1
|
Alkhudhairy F, AlRefeai MH. Chitosan nanoparticles, Rose Bengal-chitosan activated photodynamic therapy as final irrigant on pushout bond strength, smear layer removal efficacy and antibacterial effectiveness against E.faecalis. Photodiagnosis Photodyn Ther 2024; 49:104316. [PMID: 39181493 DOI: 10.1016/j.pdpdt.2024.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
AIM Impact of final root canal disinfectants diode laser (DL), Rose Bengal photosensitizer (RBP), Chitosan Nanoparticles (CNPs), and CNPs modified RBP on Enterococcus faecalis (E.faecalis) survival rate, smear layer (SL) removal efficacy and push out bond strength (PBS) of resin sealer to the radicular dentin. MATERIAL AND METHOD Single rooted seventy-five human mandibular premolar teeth were sectioned at a level of cementoenamel (CEJ) and root canal treatment was performed using a ProTaper rotary instrument. To assess the antibacterial efficiency E.faecalis inoculation was performed using a pour plate method. The samples were arbitrarily allocated into five groups based on the final disinfectant received (n = 15) Group-1 (NaOCl+17 % EDTA), Group-2 (NaOCl+DL), Group-3 (NaOCl+CNPs), Group-4 (NaOCl+RBP activated by DL) and Group-5 (NaOCl+CNPs-RBP activated by DL). SEM analysis for SL removal was performed on five specimens from each group. Root canal obturation and sectioning were performed at cervical, middle, and apical levels. PBS and failure mode were analyzed using a universal testing machine (UTM) and stereomicroscope respectively. The data was subjected to analysis using one-way analysis of variance (ANOVA) and Tukey's post hoc test. RESULT Group 1 (NaOCl+17 % EDTA) (0.36 ± 0.01 CFU/mL) unveiled the maximum survival rate of tested bacteria. However, Group 5 (NaOCl+CNPs-RBP activated by DL) (0.11 ± 0.01 CFU/mL) displayed minimum survival of E.faecalis. The highest SL removal (1.44 ± 0.11) and bond integrity scores (12.23 ± 0.24 MPa) were recorded in the coronal section of Group 5 (NaOCl+ CNPs-RBP activated by DL) treated roots. However, the lowest removal of SL (3.15 ± 1.09) and PBS (7.24 ± 0.09 MPa) were recorded in Group 4 (NaOCl+RBP activated by DL) treated canals. CONCLUSION CNPs-RBP activated by DL as the final irrigant provided satisfactory antibacterial activity, SL removal, and bond strength outcomes compared to other tested groups.
Collapse
Affiliation(s)
- Fahad Alkhudhairy
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - Mohammad H AlRefeai
- College of Dentistry, Department of Restorative Dentistry - Operative Division.
| |
Collapse
|
2
|
Garcia MT, Namba AM, do Carmo PHF, Pedroso LLC, de Lima PMN, Gonçale JC, Junqueira JC. Antimicrobial effects of surface pre-reacted glass-ionomer (S-PRG) eluate against oral microcosm biofilm. BIOFOULING 2024; 40:390-401. [PMID: 38945827 DOI: 10.1080/08927014.2024.2371817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
This study investigated the antimicrobial activity of surface pre-reacted glass ionomer eluate (S-PRG) against oral microcosm biofilms collected from the oral cavity of patients. Dental biofilm samples were collected from three volunteers to form microcosm biofilms in vitro. Initially, screening tests were carried out to determine the biofilm treatment conditions with S-PRG eluate. The effects of a daily treatment for 5 min using three microcosm biofilms from different patients was then evaluated. For this, biofilms were formed on tooth enamel specimens for 120 h. Biofilms treated with 100% S-PRG for 5 min per day for 5 days showed a reduction in the number of total microorganisms, streptococci and mutans streptococci. SEM images confirmed a reduction in the biofilm after treatment. Furthermore, S-PRG also reduced lactic acid production. It was concluded that S-PRG eluate reduced the microbial load and lactic acid production in oral microcosm biofilms, reinforcing its promising use as a mouthwash agent.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Andressa Mayumi Namba
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Lara Luise Castro Pedroso
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Patrícia Michele Nagai de Lima
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Juliana Caparroz Gonçale
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Juliana Campos Junqueira
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| |
Collapse
|
3
|
Ribeiro JL, Santos TA, Garcia MT, Carvalho BFDC, Esteves JECS, Moraes RM, Anbinder AL. Heat-killed Limosilactobacillus reuteri ATCC PTA 6475 prevents bone loss in ovariectomized mice: A preliminary study. PLoS One 2024; 19:e0304358. [PMID: 38820403 PMCID: PMC11142514 DOI: 10.1371/journal.pone.0304358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024] Open
