K, Chen T, Lin J, Ni G, Liu J, Zeng X, Chen Q, Dan H. Application of photodynamic therapy in immune-related diseases. Photodiagnosis Photodyn Ther 2021; 34:102318. [PMID: 33940209 DOI: 10.1016/j.pdpdt.2021.102318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that utilizes photodamage caused by photosensitizers and oxygen after exposure to a specific wavelength of light. Owing to its low toxicity, high selectivity, and minimally invasive properties, PDT has been widely applied to treat various malignant tumors, premalignant lesions, and infectious diseases. Moreover, there is growing evidence of its immunomodulatory effects and potential for the treatment of immune-related diseases. This review mainly focuses on the effect of PDT on immunity and its application in immune-related diseases.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
18
|
Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021; 73:618-642. [PMID: 33476088 DOI: 10.1002/iub.2446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The latest advances in the sequencing methods in head and neck squamous cell carcinoma (HNSCC) tissues have revolutionized our understanding of the disease by taking off the veil from the most frequent genetic alterations in the components of the oncogenic pathways. Among all the identified alterations, aberrancies in the genes attributed to the phosphoinositide 3-kinases (PI3K) axis have attracted special attention as they were altered in more than 90% of the tissues isolated from HNSCC patients. In fact, the association between these aberrancies and the increased risk of cancer metastasis suggested this axis as an "Achilles Heel" of HNSCC, which may be therapeutically targeted. The results of the clinical trials investigating the therapeutic potential of the inhibitors targeting the components of the PI3K axis in the treatment of HNSCC patients, either alone or in a combined-modal strategy, opened a new chapter in the treatment strategy of this malignancy. The present study aimed to review the importance of the PI3K axis in the pathogenesis of HNSCC and also provide a piece of information about the breakthroughs and challenges of PI3K inhibitors in the therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Effect of photodynamic therapy on expression of HRAS, NRAS and caspase 3 genes at mRNA levels, apoptosis of head and neck squamous cell carcinoma cell line. Photodiagnosis Photodyn Ther 2020; 33:102142. [PMID: 33307231 DOI: 10.1016/j.pdpdt.2020.102142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed to assess the effect of photodynamic therapy (PDT) on expression of CASP3, NRAS and HRAS genes at mRNA levels, and apoptosis of head and neck squamous cell carcinoma (HNSCC) cell line. MATERIALS AND METHODS In order to complete the present in vitro study, HNSCC cell line (NCBI C196 HN5) purchased from Pasteur Institute. Cells were divided into four groups; Group 1: photodynamic treatment (laser + methylene blue (MB) as photosensitizer), group 2: MB, group 3: laser (with 660 nm wavelength), and group 4: control (without any treatment). To determine the optimal concentration of MB, in a pilot study, toxicity of MB in different concentration was assessed using MTT assay. Cells in group 1, 2 and 3 was treated at optimal concentration of MB (1.6 μg/mL). Gene expression at mRNA levels was assessed after 24 h incubation, using real-time (qRT)-PCR. The expression of BAX and BCL2 genes at the mRNA levels was analyzed to evaluate apoptosis. 2-ΔΔCt values of BCL2, BAX, CASP3, NRAS, and HRAS in groups was analyzed using ANOVA. Tukey's HSD and Games Howell test was used to compare between two groups. RESULTS Over-expression of BAX (p < 0.001), CASP3 (p < 0.001) and down-regulation of BCL2 (p = 0.004), HRAS (p = 0.023) and NRAS (p = 0.045) were noted in group 1 (PDT), compared with the control group. Treatment by laser alone induce down-regulation of CASP3 (p < 0.05), BAX (p < 0.05), BCL2 (p > 0.05), HRAS (p > 0.05) and NRAS (p > 0.05). CONCLUSION PDT caused down-regulation of NRAS, HRAS and BCL2 and over-expression of CASP3 and BAX genes at mRNA levels in HNSCC cell line. The present study raises the possibility that the role of MB on BCL2 down-regulation and BAX and CASP3 over-expression was higher than laser alone while it seems that laser alone was more effective than MB in HRAS and NRAS down-regulation.
