1
|
Bushnaq H, Pu S, Burton T, Rodriguez-Andres J, Montoya JC, Mackenzie J, Munro C, Palmisano G, Mettu S, Mcelhinney J, Dumée LF. Visible light photosensitised cross-flow microfiltration membrane reactors for managing microplastic-contaminated bio-effluents. WATER RESEARCH 2025; 277:123317. [PMID: 40010124 DOI: 10.1016/j.watres.2025.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The demand for advanced water treatment solutions necessitates the development of multifunctional, photodynamically active membranes. Phthalocyanines (Pcs), a class of organic photosensitizers, offer significant potential for enhancing treatment efficacy through photodynamic activity. This study reports the development of Pc-modified polymeric microfiltration membranes as visible-light-responsive, multifunctional membrane reactors with enhanced photodynamic and filtration properties. Cobalt phthalocyanine (CoPc), zinc phthalocyanine (ZnPc), tetra-amino zinc phthalocyanine (TAZnPc), and tetra-sulfonated aluminum phthalocyanine (TSAlPc) were integrated into the membranes, imparting notable changes in morphology, surface wettability, and chemical functionality. Characterization revealed improvements in optical responsiveness and surface properties that contributed to robust photodynamic and filtration performance. Static photodynamic evaluations demonstrated high efficacy, with ZnPc mixed matrix membrane (MMM) achieving superior dye degradation and TSAlPc grafted membrane (GM) yielding significant bacterial inactivation. Filtration trials confirmed ZnPc MMM's biofouling resistance and permeance stability, reaching 99.97 % rejection of bio-fouled microplastics (MPs) and a 45 % permeance enhancement under irradiation. Virus filtration results demonstrated TSAlPc MMM's viral retention efficacy, achieving a 2.05-log reduction against Influenza A virus. These findings underscore the potential of Pc-functionalized membranes as promising candidates for advanced water treatment applications, offering robust contaminant rejection, biofouling control, and broad-spectrum antimicrobial efficacy in a single, multifunctional platform.
Collapse
Affiliation(s)
- Hooralain Bushnaq
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center in Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates; Centre for Membrane and Advanced Water Treatment (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sisi Pu
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center in Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Tom Burton
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Julio Rodriguez-Andres
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Jason Mackenzie
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Catherine Munro
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Centre for Membrane and Advanced Water Treatment (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - James Mcelhinney
- Centre for Membrane and Advanced Water Treatment (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates; Khalifa University, Department of Biomedical Engineering, Abu Dhabi, United Arab Emirates
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center in Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Ayoub AM, Atya MS, Abdelsalam AM, Schulze J, Amin MU, Engelhardt K, Wojcik M, Librizzi D, Yousefi BH, Nasrullah U, Pfeilschifter J, Bakowsky U, Preis E. Photoactive Parietin-loaded nanocarriers as an efficient therapeutic platform against triple-negative breast cancer. Int J Pharm 2023; 643:123217. [PMID: 37429562 DOI: 10.1016/j.ijpharm.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The application of photodynamic therapy has become more and more important in combating cancer. However, the high lipophilic nature of most photosensitizers limits their parenteral administration and leads to aggregation in the biological environment. To resolve this problem and deliver a photoactive form, the natural photosensitizer parietin (PTN) was encapsulated in poly(lactic-co-glycolic acid) nanoparticles (PTN NPs) by emulsification diffusion method. PTN NPs displayed a size of 193.70 nm and 157.31 nm, characterized by dynamic light scattering and atomic force microscopy, respectively. As the photoactivity of parietin is essential for therapy, the quantum yield of PTN NPs and the in vitro release were assessed. The antiproliferative activity, the intracellular generation of reactive oxygen species, mitochondrial potential depolarization, and lysosomal membrane permeabilization were evaluated in triple-negative breast cancer cells (MDA-MB-231 cells). At the same time, confocal laser scanning microscopy (CLSM) and flow cytometry were used to investigate the cellular uptake profile. In addition, the chorioallantoic membrane (CAM) was employed to evaluate the antiangiogenic effect microscopically. The spherical monomodal PTN NPs show a quantum yield of 0.4. The biological assessment on MDA-MB-231 cells revealed that free PTN and PTN NPs inhibited cell proliferation with IC50 of 0.95 µM and 1.9 µM at 6 J/cm2, respectively, and this can be attributed to the intracellular uptake profile as proved by flow cytometry. Eventually, the CAM study illustrated that PTN NPs could reduce the number of angiogenic blood vessels and disrupt the vitality of xenografted tumors. In conclusion, PTN NPs are a promising anticancer strategy in vitro and might be a tool for fighting cancer in vivo.
