1
|
Dickey AK, Berkovich J, Leaf RK, Jiang PY, Lopez-Galmiche G, Rebeiz L, Wheeden K, Kochevar I, Savage W, Zhao S, Campisi E, Heo SY, Trueb J, LaRochelle EP, Rogers J, Banks A, Chang JK. Observational pilot study of multi-wavelength wearable light dosimetry for erythropoietic protoporphyria. Int J Dermatol 2024; 63:1584-1591. [PMID: 38602089 PMCID: PMC11467130 DOI: 10.1111/ijd.17166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Erythropoietic protoporphyria (EPP) causes painful light sensitivity, limiting quality of life. Our objective was to develop and validate a wearable light exposure device and correlate measurements with light sensitivity in EPP to predict and prevent symptoms. METHODS A wearable light dosimeter was developed to capture light doses of UVA, blue, and red wavelengths. A prospective observational pilot study was performed in which five EPP patients wore two light dosimeters for 3 weeks, one as a watch, and one as a shirt clip. RESULTS Standard deviation (SD) increases from the mean in the daily blue light dose increased the odds ratio (OR) for symptom risk more than the self-reported outdoor time (OR 2.76 vs. 2.38) or other wavelengths, and a one SD increase from the mean in the daily blue light wristband device dose increased the OR for symptom risk more than the daily blue light shirt clip (OR 2.45 vs. 1.62). The area under the receiver operator curve for the blue light wristband dose was 0.78, suggesting 78% predictive accuracy. CONCLUSION These data demonstrate that wearable blue light dosimetry worn as a wristband is a promising method for measuring light exposure and predicting and preventing symptoms in EPP.
Collapse
Affiliation(s)
- Amy K Dickey
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Healthcare Transformation Lab, Massachusetts General Hospital, Boston, MA
| | - Jaime Berkovich
- Wearifi, Inc., Evanston, IL
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL
- Northwestern University Department of Materials Science and Engineering, Evanston, IL
| | - Rebecca K. Leaf
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Paul Yanning Jiang
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Lina Rebeiz
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Irene Kochevar
- Harvard Medical School, Boston, MA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | | | | | | | - Seung Yun Heo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL
| | - Jacob Trueb
- Wearifi, Inc., Evanston, IL
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL
| | | | - John Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL
- Northwestern University Department of Materials Science and Engineering, Evanston, IL
| | - Anthony Banks
- Wearifi, Inc., Evanston, IL
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL
| | - Jan-Kai Chang
- Wearifi, Inc., Evanston, IL
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL
| |
Collapse
|
2
|
Tracy EC, Bowman MJ, Pandey RK, Baumann H. Tumor cell-specific retention of photosensitizers determines the outcome of photodynamic therapy for head and neck cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112513. [PMID: 35841739 DOI: 10.1016/j.jphotobiol.2022.112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/25/2022]
Abstract
Pheophorbide-based photosensitizers have demonstrated tumor cell-specific retention. The lead compound 3-[1'-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) in a clinical trial for photodynamic therapy of head and neck cancer lesions indicated a complete response in 80% of patients. The question arises whether the partial response in 20% of patients is due to inefficient retention of photosensitizers by tumor cells and, if so, can the photosensitizer preference of individual cancer cases be identified prior to photodynamic therapy. This study determined the specificity of head and neck cancer cells and tumor tissues for the uptake and retention of diffusible pheophorbides differing in peripheral groups on the macrocycle that contribute to cellular binding. The relationship between photosensitizer level and light-mediated photoreaction was characterized to identify markers for predicting the effectiveness of photodynamic therapy in situ. The experimental models were stromal and epithelial cells isolated from head and neck tumor samples and integrated into monotypic tissue cultures, reconstituted three-dimensional co-cultures, and xenografts. Tumor cell-specific photosensitizer retention patterns were identified, and a procedure was developed to allow the diagnostic evaluation of HPPH binding by tumor cells in individual cancer cases. The findings of this study may assist in designing conditions for photosensitizer application and photodynamic therapy of head and neck cancer lesions optimized for each patient's case.