Collapse
|
20
|
Kim HI, Wilson BC. Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges. J Gastric Cancer 2020; 20:355-375. [PMID: 33425438 PMCID: PMC7781745 DOI: 10.5230/jgc.2020.20.e39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Seoul, Korea
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Ota T, Fukui T, Nakahara Y, Takeda T, Uchino J, Mouri T, Kudo K, Nakajima S, Suzumura T, Fukuoka M. Serum immune modulators during the first cycle of anti-PD-1 antibody therapy in non-small cell lung cancer: Perforin as a biomarker. Thorac Cancer 2020; 11:3223-3233. [PMID: 32915511 PMCID: PMC7606020 DOI: 10.1111/1759-7714.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background Currently used biomarkers for immunotherapy are inadequate because they are only based on tumor properties. In view of microenvironment changes by tumors, host immunity should be considered, which may result in identifying more accurate and easily detectable biomarkers for daily clinical practice. Here, we assessed serum immune‐modulating factor levels for the response to anti‐PD‐1 antibodies during the first cycle in non‐small cell lung cancer (NSCLC) patients. Methods Serum was collected from patients with advanced NSCLC treated with nivolumab or pembrolizumab at several time points during the first cycle. We applied the enzyme‐linked immunosorbent assays (ELISAs) and multiplex assays to measure the levels of immune modulators. Results A total of 40 patients treated with nivolumab and 26 patients treated with pembrolizumab were studied. By ELISA, serum perforin, but not granzyme B, was measured in all samples. By multiplex assay, 10 immune modulators, including granzyme B, were measured in some, but not all, samples. Serum baseline perforin levels were strongly associated with increased progression‐free survival (PFS) and overall survival (OS) times. Sequential changes in perforin levels during the first cycle were weakly associated with the clinical outcome. Conclusions Serum baseline perforin levels may be used to predict the prognosis of NSCLC patients treated with anti‐PD‐1 antibody therapy. Key points To identify a useful predictive marker for anti‐PD‐1 antibody therapy, using blood samples might be helpful. Serum baseline perforin levels were closely associated with prognosis with anti‐PD‐1 antibody therapy in non‐small cell lung cancer.
Collapse
Affiliation(s)
- Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| | - Tomoya Fukui
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiro Nakahara
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan.,Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takako Mouri
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keita Kudo
- Department of Medical Oncology and Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Saki Nakajima
- Department of Medical Oncology and Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Tomohiro Suzumura
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masahiro Fukuoka
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| |
Collapse
|
22
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
23
|
Mytilineos D, Ezić J, von Witzleben A, Mytilineos J, Lotfi R, Fürst D, Tsamadou C, Theodoraki MN, Oster A, Völkel G, Kestler HA, Brunner C, Schuler PJ, Doescher J, Hoffmann TK, Laban S. Peripheral Cytokine Levels Differ by HPV Status and Change Treatment-Dependently in Patients with Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:E5990. [PMID: 32825343 PMCID: PMC7503943 DOI: 10.3390/ijms21175990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Cytokines and immune mediators play an important role in the communication between immune cells guiding their response to infectious diseases or cancer. In this study, a comprehensive longitudinal analysis of serum cytokines and immune mediators in head and neck squamous cell carcinoma (HNSCC) patients was performed. In a prospective, non-interventional, longitudinal study, blood samples from 22 HNSCC patients were taken at defined time points (TP) before, during, and every 3 months after completion of (chemo)radio)therapy (CRT/RT) until 12 months after treatment. Serum concentrations of 17 cytokines/immune mediators and High-Mobility-Group-Protein B1 (HMGB1) were measured by fluorescent bead array and ELISA. Concentrations of sFas were significantly elevated during and after CRT/RT, whereas perforin levels were significantly decreased after CRT/RT. Levels of MIP-1β and Granzyme B differed significantly during CRT/RT by HPV status. Increased HMGB1 levels were observed at recurrence, accompanied by high levels of IL-4 and IL-10. The sFas increase and simultaneous perforin decrease may indicate an impaired immune cell function during adjuvant radiotherapy. Increased levels of pro-inflammatory cytokines in HPV+ compared to HPV- patients seem to reflect the elevated immunogenicity of HPV-positive tumors. High levels of HMGB1 and anti-inflammatory cytokines at recurrence may be interpreted as a sign of immune evasion.
Collapse
Affiliation(s)
- Daphne Mytilineos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Jasmin Ezić
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Adrian von Witzleben
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
- CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Joannis Mytilineos
- Institute for Clinical Transfusion Medicine and Immune Genetics, German Red Cross Blood Transfusion Service, 89081 Ulm, Germany; (J.M.); (R.L.); (D.F.); (C.T.)
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immune Genetics, German Red Cross Blood Transfusion Service, 89081 Ulm, Germany; (J.M.); (R.L.); (D.F.); (C.T.)