Abstract
Osteoporosis is an important health problem that occurs due to an imbalance between bone formation and resorption. Hormonal deficiency post-menopause is a significant risk factor. The probiotic Limosilactobacillus reuteri has been reported to prevent ovariectomy (Ovx)-induced bone loss in mice and reduce bone loss in postmenopausal women. Despite the numerous health benefits of probiotics, as they are live bacteria, the administration is not risk-free for certain groups (e.g., neonates and immunosuppressed patients). We evaluated the effects of L. reuteri (ATCC PTA 6475) and its heat-killed (postbiotic) form on Ovx-induced bone loss. Adult female mice (BALB/c) were randomly divided into four groups: group C-control (sham); group OVX-C-Ovx; group OVX-POS-Ovx + heat-killed probiotic; group OVX-PRO-Ovx + probiotic. L. reuteri or the postbiotic was administered to the groups (1.3x109 CFU/day) by gavage. Bacterial morphology after heat treatment was accessed by scanning electron microscopy (SEM). The treatment started one week after Ovx and lasted 28 days (4 weeks). The animals were euthanized at the end of the treatment period. Bone microarchitecture and ileum Occludin and pro-inflammatory cytokines gene expression were evaluated by computed microtomography and qPCR techniques, respectively. The Ovx groups had lower percentage of bone volume (BV/TV) and number of bone trabeculae as well as greater total porosity compared to the control group. Treatment with live and heat-killed L. reuteri resulted in higher BV/TV and trabecular thickness than the Ovx group. The heat treatment caused some cell surface disruptions, but its structure resembled that of the live probiotic in SEM analysis. There were no statistical differences in Occludin, Il-6 and Tnf-α gene expression. Both viable and heat-killed L. reuteri prevented bone loss on ovariectomized mice, independently of gut Occludin and intestinal Il-6 and Tnf-α gene expression.
Collapse
Affiliation(s)
- Jaqueline Lemes Ribeiro
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Thaís Aguiar Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Maíra Terra Garcia
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Bruna Fernandes do Carmo Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | | | - Renata Mendonça Moraes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
4
|
Souza BMN, Miñán AG, Brambilla IR, Pinto JG, Garcia MT, Junqueira JC, Ferreira-Strixino J. Effects of antimicrobial photodynamic therapy with photodithazine® on methicillin-resistant Staphylococcus aureus (MRSA): Studies in biofilms and experimental model with Galleria mellonella. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112860. [PMID: 38330692 DOI: 10.1016/j.jphotobiol.2024.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Staphylococcus aureus infections are a severe health problem due to the high mortality rate. Conventional treatment of these infections is via the administration of antibiotics. However, its indiscriminate use can select resistant microorganisms. Thus, it is necessary to develop alternatives for antibiotic therapy. Antimicrobial Photodynamic Therapy (aPDT), a therapeutic method that associates a photosensitizer (PS), a light source with adequate wavelength to the PS, interacts with molecular oxygen generating reactive oxygen species responsible for cell inactivation, is a viable alternative. This work aimed to analyze, in vitro and in vivo, the action of aPDT with PS Photodithazine® (PDZ) on the methicillin-resistant S. aureus (MRSA) strain. In the in vitro method, the S. aureus biofilm was incubated with PDZ at 50 and 75 μg.mL-1 for 15 min, adopting the light dose of 25, 50, and 100 J/cm2. In addition, PS interaction, formation of reactive oxygen species (ROS), bacterial metabolism, adhesion, bacterial viability, and biofilm structure were evaluated by scanning electron microscopy. Subsequently, the strain was inoculated into models of Galleria mellonella, and the survival curve, health scale, blood cell analysis, and CFU/mL of S. aureus in the hemolymph were analyzed after aPDT. In the in vitro results, bacterial reduction was observed in the different PDZ concentrations, highlighting the parameters of 75 μg.mL-1 of PDZ and 100 J/cm2. As for in vivo results, aPDT increased survival and stimulated the immune system of G. mellonella infected by S. aureus. aPDT proved effective in both models, demonstrating its potential as an alternative therapy in treating MRSA bacterial infections.
