1
|
Bakun P, Wysocki M, Stachowiak M, Musielak M, Dlugaszewska J, Mlynarczyk DT, Sobotta L, Suchorska WM, Goslinski T. Quaternized Curcumin Derivative-Synthesis, Physicochemical Characteristics, and Photocytotoxicity, Including Antibacterial Activity after Irradiation with Blue Light. Molecules 2024; 29:4536. [PMID: 39407467 PMCID: PMC11478334 DOI: 10.3390/molecules29194536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115-melanoma, MRC-5-lung fibroblasts, and PHDF-primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.
Collapse
Affiliation(s)
- Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
| | - Marcin Wysocki
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Marika Musielak
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| |
Collapse
|
2
|
Lochenie C, Duncan S, Zhou Y, Fingerhut L, Kiang A, Benson S, Jiang G, Liu X, Mills B, Vendrell M. Photosensitizer-Amplified Antimicrobial Materials for Broad-Spectrum Ablation of Resistant Pathogens in Ocular Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404107. [PMID: 38762778 DOI: 10.1002/adma.202404107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Indexed: 05/20/2024]
Abstract
The emergence of multidrug resistant (MDR) pathogens and the scarcity of new potent antibiotics and antifungals are one of the biggest threats to human health. Antimicrobial photodynamic therapy (aPDT) combines light and photosensitizers to kill drug-resistant pathogens; however, there are limited materials that can effectively ablate different classes of infective pathogens. In the present work, a new class of benzodiazole-paired materials is designed as highly potent PDT agents with broad-spectrum antimicrobial activity upon illumination with nontoxic light. The results mechanistically demonstrate that the energy transfer and electron transfer between nonphotosensitive and photosensitive benzodiazole moieties embedded within pathogen-binding peptide sequences result in increased singlet oxygen generation and enhanced phototoxicity. Chemical optimization renders PEP3 as a novel PDT agent with remarkable activity against MDR bacteria and fungi as well as pathogens at different stages of development (e.g., biofilms, spores, and fungal hyphae), which also prove effective in an ex vivo porcine model of microbial keratitis. The chemical modularity of this strategy and its general compatibility with peptide-based targeting agents will accelerate the design of highly photosensitive materials for antimicrobial PDT.
Collapse
Affiliation(s)
- Charles Lochenie
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sheelagh Duncan
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Yanzi Zhou
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Leonie Fingerhut
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alex Kiang
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sam Benson
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Guanyu Jiang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Bethany Mills
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
3
|
Roa-Tort K, Saavedra Y, Villanueva-Martínez A, Ganem-Rondero A, Pérez-Carranza LA, de la Rosa-Vázquez JM, Ugalde-Femat G, Molina-Alejandre O, Becerril-Osnaya AA, Rivera-Fernández JD. In Vitro Antimicrobial Photodynamic Therapy for Pseudomonas aeruginosa ( P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) Inhibition Using a Green Light Source. Pharmaceutics 2024; 16:518. [PMID: 38675180 PMCID: PMC11053950 DOI: 10.3390/pharmaceutics16040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Photodynamic therapy (PDT) has been based on using photosensitizers (PS) and applying light of a specific wavelength. When this technique is used for treating infections, it is known as antimicrobial photodynamic therapy (aPDT). Currently, the use of lighting sources for in vitro studies using aPDT is generally applied in multiwell cell culture plates; however, depending on the lighting arrangement, there are usually errors in the application of the technique because the light from a well can affect the neighboring wells or it may be that not all the wells are used in the same experiment. In addition, one must be awarded high irradiance values, which can cause unwanted photothermal problems in the studies. Thus, this manuscript presents an in vitro antimicrobial photodynamic therapy for a Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) inhibition study using an arrangement of thermally isolated and independently illuminated green light source systems for eight tubes in vitro aPDT, determining the effect of the following factors: (i) irradiance level, (ii) exposure time, and (iii) Rose Bengal (RB) concentration (used as a PS), registering the Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) inhibition rates. The results show that in the dark, RB had a poor antimicrobial rate for P. aeruginosa, finding the maximum inhibition (2.7%) at 30 min with an RB concentration of 3 µg/mL. However, by applying light in a correct dosage (time × irradiance) and the adequate RB concentration, the inhibition rate increased by over 37%. In the case of MRSA, there was no significant inhibition with RB in complete darkness and, in contrast, the rate was 100% for those experiments that were irradiated.
Collapse
Affiliation(s)
- Karen Roa-Tort
- Laboratorio de Optomecatrónica, UPIIH, Instituto Politécnico Nacional, Distrito de Educación, Salud, Ciencia, Tecnología e Innovación, San Agustín Tlaxiaca 42162, Mexico;
| | - Yael Saavedra
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México 07738, Mexico; (Y.S.); (J.M.d.l.R.-V.); (G.U.-F.)
| | - Angélica Villanueva-Martínez
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (A.V.-M.); (A.G.-R.); (O.M.-A.)
| | - Adriana Ganem-Rondero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (A.V.-M.); (A.G.-R.); (O.M.-A.)
| | - Laura Abril Pérez-Carranza
- Laboratorio de Bacteriología Diagnóstica de la Sección de Ciencias de la Salud Humana (anexo al L-513, Campo1), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico;
| | - José M. de la Rosa-Vázquez
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México 07738, Mexico; (Y.S.); (J.M.d.l.R.-V.); (G.U.-F.)
| | - Gabriel Ugalde-Femat
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México 07738, Mexico; (Y.S.); (J.M.d.l.R.-V.); (G.U.-F.)
| | - Omar Molina-Alejandre
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (A.V.-M.); (A.G.-R.); (O.M.-A.)
| | - Andrea Angela Becerril-Osnaya
- Laboratorio de Bacteriología Diagnóstica de la Sección de Ciencias de la Salud Humana (anexo al L-513, Campo1), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico;
| | - Josué D. Rivera-Fernández
- Laboratorio de Optomecatrónica, UPIIH, Instituto Politécnico Nacional, Distrito de Educación, Salud, Ciencia, Tecnología e Innovación, San Agustín Tlaxiaca 42162, Mexico;
| |
Collapse
|
4
|
Vig S, Gaitan B, Frankle L, Chen Y, Elespuru R, Pfefer TJ, Huang HC. Test method for evaluating the photocytotoxic potential of fluorescence imaging products. Photochem Photobiol 2023. [PMID: 37496175 DOI: 10.1111/php.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Various fluorescence imaging agents are currently under clinical studies. Despite significant benefits, phototoxicity is a barrier to the clinical translation of fluorophores. Current regulatory guidelines on medication-based phototoxicity focus on skin effects during sun exposure. However, with systemic and local administration of fluorophores and targeted illumination, there is now possibility of photochemical damage to deeper tissues during intraoperative imaging procedures. Hence, independent knowledge regarding phototoxicity is required to facilitate the development of fluorescence imaging products. Previously, we studied a cell-free assay for initial screening of reactive molecular species generation from fluorophores. The current work addresses a safety test method based on cell viability as an adjunct and a comparator with the cell-free assay. Our goal is to modify and implement an approach based on the in vitro 3T3 neutral red uptake assay of the Organization for Economic Co-Operation and Development Test Guideline 432 (OECD TG432) to evaluate the photocytotoxicity of clinically relevant fluorophores. These included indocyanine green (ICG), proflavine, methylene blue (MB), and IRDye800, as well as control photosensitizers, benzoporphyrin derivative (BPD) and rose bengal (RB). We performed measurements at agent concentrations and illumination parameters used for clinic imaging. Our results aligned with prior studies, indicating photocytotoxicity in RB and BPD and an absence of reactivity for ICG and IRDye800. DNA interactive agents, proflavine and MB, exhibited drug/light dose-response curves like photosensitizers. This study provides evidence and insights into practices useful for testing the photochemical safety of fluorescence imaging products.