Collapse
Affiliation(s)
- Erin C Tracy
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Mary-Jo Bowman
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Ravindra K Pandey
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Heinz Baumann
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| |
Collapse
|
3
|
Lee W, Jeon M, Choi J, Oh C, Kim G, Jung S, Kim C, Ye SJ, Im HJ. Europium-Diethylenetriaminepentaacetic Acid Loaded Radioluminescence Liposome Nanoplatform for Effective Radioisotope-Mediated Photodynamic Therapy. ACS NANO 2020; 14:13004-13015. [PMID: 32820903 DOI: 10.1021/acsnano.0c04324] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) is an effective anticancer strategy with a higher selectivity and fewer adverse effects than conventional therapies; however, shallow tissue penetration depth of light has hampered the clinical utility of PDT. Recently, reports have indicated that Cerenkov luminescence-induced PDT may overcome the tissue penetration limitation of conventional PDT. However, the effectiveness of this method is controversial because of its low luminescence intensity. Herein, we developed a radiolabeled diethylenetriaminepentaacetic acid chelated Eu3+ (Eu-DTPA)/photosensitizer (PS) loaded liposome (Eu/PS-lipo) that utilizes ionizing radiation from radioisotopes for effective in vivo imaging and radioluminescence-induced PDT. We utilized Victoria blue-BO (VBBO) as a PS and observed an efficient luminescence resonance energy transfer between Eu-DTPA and VBBO. Furthermore, 64Cu-labeled Eu lipo demonstrated a strong radioluminescence with a 2-fold higher intensity than Cerenkov luminescence from free 64Cu. In our radioluminescence liposome, radioluminescence energy transfer showed a 6-fold higher energy transfer efficiency to VBBO than Cerenkov luminescence energy transfer (CLET). 64Cu-labeled Eu/VBBO lipo (64Cu-Eu/VBBO lipo) showed a substantial tumor uptake of up to 19.3%ID/g by enhanced permeability and retention effects, as revealed by in vivo positron emission tomography. Finally, the PDT using 64Cu-Eu/VBBO lipo demonstrated significantly higher in vitro and in vivo therapeutic effects than Cerenkov luminescence-induced PDT using 64Cu-VBBO lipo. This study envisions a great opportunity for clinical PDT application by establishing the radioluminescence liposome which has high tumor targeting and efficient energy transfer capability from radioisotopes.
Collapse
Affiliation(s)
- Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Gaeun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongmoon Jung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Changsoon Kim
- Department of Intelligence and Information, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
LaRochelle EPM, Chapman MS, Maytin EV, Hasan T, Pogue BW. Weather-informed Light-tissue Model-Based Dose Planning for Indoor Daylight Photodynamic Therapy. Photochem Photobiol 2019; 96:320-326. [PMID: 31581341 DOI: 10.1111/php.13170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022]
Abstract
Daylight activation for photodynamic therapy (PDT) of skin lesions is now widely adopted in many countries as a less painful and equally effective treatment mechanism, as compared to red or blue light activation. However, seasonal daylight availability and transient weather conditions complicate light dose estimations. A method is presented for dose planning without placing a large burden on clinical staff, by limiting spectral measurements to a one-time site assessment, and then using automatically acquired weather reports to track transient conditions. The site assessment tools are used to identify appropriate treatment locations for the annual and daily variations in sunlight exposure for clinical center planning. The spectral information collected from the site assessment can then be integrated with real-time daily electronic weather data. It was shown that a directly measured light exposure has strong correlation (R2 : 0.87) with both satellite cloud coverage data and UV index, suggesting that the automated weather indexes can be surrogates for daylight PDT optical dose. These updated inputs can be used in a dose-planning treatment model to estimate photodynamic dose at depth in tissue. A simple standardized method for estimating light dose during daylight-PDT could help improve intersite reproducibility while minimizing treatment times.