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Daniel Fürst
- Institute for Clinical Transfusion Medicine and Immune Genetics, German Red Cross Blood Transfusion Service, 89081 Ulm, Germany; (J.M.); (R.L.); (D.F.); (C.T.)
| | - Chrysanthi Tsamadou
- Institute for Clinical Transfusion Medicine and Immune Genetics, German Red Cross Blood Transfusion Service, 89081 Ulm, Germany; (J.M.); (R.L.); (D.F.); (C.T.)
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Angelika Oster
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Gunnar Völkel
- Institute for Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (G.V.); (H.A.K.)
| | - Hans A. Kestler
- Institute for Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (G.V.); (H.A.K.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| | - Simon Laban
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, 89070 Ulm, Germany; (D.M.); (J.E.); (A.v.W.); (M.-N.T.); (A.O.); (C.B.); (P.J.S.); (J.D.); (T.K.H.)
| |
Collapse
|
24
|
Shen L, Zhou T, Fan Y, Chang X, Wang Y, Sun J, Xing L, Jiang H. Recent progress in tumor photodynamic immunotherapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Li XY, Tan LC, Dong LW, Zhang WQ, Shen XX, Lu X, Zheng H, Lu YG. Susceptibility and Resistance Mechanisms During Photodynamic Therapy of Melanoma. Front Oncol 2020; 10:597. [PMID: 32528867 PMCID: PMC7247862 DOI: 10.3389/fonc.2020.00597] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the most aggressive malignant skin tumor and arises from melanocytes. The resistance of melanoma cells to various treatments results in rapid tumor growth and high mortality. As a local therapeutic modality, photodynamic therapy has been successfully applied for clinical treatment of skin diseases. Photodynamic therapy is a relatively new treatment method for various types of malignant tumors in humans and, compared to conventional treatment methods, has fewer side effects, and is more accurate and non-invasive. Although several in vivo and in vitro studies have shown encouraging results regarding the potential benefits of photodynamic therapy as an adjuvant treatment for melanoma, its clinical application remains limited owing to its relative inefficiency. This review article discusses the use of photodynamic therapy in melanoma treatment as well as the latest progress made in deciphering the mechanism of tolerance. Lastly, potential targets are identified that may improve photodynamic therapy against melanoma cells.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liu-Chang Tan
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Li-Wen Dong
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wan-Qi Zhang
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Xiao Shen
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan-Gang Lu
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Kaneko K, Osada T, Morse MA, Gwin WR, Ginzel JD, Snyder JC, Yang XY, Liu CX, Diniz MA, Bodoor K, Hughes PF, Haystead TA, Lyerly HK. Heat shock protein 90-targeted photodynamic therapy enables treatment of subcutaneous and visceral tumors. Commun Biol 2020; 3:226. [PMID: 32385408 PMCID: PMC7210113 DOI: 10.1038/s42003-020-0956-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/21/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) ablates malignancies by applying focused near-infrared (nIR) light onto a lesion of interest after systemic administration of a photosensitizer (PS); however, the accumulation of existing PS is not tumor-exclusive. We developed a tumor-localizing strategy for PDT, exploiting the high expression of heat shock protein 90 (Hsp90) in cancer cells to retain high concentrations of PS by tethering a small molecule Hsp90 inhibitor to a PS (verteporfin, VP) to create an Hsp90-targeted PS (HS201). HS201 accumulates to a greater extent than VP in breast cancer cells both in vitro and in vivo, resulting in increased treatment efficacy of HS201-PDT in various human breast cancer xenografts regardless of molecular and clinical subtypes. The therapeutic index achieved with Hsp90-targeted PDT would permit treatment not only of localized tumors, but also more diffusely infiltrating processes such as inflammatory breast cancer.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - William R Gwin
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Joshua C Snyder
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Timothy Aj Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA.