Collapse
Affiliation(s)
- Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Brandon Gaitan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lucas Frankle
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Yu Chen
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rosalie Elespuru
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Li Y, Sun G, Xie J, Xiao S, Lin C. Antimicrobial photodynamic therapy against oral biofilm: influencing factors, mechanisms, and combined actions with other strategies. Front Microbiol 2023; 14:1192955. [PMID: 37362926 PMCID: PMC10288113 DOI: 10.3389/fmicb.2023.1192955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Oral biofilms are a prominent cause of a wide variety of oral infectious diseases which are still considered as growing public health problems worldwide. Oral biofilms harbor specific virulence factors that would aggravate the infectious process and present resistance to some traditional therapies. Antimicrobial photodynamic therapy (aPDT) has been proposed as a potential approach to eliminate oral biofilms via in situ-generated reactive oxygen species. Although numerous types of research have investigated the effectiveness of aPDT, few review articles have listed the antimicrobial mechanisms of aPDT on oral biofilms and new methods to improve the efficiency of aPDT. The review aims to summarize the virulence factors of oral biofilms, the progress of aPDT in various oral biofilm elimination, the mechanism mediated by aPDT, and combinatorial approaches of aPDT with other traditional agents.
Collapse
Affiliation(s)
- Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Jingchan Xie
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
6
|
Anjani QK, Demartis S, Volpe-Zanutto F, Li H, Sabri AHB, Gavini E, Donnelly RF. Fluorescence-Coupled Techniques for Determining Rose Bengal in Dermatological Formulations and Their Application to Ex Vivo Skin Deposition Studies. Pharmaceutics 2023; 15:pharmaceutics15020408. [PMID: 36839730 PMCID: PMC9960589 DOI: 10.3390/pharmaceutics15020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rose Bengal (RB) is a fluorescent dye with several potential biomedical applications, particularly in dermatology. Due to RB's poor physicochemical properties, several advanced delivery systems have been developed as a potential tool to promote its permeation across the skin. Nevertheless, no validated quantitative method to analyse RB within the skin is described in the literature. Considering RB exhibits a conjugated ring system, the current investigation proposes fluorescence-based techniques beneficial for qualitatively and quantitatively determining RB delivered to the skin. Notably, the development and validation of a fluorescence-coupled HPLC method to quantify RB within the skin matrix are herein described for the first time. The method was validated based on the ICH, FDA and EMA guidelines, and the validated parameters included specificity, linearity, LOD, LLOQ, accuracy and precision, and carry-over and dilution integrity. Finally, the method was applied to evaluate RB's ex vivo permeation and deposition profiles when loaded into dermatological formulations. Concerning qualitative determination, multiphoton microscopy was used to track the RB distribution within the skin strata, and fluorescence emission spectra were investigated to evaluate RB's behaviour when interacting with different environments. The analytical method proved specific, precise, accurate and sensitive to analyse RB in the skin. In addition, qualitative side-analytical techniques were revealed to play an essential role in evaluating the performance of RB's dermatological formulation.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Sara Demartis
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Huanhuan Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| |
Collapse
|
7
|
Kuryanova AS, Savko MA, Kaplin VS, Aksenova NA, Timofeeva VA, Chernyak AV, Glagolev NN, Timashev PS, Solovieva AB. Effect of Chitosan and Amphiphilic Polymers on the Photosensitizing and Spectral Properties of Rose Bengal. Molecules 2022; 27:molecules27206796. [PMID: 36296390 PMCID: PMC9607003 DOI: 10.3390/molecules27206796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
The influence of chitosan (CS) and amphiphilic polymers (AP: pluronic F108 and polyvinylpyrrolidone (PVP)) on the photocatalytic activity of rose bengal (RB) in a model reaction of tryptophan photo-oxidation in phosphate-buffered saline (PBS) was studied. It was shown that in the presence of CS, the effective rate constant keff of tryptophan photo-oxidation catalyzed by RB in PBS solution decreases by a factor of two. This is due to the ionic interaction of the RB with the chitosan. Rose bengal in a slightly acidic environment (pH 4.5) passes into a neutral lactone form, which sharply reduces the photosensitizing properties of the dye. It was demonstrated that the introduction of AP into a solution containing RB and CS prevents direct interaction between RB and CS. This is evidenced by the presence of photocatalytic activity of the dye in the RB-AP-CS systems, as well as bathochromic shifts of the main absorption bands of the dye, and an increase in the optical density and luminescence intensity of the RB when AP is introduced into a buffer solution containing RB and chitosan. The presence of RB-CS and RB-AP interaction in aqueous and PBS media is confirmed by the increase in the degree of fluorescence anisotropy (r) of these binary systems. In an aqueous solution, the value of r for the RB-F108-CS system decreases by a factor of 3.5 (compared to the value of r for the RB-CS system), which is associated with the localization of the dye in pluronic micelles. In PBS, the fluorescence anisotropy is practically the same for all systems, which is related to the stability of the dye structure in this medium. The presence of interaction between RB and AP in aqueous solutions was confirmed by the proton NMR method. In addition, the formation of RB-F108 macromolecular complexes, which form associates during solution concentration (in particular, during evaporation), was shown by AFM. Such RB-AP-CS systems may be promising for practical application in the treatment of local foci of infections by aPDT.