Collapse
Affiliation(s)
- Beatriz Müller N Souza
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Alejandro Guillermo Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Isabelle Ribeiro Brambilla
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil.
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Universidade Estadual Paulista (Unesp), Institute of Science and Technology (ICT), São José dos Campos, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Universidade Estadual Paulista (Unesp), Institute of Science and Technology (ICT), São José dos Campos, São Paulo, Brazil.
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
5
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Contreras SM, Fernandes JB, Spinola MDS, Garcia MT, Junqueira JC, Bresciani E, Caneppele TMF. Efficacy of bioactive materials in preventing Streptococcus mutans-induced caries on enamel and dentine. Eur J Oral Sci 2023; 131:e12948. [PMID: 37583060 DOI: 10.1111/eos.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
The study investigated the ability of bioactive materials used to restore enamel and dentine specimens to prevent caries. Enamel (n = 50) and dentine (n = 50) specimens were obtained from bovine incisors, prepared, and randomly allocated to one of five groups according to the restorative treatment: alkasite without adhesive system; alkasite with adhesive system; high viscosity glass ionomer cement; resin composite; no restoration; negative control group. Specimens were restored, exposed to a thermal cycling aging protocol, sterilized, and exposed to a cariogenic challenge induced by Streptococcus mutans and then submitted to surface and subsurface microhardness tests and polarized light microscopy to verify the caries lesion development in enamel or dentine surrounding the restorative materials. Data were analyzed using one-way ANOVA. In enamel and dentine, glass ionomer cement, alkasite without and with adhesive system presented a lower percentage surface microhardness loss than resin composite and negative control. Enamel subsurface microhardness presented no statistically significant differences between glass ionomer cement, alkasite without and with adhesive system. Glass ionomer cement also did not present statistically significant differences from resin composite and the negative control. In dentine, glass ionomer cement showed the highest subsurface microhardness values. In conclusion, bioactive restorative materials provide greater protection to enamel and dentine against surface caries development than resin composite.
Collapse
Affiliation(s)
- Sheila Mondragón Contreras
- Department of Restorative Dentistry, São Paulo State University - UNESP, Institute of Science and Technology, São José dos Campos, Brazil
| | - Juliana Benace Fernandes
- Department of Restorative Dentistry, São Paulo State University - UNESP, Institute of Science and Technology, São José dos Campos, Brazil
| | | | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, São Paulo State University - UNESP, Institute of Science and Technology, São José dos Campos, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University - UNESP, Institute of Science and Technology, São José dos Campos, Brazil
| | - Eduardo Bresciani
- Department of Restorative Dentistry, São Paulo State University - UNESP, Institute of Science and Technology, São José dos Campos, Brazil
| | - Taciana Marco Ferraz Caneppele
- Department of Restorative Dentistry, São Paulo State University - UNESP, Institute of Science and Technology, São José dos Campos, Brazil
| |
Collapse
|
7
|
Zhang X, Wang T, Ma W, Bi L. The study on the effect of amino acid porphyrin conjugate-mediated antimicrobial photodynamic therapy on Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2023; 43:103684. [PMID: 37393048 DOI: 10.1016/j.pdpdt.2023.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) based on the action of visible light and photosensitizers has emerged as a promising microbial reduction and alternative to antibiotics resistance to cariogenic pathogens. The present research aims to evaluate the antimicrobial effect of aPDT mediated by a new photosensitizer (amino acid porphyrin conjugate 4i) on Streptococcus mutans (S. mutans) biofilm. Qualitative morphologic characteristics of S. mutans biofilms are shown by scanning electron microscopy (SEM). The colony plate counting method is used to measure the dark toxicity and the phototoxicity of different concentrations of 4i-aPDT to S. mutans biofilms. MTT assay is conducted to investigate the effect of 4i mediated aPDT on the metabolic activity of S. mutans biofilm. Changes