Collapse
Affiliation(s)
| | | | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH.,Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| |
Collapse
|
5
|
Kaw U, Ilyas M, Bullock T, Rittwage L, Riha M, Vidimos A, Hu B, Warren CB, Maytin EV. A regimen to minimize pain during blue light photodynamic therapy of actinic keratoses: Bilaterally controlled, randomized trial of simultaneous versus conventional illumination. J Am Acad Dermatol 2019; 82:862-868. [PMID: 31525441 DOI: 10.1016/j.jaad.2019.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Blue light photodynamic therapy (PDT) is effective for actinic keratosis, but many patients experience stinging pain during illumination. OBJECTIVE To compare a conventional regimen (1 hour of 5-aminolevulinic acid [ALA] preincubation, followed by blue light) versus a new modified regimen in which blue light is started immediately after ALA application. METHODS A clinical trial with a bilaterally controlled, intrapatient study design was conducted with 23 patients. Topical 20% ALA was applied to the entire face and/or scalp. On 1 side of the body, blue light was started immediately and continued for either 30, 45, or 60 minutes (simultaneous PDT). On the contralateral side, the blue light began 1 hour after ALA application and lasted 1000 seconds (conventional PDT). Pain was evaluated on a scale from 0 to 10. Actinic keratosis lesion counts were determined by clinical examination and photography. RESULTS All patients experienced significantly less pain during simultaneous illumination than during the conventional regimen. At 3 months after treatment, lesion clearance was nearly identical on the 2 sides, as determined by statistical testing of noninferiority ± 15% margin. LIMITATIONS Although bilaterally controlled, the study was relatively small. Additional studies are recommended. CONCLUSION The modified PDT regimen is essentially painless, yet it provides treatment efficacy similar to a conventional regimen.
Collapse
Affiliation(s)
- Urvashi Kaw
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Muneeb Ilyas
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Taylor Bullock
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Lisa Rittwage
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Margo Riha
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Allison Vidimos
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | | | - Edward V Maytin
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
6
|
Tampa M, Sarbu MI, Matei C, Mitran CI, Mitran MI, Caruntu C, Constantin C, Neagu M, Georgescu SR. Photodynamic therapy: A hot topic in dermato-oncology. Oncol Lett 2019; 17:4085-4093. [PMID: 30944601 PMCID: PMC6444307 DOI: 10.3892/ol.2019.9939] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is a modern, non-invasive therapeutic method used for the destruction of various cells and tissues. It requires the simultaneous presence of three components: a photosensitizer (PS), a light source and oxygen. Precancerous skin lesions are conditions associated with a high likelihood of malignant transformation to squamous cell carcinoma. Data available so far indicate that PDT is a promising treatment method which can be successfully employed in several medical fields including dermatology, urology, ophthalmology, pneumology, cardiology, dentistry and immunology. Numerous authors therefore have studied this technique in order to improve its efficacy. As a result, significant advancement has been achieved with regard to PSs and drug delivery systems. Substantial progress was also obtained with respect to PDT for the treatment of precancerous skin lesions, several authors focusing their efforts on the study of daylight-PDT and on identifying methods of decreasing technique-related pain. This review reports on the most recent findings in PDT, with emphasis on cutaneous precancerous lesions.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Maria-Isabela Sarbu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | | | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’, National Institute of Pathology, 050096 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, ‘Victor Babes’, National Institute of Pathology, 050096 Bucharest, Romania
| | - Simona-Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
7
|
LaRochelle EPM, Marra K, LeBlanc RE, Chapman MS, Maytin EV, Pogue BW. Modeling PpIX effective light fluence at depths into the skin for PDT dose comparison. Photodiagnosis Photodyn Ther 2019; 25:425-435. [PMID: 30685548 DOI: 10.1016/j.pdpdt.2019.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Daylight-activated PDT has seen increased support in recent years as a treatment method for actinic keratosis and other non-melanoma skin cancers. The inherent variability observed in broad-spectrum light used in this methodology makes it difficult to plan and monitor light dose, or compare to lamp light doses. METHODS The present study expands on the commonly used PpIX-weighted effective surface irradiance metric by introducing a Monte Carlo method for estimating effective fluence rates into depths of the skin. The fluence rates are compared between multiple broadband and narrowband sources that have been reported in previous studies, and an effective total fluence for various treatment times is reported. A dynamic estimate of PpIX concentration produced during pro-drug incubation and treatment is used with the fluence estimates to calculate a photodynamic dose. RESULTS Even when there is up to a 5x reduction between the effective surface irradiance of the broadband light sources, the effective fluence below 250 μm depth is predicted to be relatively equivalent. An effective threshold fluence value (0. 70Jeff/cm2) is introduced based on a meta-analysis of previously published ALA-PpIX induced cell death. This was combined with a threshold PpIX concentration (50 nM) to define a threshold photodynamic dose of 0.035 u M Jeff/cm2. CONCLUSIONS The threshold was used to generate lookup tables to prescribe minimal treatment times to achieve depth-dependent cytotoxic effect based on incubation times and irradiance values for each light source.