Collapse
Affiliation(s)
- Anastasia S. Kuryanova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
- Correspondence:
| | - Marina A. Savko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
| | - Vladislav S. Kaplin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
| | - Nadezhda A. Aksenova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Trubetskaya St. 8-2, 119991 Moscow, Russia
| | - Victoria A. Timofeeva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
| | - Aleksandr V. Chernyak
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Ac. Semenov Avenue 1, 142432 Chernogolovka, Russia
| | - Nicolay N. Glagolev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
| | - Petr S. Timashev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Trubetskaya St. 8-2, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Trubetskaya St. 8-2, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| | - Anna B. Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia
| |
Collapse
|
8
|
Woźniak A, Burzyńska N, Zybała I, Empel J, Grinholc M. Priming effect with photoinactivation against extensively drug-resistant Enterobacter cloacae and Klebsiella pneumoniae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112554. [PMID: 36095975 DOI: 10.1016/j.jphotobiol.2022.112554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present antimicrobial blue light (aBL) and antimicrobial photoinactivation with green light in the presence of Rose Bengal (aPDI) to modulate the susceptibility of extensively drug-resistant (XDR) Enterobacter cloacae and Klebsiella pneumoniae clinical isolates to antimicrobials. This process can be considered a photodynamic priming tool that influences other therapeutic options, such as antibiotics. The current study evaluated the different environments to estimate the most effective priming conditions by testing a broad spectrum of antimicrobials (including antimicrobials with different targets and mechanisms of action). The susceptibility of the E. cloacae and K. pneumoniae clinical isolates to various antibiotics after aBL and green light (with rose bengal) as aPDI treatment was examined with multiple methods of synergy testing (e.g., diffusion methods, checkerboard assay, postantibiotic effect), and most effective photoinactivation conditions were implemented for each environment. When Enterobacteriaceae were exposed to aBL, the most efficient reduction in survival rate under TSB conditions was observed. Similar results were observed when rose bengal, as a photosensitizer, was present during the exposure to green light in PBS. aBL and aPDI led to an increased susceptibility of K. pneumoniae and E. cloacae isolates to chloramphenicol and colistin or fosfomycin and colistin antibiotics, respectively. However, among the 4 tested isolates, we observed synergies between different antimicrobial agents and photoinactivation conditions. Thus, it may suggest that the sensitization process may be considered a strain dependent priming tool.
Collapse
Affiliation(s)
- Agata Woźniak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Natalia Burzyńska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Izabela Zybała
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland.
| |
Collapse
|
9
|
Combination of photodynamic antimicrobial chemotherapy and ciprofloxacin to combat S. aureus and E. coli resistant biofilms. Photodiagnosis Photodyn Ther 2022; 42:103142. [PMID: 36191747 DOI: 10.1016/j.pdpdt.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) coupled with an antibiotic, ciprofloxacin (CIP), was investigated using two indium metallated cationic photosensitizers, a porphyrin (1) and a phthalocyanine (2). Applying PACT followed by the antibiotic treatment led to a remarkable reduction in the biofilm cell survival of two antibiotic-resistant bacterial strains, S. aureus (Gram-positive) and E. coli (Gram-nenative). Treating both bacteria strains with PACT alone showed no significant activity at 32 µM with 15 min irradiation, while CIP alone exhibited a minimum biofilm inhibition concentration (MBIC) at 4 and 8 µg/mL on S. aureus and E. coli, respectively following 24 h incubation. The combined treatment resulted in the complete eradication of the matured biofilms with high log10 reduction values of 7.05 and 7.20 on S. aureus and E. coli, respectively, at low concentrations. It was found that 15 min PACT irradiation of 8 µM of complexes (1 and 2) combined with 2 µg/mL of CIP have a 100% reduction of the resistant S. aureus biofilms. Whereas the total killing of E. coli was obtained when combining 8 µM of complex 1 and 16 µM of complex 2 both combined with 4 µg/mL of CIP.
Collapse
|
10
|
Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation. Life (Basel) 2022; 12:life12091383. [PMID: 36143419 PMCID: PMC9502678 DOI: 10.3390/life12091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.
Collapse
|
11
|
Lee YJ, Yi YC, Lin YC, Chen CC, Hung JH, Lin JY, Ng IS. Purification and biofabrication of 5-aminolevulinic acid for photodynamic therapy against pathogens and cancer cells. BIORESOUR BIOPROCESS 2022; 9:68. [PMID: 38647835 PMCID: PMC10992327 DOI: 10.1186/s40643-022-00557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid which has involved in heme metabolism of organisms, and has been widely applied in agriculture, and medical fields nowadays. 5-ALA is used in the elimination of pathogens or cancer cells by photodynamic therapy (PDT) owing to the photosensitizer reaction which releases the reactive oxygen species (ROS). Currently, biofabrication of 5-ALA is regarded as the most efficient and eco-friendly approach, but the complicated ingredient of medium causes the nuisance process of purification, resulting in low recovery and high producing cost. In this study, hydrogen chloride, sodium acetate, and ammonia were examined to maximize the recovery of 5-ALA from ion-exchange chromatography (IEC), thus a 92% recovery in 1 M ammonia at pH 9.5 was obtained. Afterward, the activated carbon was used for decolorization to further remove the pigments from the eluent. Four organic solvents, i.e., diethyl ether, methanol, ethanol, and acetone were compared to extract and form 5-ALA precipitation. The purified 5-ALA was verified to eliminate 74% of A549 human lung cancer and 83% of A375 melanoma skin cancer cell. Moreover, Proteus hauseri, Aeromonas hydrophila, Bacillus cereus, and Staphylococcus aureus were killed via anti-microbial PDT with 1% 5-ALA and reached 100% killing rate at optimal condition. With the addition of 0.05% 5-ALA during the culture, the growth of microalgae Chlorella sorokiniana was improved to against a common aquatic pathogen, A. hydrophila. The broad application of 5-ALA was demonstrated in this study for the first time.
Collapse
Affiliation(s)
- Yen-Ju Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chung Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Horung Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Gaitan B, Frankel L, Vig S, Oskoui E, Adwan M, Chen Y, Elespuru R, Huang HC, Pfefer TJ. Quantifying the Photochemical Damage Potential of Contrast-Enhanced Fluorescence Imaging Products: Singlet Oxygen Production. Photochem Photobiol 2022; 98:736-747. [PMID: 35442536 PMCID: PMC9540578 DOI: 10.1111/php.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The benefits of contrast‐enhancing imaging probes have become apparent over the past decade. However, there is a gap in the literature when it comes to the assessment of the phototoxic potential of imaging probes and systems emitting visible and/or near‐infrared radiation. The primary mechanism of fluorescent agent phototoxicity is thought to involve the production of reactive molecular species (RMS), yet little has been published on the best practices for safety evaluation of RMS production levels for clinical products. We have proposed methods involving a cell‐free assay to quantify singlet oxygen [(SO) a known RMS] generation of imaging probes, and performed testing of Indocyanine Green (ICG), Proflavine, Methylene Blue, IR700 and IR800 at clinically relevant concentrations and radiant exposures. Results indicated that SO production from IR800 and ICG were more than two orders of magnitude below that of the known SO generator Rose Bengal. Methylene Blue and IR700 produced much higher SO levels than ICG and IR800. These results were in good agreement with data from the literature. While agents that exhibit spectral overlap with the assay may be more prone to errors, our tests for one of these agents (Proflavine) appeared robust. Overall, our results indicate that this methodology shows promise for assessing the phototoxic potential of fluorophores due to SO production.