in structure morphology, bacterial density and extracellular matrix of S. mutans biofilm are observed by SEM. The distribution of living and dead bacteria in biofilm is detected using Confocal laser microscopy (CLSM). The results indicate that single laser irradiation has no antibacterial effect on S. mutans biofilms. With the increase of 4i concentration or the prolongation of laser irradiation time, the antibacterial effect of 4i-mediated aPDT on S. mutans biofilm is more statistically significant compared to the control. When the concentration of 62.5 µmol/L 4i is continuously illuminated for 10 min, the logarithm of the colonies in the biofilm shows a reduction of 3.4 log10. MTT assay detected absorbance values of biofilm by 4i-mediated aPDT are the lowest, indicating a significant decrease in biofilm metabolic activity. SEM analysis shows that 4i mediated aPDT reduced the quantity and density of S. mutans. A dense red fluorescence image of the 4i-aPDT treated biofilm is observed under CLSM, indicating that the dead bacteria are widely distributed.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Tao Wang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Wei Ma
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
8
|
Nie M, Yang J, Rastelli ANDS, Shen Y, Deng D. Oxygen Availability on the Application of Antimicrobial Photodynamic Therapy against Multi-Species Biofilms. Pathogens 2023; 12:904. [PMID: 37513751 PMCID: PMC10384119 DOI: 10.3390/pathogens12070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Methylene blue (MB)- or Curcumin (Cur)-based photodynamic therapy (PDT) has been used as an adjunctive treatment for periodontitis. Its actual clinical efficacy is still in question because the lack of oxygen in a deep periodontal pocket might reduce the PDT efficacy. We aim to investigate the effect of oxygen on PDT efficacy and to examine if the addition of hydrogen peroxide (HP) could improve PDT performance anaerobically. To this end, we cultured 48 h saliva-derived multi-species biofilms and treated the biofilms with 25 µM MB or 40 µM Cur, HP (0.001%, 0.01% and 0.1%), light (L-450 nm or L-660 nm), or combinations thereof under ambient air or strictly anaerobic conditions. MB- and Cur-PDTs significantly reduced biofilm viability in air but not under anaerobic conditions. HP at 0.1% significantly enhanced the killing efficacies of both MB- and Cur-PDTs anaerobically. The killing efficacy of Cur-PDT combined with 0.1% HP was higher anaerobically than in air. However, this was not the case for MB-PDT combined with 0.1% HP. In conclusion, this study demonstrated that the biofilm killing efficacies of MB- and Cur-PDTs diminished when there was no oxygen. HP at 0.1% can enhance the efficacy of PDT performed anaerobically, but the level of enhancement is photosensitizer-dependent.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Jingmei Yang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | | | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
9
|
Chin JD, Zhao L, Mayberry TG, Cowan BC, Wakefield MR, Fang Y. Photodynamic Therapy, Probiotics, Acetic Acid, and Essential Oil in the Treatment of Chronic Wounds Infected with Pseudomonas aeruginosa. Pharmaceutics 2023; 15:1721. [PMID: 37376169 PMCID: PMC10301549 DOI: 10.3390/pharmaceutics15061721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a prevalent medical problem that burdens millions of patients across the world, chronic wounds pose a challenge to the healthcare system. These wounds, often existing as a comorbidity, are vulnerable to infections. Consequently, infections hinder the healing process and complicate clinical management and treatment. While antibiotic drugs remain a popular treatment for infected chronic wounds, the recent rise of antibiotic-resistant strains has hastened the need for alternative treatments. Future impacts of chronic wounds are likely to increase with aging populations and growing obesity rates. With the need for more effective novel treatments, promising research into various wound therapies has seen an increased demand. This review summarizes photodynamic therapy, probiotics, acetic acid, and essential oil studies as developing antibiotic-free treatments for chronic wounds infected with Pseudomonas aeruginosa. Clinicians may find this review informative by gaining a better understanding of the state of current research into various antibiotic-free treatments. Furthermore. this review provides clinical significance, as clinicians may seek to implement photodynamic therapy, probiotics, acetic acid, or essential oils into their own practice.