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
28
|
S. Lobo AC, Gomes-da-Silva LC, Rodrigues-Santos P, Cabrita A, Santos-Rosa M, Arnaut LG. Immune Responses after Vascular Photodynamic Therapy with Redaporfin. J Clin Med 2019; 9:jcm9010104. [PMID: 31906092 PMCID: PMC7027008 DOI: 10.3390/jcm9010104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) relies on the administration of a photosensitizer (PS) that is activated, after a certain drug-to-light interval (DLI), by the irradiation of the target tumour with light of a specific wavelength absorbed by the PS. Typically, low light doses are insufficient to eradicate solid tumours and high fluence rates have been described as poorly immunogenic. However, previous work with mice bearing CT26 tumours demonstrated that vascular PDT with redaporfin, using a low light dose delivered at a high fluence rate, not only destroys the primary tumour but also reduces the formation of metastasis, thus suggesting anti-tumour immunity. This work characterizes immune responses triggered by redaporfin-PDT in mice bearing CT26 tumours. Our results demonstrate that vascular-PDT leads to a strong neutrophilia (2-24 h), systemic increase of IL-6 (24 h), increased percentage of CD4+ and CD8+ T cells producing IFN-γ or CD69+ (2-24 h) and increased CD4+/CD8+ T cell ratio (2-24 h). At the tumour bed, T cell tumour infiltration disappeared after PDT but reappeared with a much higher incidence one day later. In addition, it is shown that the therapeutic effect of redaporfin-PDT is highly dependent on neutrophils and CD8+ T cells but not on CD4+ T cells.
Collapse
Affiliation(s)
| | - Lígia C. Gomes-da-Silva
- CQC, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal;
- Correspondence: (L.C.G.-d.-S.); (L.G.A.)
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; (P.R.-S.); (M.S.-R.)
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - António Cabrita
- Anatomic Pathology Department, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Manuel Santos-Rosa
- Immunology Institute, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; (P.R.-S.); (M.S.-R.)
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís G. Arnaut
- CQC, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal;
- Correspondence: (L.C.G.-d.-S.); (L.G.A.)
| |
Collapse
|
29
|
Nie S, Wang X, Wang H. NLRP3 Inflammasome Mediated Interleukin-1β Production in Cancer-Associated Fibroblast Contributes to ALA-PDT for Cutaneous Squamous Cell Carcinoma. Cancer Manag Res 2019; 11:10257-10267. [PMID: 31849516 PMCID: PMC6912005 DOI: 10.2147/cmar.s226356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Long-term tumor control following PDT is a result of its direct effect on tumor and vasculature in combination with induction of inflammatory-reactions upregulating the immune system. When PDT induces necrosis of tumors and vascular system, an immune cascade can be initiated to release all kinds of cytokines including IL1β. This further leads to the activation of inflammatory-cells and hence death of tumor cells. Methods Ultraviolet irradiation was used to induce cSCC mice model, gene chip was used to screen inflammatory cytokines, qPCR, ELISA and implanted tumor mice model were used to verify the changes and important role of interleukin-1β, and WB preliminarily explored the production mechanism of interleukin-1β. Results Inflammatory cytokines and receptors transcript screening identify IL1r1 as the top4. After ALA-PDT, IL1r1 and IL1β increased in patients' biopsies, principally in mesenchymal cells. In vivo, the inhibition of ALA-PDT on tumor growth of cutaneous squamous cell carcinoma (cSCC) mice in the group with intralesional injection of anti-IL1β mAb or caspase1-inhibitor was significantly weaker than the control groups. Furthermore, NLRP3-inflammasome and p-p65/p65 were elevated after ALA-PDT mediated IL1β production in cancer-associated-fibroblasts. Discussion By means of activating NLRP3-inflammasome with IL1β production in CAFs, PDT stimulates local acute-inflammatory-response, which further promotes PDT effect for cSCC.
Collapse
Affiliation(s)
- Shu Nie
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, People's Republic of China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
30
|
Valenzuela-Valderrama M, González IA, Palavecino CE. Photodynamic treatment for multidrug-resistant Gram-negative bacteria: Perspectives for the treatment of Klebsiella pneumoniae infections. Photodiagnosis Photodyn Ther 2019; 28:256-264. [PMID: 31505296 DOI: 10.1016/j.pdpdt.2019.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022]
Abstract
The emergence of multi-drug resistance for pathogenic bacteria is one of the most pressing global threats to human health in the 21st century. Hence, the availability of new treatment becomes indispensable to prevent morbidity and mortality caused by infectious agents. This article reviews the antimicrobial properties of photodynamic therapy (PDT), which is based on the use of photosensitizers compounds (PSs). The PSs are non-toxic small molecules, which induce oxidative stress only under excitation with light. Then, the PDT has the advantage to be locally activated using phototherapy devices. We focus on PDT for the Klebsiella pneumoniae, as an example of Gram-negative bacteria, due to its relevance as an agent of health-associated infections (HAI) and a multi-drug resistant bacteria. K. pneumoniae is a fermentative bacillus, member of the Enterobacteriaceae family, which is most commonly associated with producing infection of the urinary tract (UTI) and pneumonia. K. pneumoniae infections may occur in deep organs such as bladder or lungs tissues; therefore, activating light must get access or penetrate tissues with sufficient power to produce effective PDT. Consequently, the rationale for selecting the most appropriate PSs, as well as photodynamic devices and photon fluence doses, were reviewed. Also, the mechanisms by which PDT activates the immune system and its importance to eradicate the infection successfully, are discussed.