Collapse
Affiliation(s)
- Brandon Gaitan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Lucas Frankel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ellen Oskoui
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| | - Miriam Adwan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Yu Chen
- Department of Biomedical Engineering, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| | - Huang Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - T Joshua Pfefer
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| |
Collapse
|
13
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Kurosu M, Mitachi K, Yang J, Pershing EV, Horowitz BD, Wachter EA, Lacey JW, Ji Y, Rodrigues DJ. Antibacterial Activity of Pharmaceutical-Grade Rose Bengal: An Application of a Synthetic Dye in Antibacterial Therapies. Molecules 2022; 27:322. [PMID: 35011554 PMCID: PMC8746496 DOI: 10.3390/molecules27010322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/27/2022] Open
Abstract
Rose bengal has been used in the diagnosis of ophthalmic disorders and liver function, and has been studied for the treatment of solid tumor cancers. To date, the antibacterial activity of rose bengal has been sporadically reported; however, these data have been generated with a commercial grade of rose bengal, which contains major uncontrolled impurities generated by the manufacturing process (80-95% dye content). A high-purity form of rose bengal formulation (HP-RBf, >99.5% dye content) kills a battery of Gram-positive bacteria, including drug-resistant strains at low concentrations (0.01-3.13 μg/mL) under fluorescent, LED, and natural light in a few minutes. Significantly, HP-RBf effectively eradicates Gram-positive bacterial biofilms. The frequency that Gram-positive bacteria spontaneously developed resistance to HP-RB is extremely low (less than 1 × 10-13). Toxicity data obtained through our research programs indicate that HP-RB is feasible as an anti-infective drug for the treatment of skin and soft tissue infections (SSTIs) involving multidrug-resistant (MDR) microbial invasion of the skin, and for eradicating biofilms. This article summarizes the antibacterial activity of pharmaceutical-grade rose bengal, HP-RB, against Gram-positive bacteria, its cytotoxicity against skin cells under illumination conditions, and mechanistic insights into rose bengal's bactericidal activity under dark conditions.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA;
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA;
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA; (J.Y.); (Y.J.)
| | - Edward V. Pershing
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Bruce D. Horowitz
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Eric A. Wachter
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - John W. Lacey
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA; (J.Y.); (Y.J.)
| | - Dominic J. Rodrigues
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| |
Collapse
|
15
|
Feng Y, Coradi Tonon C, Ashraf S, Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv Drug Deliv Rev 2021; 177:113941. [PMID: 34419503 DOI: 10.1016/j.addr.2021.113941] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment, the mainstay for the control of bacterial infections, is greatly hampered by the global prevalence of multidrug-resistant (MDR) bacteria. Photodynamic therapy (PDT) is effective against MDR infections, but PDT-induced bacterial inactivation is often incomplete, causing the relapse of infections. Combination of PDT and antibiotics is a promising strategy to overcome the limitation of both antibiotic treatment and PDT, exerting increased disinfection efficacy on MDR bacterial pathogens versus either of the monotherapies alone. In this review, we present an overview of the therapeutic effects of PDT/antibiotic combinations that have been developed. We further summarize the influencing factors and the governing molecular mechanisms of the therapeutic outcomes of PDT/antibiotic combinations. In the end, we provide concluding remarks on the strengths, limitations, and future research directions of PDT/antibiotic combination therapy to guide its appropriate usage and further development.
Collapse
Affiliation(s)
- Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Health Sciences and Technology (Harvard-MIT), Cambridge, MA, USA.
| |
Collapse
|
16
|
Pieranski MK, Rychlowski M, Grinholc M. Optimization of Streptococcus agalactiae Biofilm Culture in a Continuous Flow System for Photoinactivation Studies. Pathogens 2021; 10:1212. [PMID: 34578244 PMCID: PMC8465167 DOI: 10.3390/pathogens10091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus agalactiae is a relevant cause of neonatal mortality. It can be transferred to infants via the vaginal tract and cause meningitis, pneumonia, arthritis, or sepsis, among other diseases. The cause of therapy ineffectiveness and infection recurrence is the growth of bacteria as biofilms. To date, several research teams have attempted to find a suitable medium for the cultivation of S. agalactiae biofilms. Among others, simulated vaginal fluid has been used; however, biofilm production in this medium has been found to be lower than that in tryptic soy broth. We have previously shown that S. agalactiae can be successfully eradicated by photoinactivation in planktonic culture, but there have been no studies on biofilms. The aim of this study was to optimize S. agalactiae biofilm culture conditions to be used in photoinactivation studies. We compared biofilm production by four strains representing the most common serotypes in four different broth media with crystal violet staining. Then, we evaluated stationary biofilm culture in microtiter plates and biofilm growth in a CDC Biofilm Reactor® (BioSurface Technologies, Bozeman, MT, USA) under continuous flow conditions. Subsequently, we applied Rose Bengal-mediated photoinactivation to both biofilm models. We have shown that photoinactivation is efficient in biofilm eradication and is not cyto/phototoxic to human keratinocytes. We found conditions allowing for stable and repetitive S. agalactiae biofilm growth in continuous flow conditions, which can be successfully utilized in photoinactivation assays and potentially in all other antibacterial studies.
Collapse
Affiliation(s)
- Michal K. Pieranski
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| |
Collapse
|
17
|
Sonophotodynamic Inactivation: The power of light and ultrasound in the battle against microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
In Vitro Effect of Photodynamic Therapy with Different Lights and Combined or Uncombined with Chlorhexidine on Candida spp. Pharmaceutics 2021; 13:pharmaceutics13081176. [PMID: 34452140 PMCID: PMC8398142 DOI: 10.3390/pharmaceutics13081176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Candidiasis is very common and complicated to treat in some cases due to increased resistance to antifungals. Antimicrobial photodynamic therapy (aPDT) is a promising alternative treatment. It is based on the principle that light of a specific wavelength activates a photosensitizer molecule resulting in the generation of reactive oxygen species that are able to kill pathogens. The aim here is the in vitro photoinactivation of three strains of Candida spp., Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258, using aPDT with different sources of irradiation and the photosensitizer methylene blue (MB), alone or in combination with chlorhexidine (CHX). Irradiation was carried out at a fluence of 18 J/cm2 with a light-emitting diode (LED) lamp emitting in red (625 nm) or a white metal halide lamp (WMH) that emits at broad-spectrum white light (420–700 nm). After the photodynamic treatment, the antimicrobial effect is evaluated by counting colony forming units (CFU). MB-aPDT produces a 6 log10 reduction in the number of CFU/100 μL of Candida spp., and the combination with CHX enhances the effect of photoinactivation (effect achieved with lower concentration of MB). Both lamps have similar efficiencies, but the WMH lamp is slightly more efficient. This work opens the doors to a possible clinical application of the combination for resistant or persistent forms of Candida infections.