Collapse
Affiliation(s)
- Jaeson D. Chin
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Lei Zhao
- The Department of Respiratory Medicine, The Second People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China
| | - Trenton G. Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Braydon C. Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
10
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
El-Mourad AM. Use of final irrigant Potassium Titanyl Phosphate laser; Sapindus Mukorossi and Fotoenticine on the bond values of zirconia post-to-canal dentin. Photodiagnosis Photodyn Ther 2023; 42:103589. [PMID: 37142074 DOI: 10.1016/j.pdpdt.2023.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
AIMS Assessment of the efficacy of final root canal irrigants Sapindus mukorossi (SM), Potassium titanyl phosphate laser (KTPL), and Fotoenticine (FTC) on the push-out bond strength (PBS) of zirconia post. MATERIALS AND METHODS The root canal procedure was initiated using the 10 K file and the working length was determined on single-rooted human premolar teeth after decoration. The canals were then enlarged using ProTaper universal system and filled using single cone gutta-percha (GP) and AH Plus resin sealer. Post space was prepared by removing 10mm of GP from the canal. All the teeth were then allocated into four groups based on the final irrigating regime used (n=10) Group 1: 5.25% NaOCl+17% EDTA, Group 2: 5.25% NaOCl + KTPL, Group 3: 5.25% NaOCl + FTC and Group 4: 5.25% NaOCl+ SM. Zirconia posts were cemented in the canal space. The specimens were sectioned and implanted in auto-polymerizing acrylic resin. A universal testing machine and stereomicroscope at 40x magnification were used for PBS and failure mode analysis. ANOVA and Tukey post hoc test were used to make group comparisons(p=0.05). RESULTS Group 4 (5.25% NaOCl+ SM) coronal section displayed the highest PBS (9.29±0.24 MPa). However, group 3 (5.25% NaOCl+ FTC) apical third (4.08±0.14 MPa) showed the lowest bond values. Group 2 (5.25% NaOCl+ KTP laser) and Group 3 at all three-thirds unveiled no significant difference in PBS(p>0.05). However, Group 1 (5.25% NaOCl+17%EDTA) and Group 4 displayed comparable outcomes of bond strength(p>0.05) CONCLUSION: Sapindus mukorossi has the ability to be used as a final root canal irrigant alternative to EDTA. However, future studies are still required to conclude the outcomes of existing research.
Collapse
Affiliation(s)
- Aminah M El-Mourad
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University.
| |
Collapse
|
12
|
AlSheikh R, Abduldaiem OY, Alkhalifa MS, Jillani MS, Dehailan LA, Barakat A, Alazmah A, Hameed MS, Niazi F. Different cavity disinfectant efficacy against S.Mutans and shear bond strength of caries affected dentin bonded to resin restoration. Photodiagnosis Photodyn Ther 2023; 42:103560. [PMID: 37031900 DOI: 10.1016/j.pdpdt.2023.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/11/2023]
Abstract
AIMS The existing study aimed to assess the survival rate of S.mutans and shear bond strength (SBS) of resin adhesive restoration bonded to carious affected dentin (CAD) after using different cavity disinfectants (Chitosan, Fotoenticine®, and CO2 laser) in comparison to Chlorhexidine (CHX). MATERIALS AND METHODS The study included human mandibular molars assessed on International Caries Detection and Assessment System (ICDAS) score 4 and 5. The cusp part of the clinical crown was cut off until the reduction reaches the central fossa while being continuously supplied with water coolant till the tooth cementoenamel junction (CEJ). The root sections were embedded in polymethyl methacrylate acrylic resin followed by culturing S.mutans biofilm on the CAD surface. Specimens were arbitrarily allocated into four groups(n = 10) based on the type of disinfection. Group 1 (2% CHX), Group 2 (Chitosan), Group 3 (Fotoenticine), and Group 4 (CO2 laser). S.mutans survival rate was assessed and CAD was restored with a composite restorative material. Thermoocycling of the samples was performed and a universal testing machine (UTM) and Stereomicroscope were used to identify bond integrity and type of fracture. ANOVA and Tukey multiple comparison tests were used to assess SBS. Data on the survival rate of S. mutans were compared between groups using the nonparametric Kruskal-Wallis test RESULTS: Outcomes revealed that Group 1 (CHX) displayed the highest survival rate (0.65±0.10). However, lowest survival rate was demonstrated by Group 3 (Fotoenticine) treated specimens (0.25±0.06). It was also discovered that CHX unveiled highest bond strength values (21.48±1.39 MPa). Nevertheless, Group 2 (Chitosan) showed lowest SBS (11.01±1.00 MPa). Intergroup comparison analysis presented that group 1, and group 4 (Co2 laser) (17.76±0.41 MPa) displayed no significant difference in their bond integrity achieved. (p>0.05). However, group 3 (Fotoenticine) (16.28±0.51 MPa) and group 2 demonstrated comparable outcomes of SBS. (p>0.05) CONCLUSION: The use of CHX and CO2 lasers as disinfectants on the CAD surface resulted in a positive impact on the SBS of resin composite, according to the study's findings. However, it is worth noting that Fotoenticine exhibited better antimicrobial efficacy against S. mutans.