Collapse
Affiliation(s)
- Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile; Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
| | - Iván Alonzo González
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| |
Collapse
|
31
|
Zhang L, Li X, Liu X, Gao Y, Tang Q. Treatment of multi-position condyloma acuminatum using topical CO 2 laser combined with photodynamic therapy - Report of 6 cases. Photodiagnosis Photodyn Ther 2019; 25:436-439. [PMID: 30703534 DOI: 10.1016/j.pdpdt.2019.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Condyloma acuminatum(CA) is a venereal disease associated with a high rate of recurrence due to the rapid replication and subtle immune escape mechanism of Human Papillomavirus(HPV). Topical CO2 laser can remove verruca accurately. Photodynamic therapy with 5-aminolevulinic acid(PDT-ALA) is also an effective therapy which targets on HPV infected sites. Some studies demonstrate that when combined with use of CO2 lasers, photodynamic therapy can become more effective. METHODS We attempted to clinically cure a series of CA grown on cervix, urethra, urinary meatus, vulva, crissum and anal canal with treatment of topical CO2 laser combined with ALA photodynamic therapy and report herein 6 cases. RESULTS Topical CO2 laser combined photodynamic therapy for CA achieved a complete response after 3 courses of treatment. No recurrence was found after 6-month follow-up in 6 cases, and the HPV PCR detection for all was changed from positive to negative. CONCLUSION When it comes to CA treatment, the combination of photodynamic therapy and CO2 laser usage can give full play to their own respective superiority, and the curative effect is more significant.
Collapse
Affiliation(s)
- Lixue Zhang
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiufang Li
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xinqiao Liu
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Gao
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingning Tang
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Hou X, Tao Y, Pang Y, Li X, Jiang G, Liu Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int J Cancer 2018; 143:3050-3060. [PMID: 29981170 DOI: 10.1002/ijc.31717] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoyang Hou
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Yingkai Tao
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Yanyu Pang
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Xinxin Li
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Guan Jiang
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Yanqun Liu
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
- Department of Dermatology; The First Affiliated Hospital with Nanjing Medical University; Nanjing China
| |
Collapse
|
33
|
Theodoraki MN, Hoffmann TK, Jackson EK, Whiteside TL. Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence. Clin Exp Immunol 2018; 194:67-78. [PMID: 30229863 DOI: 10.1111/cei.13157] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2018] [Indexed: 12/22/2022] Open
Abstract
Exosomes in plasma of head and neck squamous cell carcinoma (HNSCC) patients comprise subsets of vesicles derived from various cells. Recently, we separated CD3(+) from CD3(-) exosomes by immune capture. CD3(-) exosomes were largely tumour-derived (CD44v3+ ). Both subsets carried immunosuppressive proteins and inhibited functions of human immune cells. The role of these subsets in immune cell reprogramming by the tumour was investigated by focusing on the adenosine pathway components. Spontaneous adenosine production by CD3(+) or CD3(-) exosomes was measured by mass spectrometry, as was the production of adenosine by CD4+ CD39+ regulatory T cells (Treg ) co-incubated with these exosomes. The highest level of CD39/CD73 ectoenzymes and of adenosine production was found in CD3(-) exosomes in patients with the stages III/IV HNSCCs). Also, the production of 5'-AMP and purines was significantly higher in Treg co-incubated with CD3(-) than CD3(+) exosomes. Consistently, CD26 and adenosine deaminase (ADA) levels were higher in CD3(+) than CD3(-) exosomes. ADA and CD26 levels in CD3(+) exosomes were significantly higher in patients with early (stages I/II) than advanced (stages III/IV) disease. HNSCC patients receiving and responding to photodynamic therapy had increased ADA levels in CD3(+) exosomes with no increase in CD3(-) exosomes. The opposite roles of CD3(+) ADA+ CD26+ and CD3(-) CD44v3+ adenosine-producing exosomes in early versus advanced HNSCC suggest that, like their parent cells, these exosomes serve as surrogates of immune suppression in cancer.