Collapse
|
19
|
Photodynamic Therapy Combined with Antibiotics or Antifungals against Microorganisms That Cause Skin and Soft Tissue Infections: A Planktonic and Biofilm Approach to Overcome Resistances. Pharmaceuticals (Basel) 2021; 14:ph14070603. [PMID: 34201530 PMCID: PMC8308592 DOI: 10.3390/ph14070603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it could make the selection of resistant microorganisms more difficult.
Collapse
|
20
|
Hemmati F, Rezaee MA, Ebrahimzadeh S, Yousefi L, Nouri R, Kafil HS, Gholizadeh P. Novel Strategies to Combat Bacterial Biofilms. Mol Biotechnol 2021; 63:569-586. [PMID: 33914260 DOI: 10.1007/s12033-021-00325-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Biofilms are considered as a severe problem in the treatment of bacterial infections; their development causes some noticeable resistance to antibacterial agents. Biofilms are responsible for at least two-thirds of all infections, displaying promoted resistance to classical antibiotic treatments. Therefore, finding new alternative therapeutic approaches is essential for the treatment and inhibition of biofilm-related infections. Therefore, this review aims to describe the potential therapeutic strategies that can inhibit bacterial biofilm development; these include the usage of antiadhesion agents, AMPs, bacteriophages, QSIs, aptamers, NPs and PNAs, which can prevent or eradicate the formation of biofilms. These antibiofilm agents represent a promising therapeutic target in the treatment of biofilm infections and development of a strong capability to interfere with different phases of the biofilm development, including adherence, polysaccharide intercellular adhesion (PIA), quorum sensing molecules and cell-to-cell connection, bacterial aggregation, planktonic bacteria killing and host-immune response modulation. In addition, these components, in combination with antibiotics, can lead to the development of some kind of powerful combined therapy against bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Ebrahimzadeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Leila Yousefi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Pérez C, Zúñiga T, Palavecino CE. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther 2021; 34:102285. [PMID: 33836278 DOI: 10.1016/j.pdpdt.2021.102285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive spherical bacterium that commonly causes various infections which can range from superficial to life-threatening. Hospital strains of S. aureus are often resistant to antibiotics, which has made their treatment difficult in recent decades. Other therapeutic alternatives have been postulated to overcome the drawbacks of antibiotic multi-resistance. Of these, photodynamic therapy (PDT) is a promising approach to address the notable shortage of new active antibiotics against multidrug-resistant S. aureus. PDT combines the use of a photosensitizer agent, light, and oxygen to eradicate pathogenic microorganisms. Through a systematic analysis of published results, this work aims to verify the usefulness of applying PDT in treating multidrug-resistant S.aureus infections. METHODS This review was based on a bibliographic search in various databases and the analysis of relevant publications. RESULTS There is currently a large body of evidence demonstrating the efficacy of photodynamic therapy in eliminating S.aureus strains. Both biofilm-producing strains, as well as multidrug-resistant strains. CONCLUSION We conclude that there is sufficient scientific evidence that PDT is a useful adjunct to traditional antibiotic therapy for treating S. aureus infections. Clinical application through appropriate trials should be introduced to further define optimal treatment protocols, safety and efficay.
Collapse
Affiliation(s)
- Camila Pérez
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Tania Zúñiga
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|
22
|
Ogonowska P, Gilaberte Y, Barańska-Rybak W, Nakonieczna J. Colonization With Staphylococcus aureus in Atopic Dermatitis Patients: Attempts to Reveal the Unknown. Front Microbiol 2021; 11:567090. [PMID: 33505363 PMCID: PMC7830525 DOI: 10.3389/fmicb.2020.567090] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) patients are massively colonized with Staphylococcus aureus (S. aureus) in lesional and non-lesional skin. A skin infection may become systemic if left untreated. Of interest, the incidence of multi-drug resistant S. aureus (MRSA) in AD patients is higher as compared to a healthy population, which makes treatment even more challenging. Information on the specific genetic background of S. aureus accompanying and/or causing AD flares would be of great importance in terms of possible treatment option development. In this review, we summarized the data on the prevalence of S. aureus in general in AD skin, and the prevalence of specific clones that might be associated with flares of eczema. We put our special interest in the presence and role of staphylococcal enterotoxins as important virulence factors in the epidemiology of AD-derived S. aureus. Also, we summarize the present and potentially useful future anti-staphylococcal treatment.
Collapse
Affiliation(s)
- Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Yolanda Gilaberte
- Department of Dermatology, University Hospital Miguel Servet, Zaragoza, Spain
| | - Wioletta Barańska-Rybak
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
23
|
López-López N, Muñoz Resta I, de Llanos R, Miravet JF, Mikhaylov M, Sokolov MN, Ballesta S, García-Luque I, Galindo F. Photodynamic Inactivation of Staphylococcus aureus Biofilms Using a Hexanuclear Molybdenum Complex Embedded in Transparent polyHEMA Hydrogels. ACS Biomater Sci Eng 2020; 6:6995-7003. [DOI: 10.1021/acsbiomaterials.0c00992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Noelia López-López
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Ignacio Muñoz Resta
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F. Miravet
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Maxim Mikhaylov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Sofía Ballesta
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel García-Luque
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Galindo
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
24
|
Klausen M, Ucuncu M, Bradley M. Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy. Molecules 2020; 25:E5239. [PMID: 33182751 PMCID: PMC7696090 DOI: 10.3390/molecules25225239] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Photodynamic inactivation of microorganisms has gained substantial attention due to its unique mode of action, in which pathogens are unable to generate resistance, and due to the fact that it can be applied in a minimally invasive manner. In photodynamic therapy (PDT), a non-toxic photosensitizer (PS) is activated by a specific wavelength of light and generates highly cytotoxic reactive oxygen species (ROS) such as superoxide (O2-, type-I mechanism) or singlet oxygen (1O2*, type-II mechanism). Although it offers many advantages over conventional treatment methods, ROS-mediated microbial killing is often faced with the issues of accessibility, poor selectivity and off-target damage. Thus, several strategies have been employed to develop target-specific antimicrobial PDT (aPDT). This includes conjugation of known PS building-blocks to either non-specific cationic moieties or target-specific antibiotics and antimicrobial peptides, or combining them with targeting nanomaterials. In this review, we summarise these general strategies and related challenges, and highlight recent developments in targeted aPDT.