Collapse
Affiliation(s)
- Rasha AlSheikh
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | | | - Muneera S Alkhalifa
- Restorative Dental Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mona Shah Jillani
- Senior Lecturer, Department of Community and Preventive Dentistry, Dow Dental College, Dow University of Health Sciences, Karachi
| | - Laila Al Dehailan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ali Barakat
- Dept of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia.
| | - Abdulfatah Alazmah
- Associate professor in pediatric dentistry, Department of preventive dental sciences, College of Dentistry, Prince Sattam bin Abdul Aziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Mohammad Shahul Hameed
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University
| | - Fayez Niazi
- Associate professor in pediatric dentistry, Department of preventive dental sciences, College of Dentistry, Prince Sattam bin Abdul Aziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
14
|
Vohra F, Kuyunov I, Alsaif RF, El Mourad AM. Effect on Martens Hardness and pushout bond strength of fiber post to canal dentin final irrigated with Fotoenticine, Chitosan, and ozone. Photodiagnosis Photodyn Ther 2023; 42:103546. [PMID: 37001713 DOI: 10.1016/j.pdpdt.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
AIMS To estimate the effect of contemporary final root canal irrigants (Ozonated water (OW), Chitosan, and Fotoenticine (FTC) on the bond scores of glass fiber post (GFP) and Martens hardness (MH) of root dentin. MATERIALS AND METHODS Sixty extracted human premolars having a single straight canal that ends in a closed apex were included. Specimens were de-crowned till the cementoenamel junction preserving 12 mm of root length and were mounted vertically. Canal therapy was performed using a crown-down approach. Obturation was performed followed by post-space preparation. Samples were allocated into 4 groups based on chemical irrigations and photosensitizers used(n = 15). Group 1 (5.25% NaOCl + 17% EDTA), group 2 (5.25% NaOCl + FTC), group 3 (5.25% NaOCl + Chitosan), group 4 (5.25% NaOCl + OW). The ultra microhardness tester was put under a load of 5 mN at a speed of 1.5 mN/s for 1 s to assess the MH. The fiber post was luted with dual-cure cement and slices of 1 mm were prepared from each third of the tooth. PBS and failure mode analysis were performed using a universal testing machine (UTM) and stereomicroscope respectively. ANOVA and Tukey multiple comparisons t-tests for assessment of PBS and MH p > 0.05 RESULTS: Group 1 (5.25% NaOCl + 17% EDTA) exhibited the highest MH (0.19 ± 0.04 GPa). Whereas, group 2 (5.25% NaOCl + FTC) displayed the lowest MH (0.011 ± 0.14 GPa). The highest PBS was exhibited by the coronal third of group 1 (5.25% NaOCl + 17% EDTA) (7.11 ± 0.81 MPa). The apical section of group 3 specimens (5.25% NaOCl + Chitosan) (2.33 ± 0.26 MPa) unveiled the lowest PBS. Intergroup comparison analysis revealed that group 2 and group 3 displayed comparable outcomes of PBS. Group 1 and Group 4 also demonstrated no significant difference in the bond scores in all three sections. CONCLUSION OW as a final irrigant can be used as an alternative to EDTA as it improves the bond strength with minimum impact on marten hardness.