Collapse
Affiliation(s)
- M-N Theodoraki
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Immunology and Otorhinolaryngology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - T K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - E K Jackson
- Departments of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - T L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Immunology and Otorhinolaryngology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Ao C, Zeng K. The role of regulatory T cells in pathogenesis and therapy of human papillomavirus-related diseases, especially in cancer. INFECTION GENETICS AND EVOLUTION 2018; 65:406-413. [PMID: 30172014 DOI: 10.1016/j.meegid.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted agent in the world. It can cause condyloma acuminatum, anogenital malignancies, and head and neck cancers. The host immune responses to HPV involve multiple cell types that have regulatory functions, and HPV-mediated changes to regulatory T cells (Tregs) in both the local lesion tissues and the circulatory system of patients have received considerable attention. The role of Tregs in HPV infections ranges from suppression of effector T cell (Teff) responses to protection of tissues from immune-mediated injury in different anatomic subsites. In this review, we explore the influence of Tregs in the immunopathology of HPV-related diseases and therapies targeting Tregs as novel approaches against HPV.
Collapse
Affiliation(s)
- Chunping Ao
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Theodoraki MN, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience 2018; 5:75-87. [PMID: 29854876 PMCID: PMC5978437 DOI: 10.18632/oncoscience.410] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/21/2018] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a palliative treatment option for head and neck squamous cell carcinoma (HNSCC) patients which induces local inflammation and alters tumor cell morphology. We show that exosomes in plasma of HNSCC patients undergoing PDT reprogram tumor cells towards an epithelial phenotype. Nine HNSCC patients were treated with PDT and plasma was collected prior to and at three timepoints after therapy. Exosome levels of E-Cadherin, N-Cadherin and TGF-β1 were tested by flow cytometry. Exosomes were co-incubated with cancer cells, and changes in expression of EMT markers were evaluated as were proliferation, migration, chemotaxis and invasiveness of tumor cells. Exosomes harvested pre- and 24h after PDT were enriched in N-Cadherin and TGF-β1. They induced the mesenchymal phenotype and up-regulated Vimentin and transcripts for Snail, Twist, α-SMA, Slug and ZEB1 in epithelial tumor cells. These exosomes also enhanced tumor proliferation, migration and invasion. In contrast, exosomes obtained on day 7 or 4-6 weeks after PDT carried E-cadherin, restored epithelial morphology and EpCAM expression in tumor cells, down-regulated expression of mesenchymal genes and inhibited proliferation, migration and invasion. The PDT-mediated conversion from the mesenchymal to epithelial tumor phenotype was mediated by exosomes, which also served as non-invasive biomarkers of this transition.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Saigopalakrishna S Yerneni
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | | | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
36
|
In vitro assessment of anti-tumorigenic mechanisms and efficacy of NanoALA, a nanoformulation of aminolevulic acid designed for photodynamic therapy of cancer. Photodiagnosis Photodyn Ther 2017; 20:62-70. [PMID: 28838760 DOI: 10.1016/j.pdpdt.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The development of nanocarriers is an important approach to increase the bioavailability of hydrophilic drugs in target cells. In this work, we evaluated the anti-tumorigenic mechanisms and efficacy of NanoALA, a novel nanoformulation of aminolevulic acid (ALA) based on poly(lactide-co-glycolide) (PLGA) nanocapsules designed for anticancer photodynamic therapy (PDT). METHODS For this purpose, physicochemical characterization, prodrug incorporation kinetics, biocompatibility and photocytotoxicity tests, analysis of the cell death type and mitochondrial function, measurement of the intracellular reactive oxygen species production and DNA fragmentation were performed in murine mammary carcinoma (4T1) cells. RESULTS NanoALA formulation, stable over a period of 90days following synthesis, presented hydrodynamic diameter of 220±8.7nm, zeta potential of -30.6mV and low value of polydispersity index (0.28). The biological assays indicated that the nanostructured product promotes greater ALA uptake by 4T1 cells and consequently more cytotoxicity in the PDT process. For the first time in the scientific literature, there is a therapeutic efficacy report of approximately 80%, after only 1h of incubation with 100μgmL-1 prodrug (0.6mM ALA equivalent). The mitochondria are probably the initial target of treatment, culminating in energy metabolism disorders and cell death by apoptosis. CONCLUSIONS NanoALA emerges as a promising strategy for anticancer PDT. Besides being effective against a highly aggressive tumor cell line, the treatment may be economically advantageous because it allows a reduction in the dose and frequency of application compared to free ALA.
Collapse
|