Collapse
Affiliation(s)
- Maxime Klausen
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| | - Muhammed Ucuncu
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Mark Bradley
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| |
Collapse
|
25
|
Hemmati F, Salehi R, Ghotaslou R, Kafil HS, Hasani A, Gholizadeh P, Rezaee MA. The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Biol Macromol 2020; 163:2248-2258. [DOI: 10.1016/j.ijbiomac.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
26
|
Del Valle CA, Pérez-Laguna V, Resta IM, Gavara R, Felip-León C, Miravet JF, Rezusta A, Galindo F. A cost-effective combination of Rose Bengal and off-the-shelf cationic polystyrene for the photodynamic inactivation of Pseudomonas aeruginosa. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111302. [PMID: 32919663 DOI: 10.1016/j.msec.2020.111302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
Abstract
Two new photoactive materials have been prepared, characterized and tested against Pseudomonas aeruginosa bacteria (planktonic suspension). The synthesis of the polymeric photosensitizers can be made at a multigram scale, in few minutes, starting from inexpensive and readily available materials, such as Rose Bengal (photosensitizer) and ion exchange resins Amberlite® IRA 900 (macroporous) or IRA 400 (gel-type) as cationic polystyrene supports. The most notable feature of these systems is their notable bactericidal activity in the dark (4-5 log10 CFU/mL reduction of the population of P. aeruginosa) which becomes enhanced upon irradiation with visible light (to reach a total reduction of 8 log10 CFU/mL for the macroporous polymer at a fluence of 120 J/cm2 using green light of 515 nm).
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Vanesa Pérez-Laguna
- Departamento de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Ignacio Muñoz Resta
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Raquel Gavara
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Carles Felip-León
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F Miravet
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Antonio Rezusta
- Departamento de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain.
| | - Francisco Galindo
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
27
|
Pérez-Laguna V, García-Luque I, Ballesta S, Pérez-Artiaga L, Lampaya-Pérez V, Rezusta A, Gilaberte Y. Photodynamic therapy using methylene blue, combined or not with gentamicin, against Staphylococcus aureus and Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2020; 31:101810. [PMID: 32437976 DOI: 10.1016/j.pdpdt.2020.101810] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/03/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022]
Abstract
Antimicrobial photodynamic therapy (a-PDT), combined or not with antibiotics, constitutes a promising therapy for superficial infections caused by bacteria implicated in multidrug resistance processes. We compared the efficacy of aPDT using the photosensitizer methylene blue (MB), combined or not with the antibiotic gentamicin (GN), against Staphylococcus aureus and Pseudomonas aeruginosa. Different concentrations of MB (0.03-7000 μg/mL), with or without GN (1-20 μg/mL), were added to planktonic cultures or biofilms and the samples irradiated with a LED lamp (λ 625 nm, 7 mW/cm2, 18 J/cm2). The number of viable bacteria in the samples and in corresponding nonirradiated controls was quantified by counting colony-forming units to evaluate the individual effects of MB, GN, and irradiation. MB-aPDT resulted in significant bacterial photoinactivation. The combination of GN and MB-aPDT exerted a synergistic bactericidal effect against planktonic cultures of S. aureus and P. aeruginosa. This combination did not significantly alter the photoinactivating effect of MB against S. aureus biofilms, but exerted a positive bactericidal effect against P. aeruginosa biofilms. These results underscore the need for further clinical studies of this therapeutic combination for the management of difficult-to-treat skin and mucous infections, especially those caused by P. aeruginosa.
Collapse
Affiliation(s)
| | - Isabel García-Luque
- Department of Microbiology, School of Medicine, University of Sevilla, Sevilla, Spain
| | - Sofía Ballesta
- Department of Microbiology, School of Medicine, University of Sevilla, Sevilla, Spain
| | - Luna Pérez-Artiaga
- Department of Microbiology, Miguel Servet University Hospital, Zaragoza, Spain
| | | | - Antonio Rezusta
- IIS Aragón, Zaragoza, Spain; Department of Microbiology, Miguel Servet University Hospital, Zaragoza, Spain; Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Spain
| | - Yolanda Gilaberte
- IIS Aragón, Zaragoza, Spain; Department of Dermatology, Miguel Servet University Hospital, Zaragoza, Spain
| |
Collapse
|
28
|
Liu S, Mai B, Jia M, Lin D, Zhang J, Liu Q, Wang P. Synergistic antimicrobial effects of photodynamic antimicrobial chemotherapy and gentamicin on Staphylococcus aureus and multidrug-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 30:101703. [PMID: 32151763 DOI: 10.1016/j.pdpdt.2020.101703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bacterial resistance to antibiotics is generally increasing, which has become a great challenge for treating infectious diseases caused by microbes. Photodynamic antibacterial chemotherapy (PACT) has been considered as a promising method for inactivating bacteria. The combination of antimicrobial agent with PACT may provide efficient way against drug-resistant microbe. This study aims to investigate the synergistic effects of PACT mediated by toluidine blue (TB), combined with gentamicin (GEN) on common pathogens Staphylococcus aureus (S. aureus) and multidrug-resistant S. aureus (MDR S. aureus). METHODS Alkaline lysis was used to detect the uptake of TB by S. aureus and MDR S. aureus. Plate counting was applied to evaluate the inhibition efficiency of GEN alone, TB-PACT alone, and work together. Flow cytometry and fluorescence microscopy were performed to examine the permeability of bacterial membranes after different treatments. Intracellular and extracellular reactive oxygen species (ROS) were assessed with the assist of H2DCF-DA and SOSG probes. RESULTS TB-PACT combined with GEN led to more pronounced antibacterial effects in S. aureus and MDR S. aureus, as compared with either alone. TB-PACT treatment permeabilized the bacterial membranes, promoted GEN cellular accumulation and augmented the antibacterial efficiency. The intracellular ROS generation by the combination of TB-PACT and GEN was much higher than that of single treatment groups. CONCLUSIONS TB-PACT decreased the GEN cytotoxic threshold and usage, and the synergy of them significantly enhanced the sterilization of S. aureus and MDR S. aureus.
Collapse
Affiliation(s)
- Shupei Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bingjie Mai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Mengqi Jia
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Dewu Lin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingdan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
29
|
Costa Magacho C, Guerra Pinto J, Müller Nunes Souza B, Correia Pereira AH, Ferreira-Strixino J. Comparison of photodynamic therapy with methylene blue associated with ceftriaxone in gram-negative bacteria; an in vitro study. Photodiagnosis Photodyn Ther 2020; 30:101691. [PMID: 32109621 DOI: 10.1016/j.pdpdt.2020.101691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
The resistance of microorganisms increases the need for new antimicrobial therapies. The aim of this study was to evaluate the in vitro action of photodynamic therapy and its combination with ceftriaxone in third generation cephalosporin resistant gram-negative bacteria. Clinical strains of Klebsiella pneumoniae, Enterobacter aerogenes and Escherichia coli were obtained, incubated with MB for 15 min combined or not with ceftriaxone and irradiated with fluence of 10 and 25 J/cm². MB internalization was evaluated by confocal microscopy. Cell viability was assessed by counting colony forming units and bacterian metabolism by the resazurin test. MB has been observed within cells, although not in all bacteria. PDT-MB alone and combined with Ceftriaxone reduced bacterial growth by approximately 1 log at 10 J/cm² of fluence and 4 logs by 25 J/cm², with a significant difference from the control group. The reduction in bacterial growth between the treated groups was similar, without significant difference between them. The Resazurin test showed lower bacterial metabolic activity in the treated groups, but it did not allow to observe difference between fluences. It was concluded with this study that the internalization of MB was not observed in all cells of K. pneumoniae, E. aerogenes and E. coli strains. There was less bacterial metabolic activity in the treated groups, with no variation between different fluences. PDT-MB 25 J/cm² alone and combined with Ceftriaxone showed antimicrobial action, but the PDT-MB/Ceftriaxone combination had no potentiating effect.