Collapse
Affiliation(s)
- Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Muhammed S Atya
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Ahmed M Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| |
Collapse
|
3
|
Awad M, Barnes TJ, Joyce P, Thomas N, Prestidge CA. Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112474. [PMID: 35644068 DOI: 10.1016/j.jphotobiol.2022.112474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as an innovative strategy to combat antibiotic resistant microbes; yet aPDT efficacies against biofilms are sub-optimal due to inability of photosenstizers to reach microbes embedded in biofilm matrix. To overcome this challenge, liquid crystal lipid nanoparticles (LCNP) were employed in this study as a smart, biocompatible and triggerable delivery system for the new photosensitizer gallium protoporphyrin (GaPP), due to their capabilities in promoting efficient antimicrobial delivery to biofilms. The relationship between GaPP loading of LCNP, reactive oxygen species (ROS) production and the in vitro antibacterial activity against two antibiotic resistant Staphylococcus aureus strains was established. LCNP substantially improved the antibacterial activity of GaPP, completely eradicating S. aureus and MRSA planktonic cultures, using a GaPP concentration of 0.8 μM and light dose 1.9 J/cm2. At the same concentration and light dose, unformulated GaPP triggered only a 4 log10 and 2 log10 reduction in respective planktonic cultures. Most importantly, the activity of GaPP against biofilms was enhanced by 2-fold compared to unformulated GaPP, reducing the viability of S. aureus and MRSA biofilms by 8 log10 and 5 log10, respectively. The biosafety of photoactivated GaPP-LCNP was evaluated against human fibroblasts, which indicated a high safety profile of the treatment. Therefore, these findings encourage further investigations of GaPP-LCNP as a potential treatment for localized chronic infections.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Timothy J Barnes
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
4
|
de Oliveira de Siqueira LB, Dos Santos Matos AP, da Silva MRM, Pinto SR, Santos-Oliveira R, Ricci-Júnior E. Pharmaceutical Nanotechnology Applied to Phthalocyanines for the Promotion of the Antimicrobial Photodynamic Therapy: A Literature Review. Photodiagnosis Photodyn Ther 2022; 39:102896. [PMID: 35525432 DOI: 10.1016/j.pdpdt.2022.102896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Phthalocyanines are photosensitizers activated by light at a specific wavelength in the presence of oxygen and act topically through the production of Reactive Oxygen Species, which simultaneously attack several biomolecular targets in the pathogen agent and, therefore, have multiple and variable action sites. This nonspecific action site delineates the conventional resistance mechanisms. Antimicrobial Photodynamic Therapy (aPDT) is safe, easy to implement and, unlike conventional agents, the activity spectrum of photoantimicrobials. This work is a systematic review of the literature based on nanocarriers containing phthalocyanines in aPDT against bacteria, fungi, viruses, and protozoa. The search was performed in two different databases (MEDLINE/PubMed and Web of Science) between 2011 and May 2021. Nanocarriers often improve the action or are equivalent to free drugs, but their use allows substituting the organic solvent in the case of hydrophobic phthalocyanines, allowing for a safer application of aPDT with the possibility of prolonged release. In the case of hydrophilic phthalocyanines, they would allow for nonspecific site delivery with a possibility of cellular internalization. A single infectious lesion can have multiple microorganisms, and PDT with phthalocyanines is an interesting treatment given its ample spectrum of action. It is possible to highlight the upconversion nanosystems, which allow for the activation of phthalocyanine in deeper tissues by using longer wavelengths, as a system that has not yet been studied, but which could provide treatment solutions. The use of nanocarriers containing phthalocyanines requires more studies in animal models and clinical studies to establish the use of aPDT in humans.
Collapse
Affiliation(s)
| | - Ana Paula Dos Santos Matos
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Marcio Robert Mattos da Silva
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suyene Rocha Pinto
- Laboratory of Nanoradiopharmaceutical and Synthesis of Novels Radiopharmaceuticals, Nuclear Engineering Institute, Rio de Janeiro, RJ, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceutical and Synthesis of Novels Radiopharmaceuticals, Nuclear Engineering Institute, Rio de Janeiro, RJ, Brazil; Laboratory of Nanoradiopharmacy and Radiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, RJ, Brazil
| | - Eduardo Ricci-Júnior
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022; 346:300-316. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach to aid the fight against looming antibiotic resistance. aPDT harnesses the energy of light through photosenstizers to generate highly reactive oxygen species that can inactivate bacteria and fungi with no resistance. To date aPDT has shown great efficacy against microbes causing localized infections in the skin and the oral cavity. However, its wide application in clinical settings has been limited due to both physicochemical and biological challenges. Over the past decade nanomaterials have contributed to promoting photosensitizer performance and aPDT efficiency, yet further developments are required to establish accredited treatment options. In this review we discuss the challenges facing the clinical application of aPDT and the opportunities that nanotechnology may offer to promote the safety and efficiency of aPDT.
Collapse
Affiliation(s)
- Muhammed Awad
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Nicky Thomas
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Timothy J Barnes
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
6
|
Gorbunova EA, Stepanova DA, Kosov AD, Bolshakova AV, Filatova NV, Sizov LR, Rybkin AY, Spiridonov VV, Sybachin AV, Dubinina TV, Milaeva ER. Dark and photoinduced cytotoxicity of solubilized hydrophobic octa-and hexadecachloro-substituted lutetium(III) phthalocyanines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
de Oliveira de Siqueira LB, dos Santos Matos AP, Feuser PE, Machado-de-Ávila RA, Santos-Oliveira R, Ricci-Júnior E. Encapsulation of photosensitizer in niosomes for promotion of antitumor and antimicrobial photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Aftab J, Farajzadeh N, Yenilmez HY, Özdemir S, Gonca S, Altuntas Bayir Z. New phthalonitrile/metal phthalocyanines-gold nanoparticle conjugates for biological applications. Dalton Trans 2022; 51:4466-4476. [DOI: 10.1039/d2dt00041e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The appearance of nanoscience and its effect on the development of the scientific fields particularly materials chemistry have been well-known today. In this study, a new di-substituted phthalonitrile derivative namely...
Collapse
|
9
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
10
|
Baigorria E, Milanesio ME, Durantini EN. Synthesis, spectroscopic properties and photodynamic activity of Zn(II) phthalocyanine-polymer conjugates as antimicrobial agents. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY. Transcriptomic and Genomic Approaches for Unravelling Candida albicans Biofilm Formation and Drug Resistance-An Update. Genes (Basel) 2018; 9:genes9110540. [PMID: 30405082 PMCID: PMC6266447 DOI: 10.3390/genes9110540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Kin Chin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Won Fen Wong
- Department of Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| |
Collapse
|