Collapse
Affiliation(s)
| | - Kayla Marra
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Robert E LeBlanc
- Department Pathology & Laboratory Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - M Shane Chapman
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| |
Collapse
|
8
|
Bekeschus S, Freund E, Wende K, Gandhirajan RK, Schmidt A. Hmox1 Upregulation Is a Mutual Marker in Human Tumor Cells Exposed to Physical Plasma-Derived Oxidants. Antioxidants (Basel) 2018; 7:E151. [PMID: 30373228 PMCID: PMC6262576 DOI: 10.3390/antiox7110151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Increasing numbers of cancer deaths worldwide demand for new treatment avenues. Cold physical plasma is a partially ionized gas expelling a variety of reactive oxygen and nitrogen species, which can be harnesses therapeutically. Plasmas and plasma-treated liquids have antitumor properties in vitro and in vivo. Yet, global response signatures to plasma treatment have not yet been identified. To this end, we screened eight human cancer cell lines to investigate effects of low-dose, tumor-static plasma-treated medium (PTM) on cellular activity, immune-modulatory properties, and transcriptional levels of 22 redox-related genes. With PTM, a moderate reduction of metabolic activity and modest modulation of chemokine/cytokine pattern and markers of immunogenic cell death was observed. Strikingly, the Nuclear factor (erythroid-derived 2)-like 2 (nrf2) target heme oxygenase 1 (hmox1) was upregulated in all cell lines 4 h post PTM-treatment. nrf2 was not changed, but its baseline expression inversely and significantly correlated with hmox1 expression after exposure to PTM. Besides awarding hmox1 a central role with plasma-derived oxidants, we present a transcriptional redox map of 22 targets and chemokine/cytokine secretion map of 13 targets across eight different human tumor cell lines of four tumor entities at baseline activity that are useful for future studies in this field.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Rajesh Kumar Gandhirajan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
9
|
A facile synthesis of formazan dyes conjugated with plasmonic nanoparticles as photosensitizers in photodynamic therapy against leukemia cell line. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2302-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Marra K, LaRochelle EP, Chapman MS, Hoopes PJ, Lukovits K, Maytin EV, Hasan T, Pogue BW. Comparison of Blue and White Lamp Light with Sunlight for Daylight-Mediated, 5-ALA Photodynamic Therapy, in vivo. Photochem Photobiol 2018; 94:1049-1057. [PMID: 29663426 DOI: 10.1111/php.12923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022]
Abstract
Daylight-mediated photodynamic therapy (d-PDT) as a treatment for actinic keratosis (AK) is an increasingly common technique due to a significant reduction in pain, leading to better patient tolerability. While past studies have looked at different light sources and delivery methods, this study strives to provide equivalent PpIX-weighted light doses with the hypothesis that artificial light sources could be equally as effective as natural sunlight if their PpIX-weighted fluences were equalized. Normal mouse skin was used as the model to compare blue LED light, metal halide white light and natural sunlight, with minimal incubation time between topical ALA application and the onset of light delivery. A total PpIX-weighted fluence of 20 Jeff cm-2 was delivered over 2 h, and the efficacy of response was quantified using three acute bioassays for PDT damage: PpIX photobleaching, Stat3 crosslinking and quantitative histopathology. These bioassays indicated blue light was slightly inferior to both sunlight and white light, but that the latter two were not significantly different. The results suggest that metal halide white light could be a reasonable alternative to daylight PDT, which should allow a more controlled treatment that is independent of weather and yet should have similar response rates with limited pain during treatment.
Collapse
Affiliation(s)
- Kayla Marra
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | | | - M Shane Chapman
- Department of Surgery, Geisel School of Medicine, Hanover, NH
| | - P Jack Hoopes
- Department of Surgery, Geisel School of Medicine, Hanover, NH
| | - Karina Lukovits
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - Edward V Maytin
- Department of Biomedical Engineering, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH.,Department of Surgery, Geisel School of Medicine, Hanover, NH
| |
Collapse
|