Collapse
Affiliation(s)
- Christiane Costa Magacho
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Beatriz Müller Nunes Souza
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - André Henrique Correia Pereira
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
30
|
Nieves I, Hally C, Viappiani C, Agut M, Nonell S. A porphycene-gentamicin conjugate for enhanced photodynamic inactivation of bacteria. Bioorg Chem 2020; 97:103661. [PMID: 32086054 DOI: 10.1016/j.bioorg.2020.103661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
A novel photoantimicrobial agent, namely 2-aminothiazolo[4,5-c]-2,7,12,17-tetrakis(methoxyethyl)porphycene (ATAZTMPo-gentamicin) conjugate, has been prepared by a click reaction between the red-light absorbing 9-isothiocyanate-2,7,12,17-tetrakis(methoxyethyl)porphycene (9-ITMPo) and the antibiotic gentamicin. The conjugate exhibits submicromolar activity in vitro against both Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) upon exposure to red light and is devoid of any cytotoxicity in the dark. The conjugate outperforms the two components delivered separately, which may be used to enhance the therapeutic index of gentamicin, broaden the spectrum of pathogens against which it is effective and reduce its side effects. Additionally, we report a novel straightforward synthesis of 2,7,12,17-tetrakis(methoxyethyl) porphycene (TMPo) that decreases the number of steps from nine to six.
Collapse
Affiliation(s)
- Ingrid Nieves
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Dipartamento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartamento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
31
|
Santos AR, Silva AF, Freitas CF, Silva MV, Bona E, Nakamura CV, Hioka N, Mikcha JMG. Response surface methodology can be used to predict photoinactivation of foodborne pathogens using Rose Bengal excited by 530 nm LED. J Food Saf 2019. [DOI: 10.1111/jfs.12736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adriele R. Santos
- Programa de Pós‐Graduação em Ciência de AlimentosUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Alex F. Silva
- Programa de Pós‐Graduação em Ciência da SaúdeUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Camila F. Freitas
- Programa de Pós‐Graduação em QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Marcos V. Silva
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha Alegrete, Rio Grande do Sul Brazil
| | - Evandro Bona
- Departamento de AlimentosUniversidade Tecnológica Federal do Paraná—campus Campo Mourão Campo Mourão Puerto Rico Brazil
| | - Celso V. Nakamura
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Noboru Hioka
- Departamento de QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Jane M. G. Mikcha
- Departamento de Análises Clínicas e BiomedicinaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| |
Collapse
|
32
|
Kart D, Kuştimur AS. Investigation of Gelatinase Gene Expression and Growth of Enterococcus faecalis Clinical Isolates in Biofilm Models. Turk J Pharm Sci 2019; 16:356-361. [PMID: 32454735 DOI: 10.4274/tjps.galenos.2018.69783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/21/2018] [Indexed: 12/01/2022]
Abstract
Objectives Enterococcus faecalis is the major reason for biofilm-related infections and it also interacts with Staphylococcus aureus in biofilms. Gelatinase (gelE) enzyme is an important virulence factor of E. faecalis for biofilm formation. This study aimed to compare the biofilm producing E. faecalis isolates from urine and urinary catheters. The influence of S. aureus on the growth of E. faecalis biofilm cells was also investigated in a dual biofilm model in vitro. Another aim was to evaluate E. faecalis gelE gene expression during biofilm formation. Materials and Methods Firstly, crystal violet staining was used to measure the total biofilm biomass of the isolates. Secondly, plate counting was performed to determine the biofilm formation ability of E. faecalis isolates and the effect of S. aureus on E. faecalis biofilm formation. Finally, the gelE expression profile of the isolates was assessed by quantitative real time-polymerase chain reaction. Results According to crystal violet staining and plate counting, all E. faecalis isolates were biofilm producers and the number of E. faecalis sessile cells increased in the presence of S. aureus. Among the 21 E. faecalis isolates, ten expressed high levels of the gelE gene, while eight of them had low expression profiles (p<0.05). Conclusion When they grow together, S. aureus may give some advantages to E. faecalis such as increasing sessile cell growth. The expression of the gelE gene was not affected by E. faecalis biofilm formation of the isolates collected from the patients with urinary tract infections.
Collapse
Affiliation(s)
- Didem Kart
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ankara, Turkey
| | - Ayşe Semra Kuştimur
- Gazi University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| |
Collapse
|
33
|
Kim HS, Cha EJ, Kang HJ, Park JH, Lee J, Park HD. Antibacterial application of covalently immobilized photosensitizers on a surface. ENVIRONMENTAL RESEARCH 2019; 172:34-42. [PMID: 30769187 DOI: 10.1016/j.envres.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Singlet oxygen produced by irradiating photosensitizers (PSs) can be used to kill pathogens during water treatment. Chemical immobilization of the PSs on surfaces can maintain their disinfection function long-term. In this study, two model PSs (rose bengal (RB) and hematoporphyrin (HP)) were immobilized on a glass surface using a silane coupling agent with an epoxide group, and their antibacterial properties were analyzed. Fourier transform infrared spectroscopy demonstrated that a covalent bond formed between the epoxide group and hydroxyl group in the PSs. A large proportion of the immobilized PSs (approximately 50%) was active in singlet oxygen production, which was evidenced by a comparative analysis with free PSs. RB was more effective at producing singlet oxygen than HP. The immobilized PSs were durable in terms of repeated use. On the other hand, singlet oxygen produced by the PSs was effective at killing bacteria, mostly for Gram-positive bacteria (> 90% death for 2 h of irradiation), by damaging the cell membrane. The preferable antibacterial property against Gram-positive bacteria compared with that against Gram-negative bacteria suggested efficient penetrability of singlet oxygen across the cell membrane, which led to cell death. Taken together, it was concluded that immobilization of PSs on surfaces using the silane coupling agent proposed in this study was effective at killing Gram-positive bacteria by forming singlet oxygen.
Collapse
Affiliation(s)
- Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Eun Ji Cha
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jaesang Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
| |
Collapse
|
34
|
Silva AF, Santos AR, Trevisan DAC, Bonin E, Freitas CF, Batista AFP, Hioka N, Simões M, Graton Mikcha JM. Xanthene Dyes and Green
LED
for the Inactivation of Foodborne Pathogens in Planktonic and Biofilm States. Photochem Photobiol 2019; 95:1230-1238. [DOI: 10.1111/php.13104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Alex Fiori Silva
- Department of Clinical Analysis and Biomedicine State University of Maringá Maringá, Paraná Brazil
| | - Adriele Rodrigues Santos
- Department of Clinical Analysis and Biomedicine State University of Maringá Maringá, Paraná Brazil
| | | | - Edineia Bonin
- Department of Clinical Analysis and Biomedicine State University of Maringá Maringá, Paraná Brazil
| | | | | | - Noboru Hioka
- Department of Chemistry State University of Maringa Maringá Brazil
| | - Manuel Simões
- LEPABE Department of Chemical Engineering Faculty of Engineering University of Porto Porto Portugal
| | | |
Collapse
|
35
|
Abstract
Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
Collapse
|
36
|
Vt A, Paramanantham P, Sb SL, Sharan A, Alsaedi MH, Dawoud TMS, Asad S, Busi S. Antimicrobial photodynamic activity of rose bengal conjugated multi walled carbon nanotubes against planktonic cells and biofilm of Escherichia coli. Photodiagnosis Photodyn Ther 2018; 24:300-310. [PMID: 30342101 DOI: 10.1016/j.pdpdt.2018.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The global threat of antimicrobial resistance especially due to the bacterial biofilms has engaged researchers in the search of new treatment modalities. Antimicrobial photodynamic inactivation (aPDI) is one of the alternative treatment modalities which kills bacteria by generating endogenous reactive oxygen species (ROS). In this work authors evaluated the antibacterial and antibiofilm efficacy of rose Bengal (RB) conjugated to CNT against E. coli. METHODS The interaction of anionic dye to the CNT was studied using UV-vis spectroscopy, HRTEM, FTIR and spectrofluorometry. Phototoxicity of RBCNT conjugate against E. coli was studied using a green light of 50 mW and radiant exposure of 1674.7 J/ cm2 for 10 min. The antibiofilm activity and mechanism of action of RBCNT conjugate in presence of light was evaluated. RESULTS The loading and encapsulation was found to be 15.46 ± 1.05 and 61.85 ± 4.23% respectively. The photodynamic inactivation of planktonic cells of E. coli was found to 5.46 and 3.56 log10 CFU/ml reduction on treatment with RBCNT and RB respectively. The conjugate also exhibited efficient and enhanced antibiofilm activity against E. coli. The study of mechanism of action has confirmed cell membrane and DNA damage were the two main targets of aPDI. CONCLUSION This report has concluded the efficient photodynamic inactivation occurred in Gram negative bacteria E. coli due to the increased production of ROS inside the bacterial cells. Hence, the newly synthesized RBCNT conjugate can be efficiently utilized to control infections caused by E. coli.
Collapse
Affiliation(s)
- Anju Vt
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Parasuraman Paramanantham
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Sruthil Lal Sb
- Department of Physics, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry, 605014, India
| | - Alok Sharan
- Department of Physics, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry, 605014, India
| | - Marzouq H Alsaedi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Turki M S Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Syed Asad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
37
|
Wozniak A, Grinholc M. Combined Antimicrobial Activity of Photodynamic Inactivation and Antimicrobials-State of the Art. Front Microbiol 2018; 9:930. [PMID: 29867839 PMCID: PMC5952179 DOI: 10.3389/fmicb.2018.00930] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a promising tool for the eradication of life-threatening pathogens with different profiles of resistance. This study presents the state-of-the-art published studies that have been dedicated to analyzing the bactericidal effects of combining aPDI and routinely applied antibiotics in in vitro (using biofilm and planktonic cultures) and in vivo experiments. Furthermore, the current paper reviews the methodology used to obtain the published data that describes the synergy between these antimicrobial approaches. The authors are convinced that even though the combined efficacy of aPDI and antimicrobials could be investigated with the wide range of methods, the use of a unified experimental methodology that is in agreement with antimicrobial susceptibility testing (AST) is required to investigate possible synergistic cooperation between aPDI and antimicrobials. Conclusions concerning the possible synergistic activity between the two treatments can be drawn only when appropriate assays are employed. It must be noticed that some of the described papers were just aimed at determination if combined treatments exert enhanced antibacterial outcome, without following the standard methodology to evaluate the synergistic effect, but in most of them (18 out of 27) authors indicated the existence of synergy between described antibacterial approaches. In general, the increase in bacterial inactivation was observed when both therapies were used in combination.
Collapse
Affiliation(s)
- Agata Wozniak
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
38
|
Pérez-Laguna V, García-Malinis AJ, Aspiroz C, Rezusta A, Gilaberte Y. Antimicrobial effects of photodynamic therapy. GIORN ITAL DERMAT V 2018; 153:833-846. [PMID: 29683289 DOI: 10.23736/s0392-0488.18.06007-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The microorganisms that cause infections are increasing their resistance to antibiotics. In this context, alternative treatments are necessary. The antimicrobial photodynamic therapy (aPDT) is a therapeutic modality based on photosensitizing molecules that end up generating reactive oxygen species that induce the destruction of the target cells when are irradiated with light of a suitable wavelength and at a proper dose. The cells targeted by aPDT are all types of microorganisms (bacteria, fungi and parasites) including viruses and has been proven effective against representative members of all of them. In the field of dermatology, aPDT has been tested with promising results in different infections such as chronic ulcers, acne, onychomycosis and other cutaneous mycoses, as well as in leishmaniasis. Therefore, it is presented as a possible treatment option against the agents that cause skin and/or mucous infections.
Collapse
Affiliation(s)
| | | | - Carmen Aspiroz
- Unit of Microbiology, Hospital Royo Villanova, Zaragoza, Spain
| | - Antonio Rezusta
- IIS Aragón, Zaragoza, Spain.,Department of Microbiology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Yolanda Gilaberte
- IIS Aragón, Zaragoza, Spain - .,Department of Dermatology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| |
Collapse
|
39
|
Habermeyer B, Guilard R. Some activities of PorphyChem illustrated by the applications of porphyrinoids in PDT, PIT and PDI. Photochem Photobiol Sci 2018; 17:1675-1690. [DOI: 10.1039/c8pp00222c] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy is an innovative approach to treat diverse cancers and diseases that involves the use of photosensitizing agents along with light of an appropriate wavelength to generate cytotoxic reactive oxygen species.
Collapse
Affiliation(s)
| | - R. Guilard
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université de Bourgogne Franche-Comté
- France
| |
Collapse
|