Collapse
Affiliation(s)
- Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, P. O. Box 60169, Riyadh 11545, Saudi Arabia.
| | - Isaac Kuyunov
- Specialist in Prosthodontics, Rochester, NY 14618, USA
| | - Rawan F Alsaif
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, P. O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Aminah M El Mourad
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
15
|
Heat Shock Protein Inhibitors Show Synergistic Antibacterial Effects with Photodynamic Therapy on Caries-Related Streptococci In Vitro and In Vivo. mSphere 2023; 8:e0067922. [PMID: 36853046 PMCID: PMC10117063 DOI: 10.1128/msphere.00679-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Caries are chronic infections in which the cariogenic biofilm plays a critical role in disease occurrence and progression. Photodynamic therapy (PDT) is a new effective treatment that is receiving wide attention in the antibacterial field, but it can lead to the upregulation of heat shock proteins (HSPs), which enhances bacterial resistance. Herein, we incorporated HSP inhibitors with PDT to evaluate the effect on Streptococcus mutans, Streptococcus sobrinus, and Streptococcus sanguinis under planktonic conditions and on cariogenic biofilms. Additionally, a model of caries was established in 2-week-old rats, and anticaries properties were evaluated by Keyes' scoring. Importantly, the combination of HSP inhibitors and PDT had outstanding efficiency in inhibiting the growth of tested Streptococcus strains and the formation of either monomicrobial or multispecies biofilms in vitro. In addition, the quantity of colonized streptococci and the severity of carious lesions were also distinctly suppressed in vivo. Overall, the synergistic application of HSP inhibitors and PDT has promising potential in the prevention and treatment of dental caries. IMPORTANCE Effective therapies for the prevention and control of caries are urgently needed. Cariogenic streptococci play a key role in the occurrence and progression of caries. Recently, photodynamic therapy has been demonstrated to have good antibacterial efficiency, but it can cause a heat shock response in bacteria, which may weaken its practical effects. We indicate here an effective therapeutic strategy of combining heat shock protein inhibitors and photodynamic therapy, which shows excellent inhibition toward three dominant streptococci related to caries and suppression of carious progression in a rat model. Further development for clinical application is promising.
Collapse
|
16
|
Figueiredo-Godoi LMA, Garcia MT, Pinto JG, Ferreira-Strixino J, Faustino EG, Pedroso LLC, Junqueira JC. Antimicrobial Photodynamic Therapy Mediated by Fotenticine and Methylene Blue on Planktonic Growth, Biofilms, and Burn Infections of Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11050619. [PMID: 35625263 PMCID: PMC9137570 DOI: 10.3390/antibiotics11050619] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative strategy to control Acinetobacter baumannii infections. In this study, we evaluated the action of aPDT mediated by a new photosensitizer derivative from chlorin e-6 (Fotoenticine—FTC) on A. baumannii, comparing its effects with methylene blue (MB). For this, aPDT was applied on A. baumannii in planktonic growth, biofilms, and burn infections in Galleria mellonella. The absorption of FTC and MB by bacterial cells was also evaluated using microscopic and spectrophotometric analysis. The results of planktonic cultures showed that aPDT reduced the number of viable cells compared to the non-treated group for the reference and multidrug-resistant A. baumannii strains. These reductions varied from 1.4 to 2 log10 CFU for FTC and from 2 log10 CFU to total inhibition for MB. In biofilms, aPDT with MB reduced 3.9 log10 CFU of A. baumannii, whereas FTC had no effect on the cell counts. In G. mellonella, only MB-mediated aPDT had antimicrobial activity on burn injuries, increasing the larvae survival by 35%. Both photosensitizers were internalized by bacterial cells, but MB showed a higher absorption compared to FTC. In conclusion, MB had greater efficacy than FTC as a photosensitizer in aPDT against A. baumannii.
Collapse
Affiliation(s)
- Lívia M. A. Figueiredo-Godoi
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
- Correspondence:
| | - Maíra T. Garcia
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| | - Juliana G. Pinto
- Photobiology Applied to Health (Photobios), University of Vale of Paraiba/UNIVAP, São José dos Campos, São Paulo 12244-000, Brazil; (J.G.P.); (J.F.-S.)
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (Photobios), University of Vale of Paraiba/UNIVAP, São José dos Campos, São Paulo 12244-000, Brazil; (J.G.P.); (J.F.-S.)
| | - Eliseu Gabriel Faustino
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| | - Lara Luise Castro Pedroso
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| | - Juliana C. Junqueira
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| |
Collapse
|
17
|
Namba AM, Santos ELDS, Garcia MT, Ribeiro FDC, Figueiredo-Godoi LMA, Rossoni RD, Junqueira JC. Farnesol as a potentiator of antimicrobial photodynamic inactivation on Enterococcus faecalis. Photodiagnosis Photodyn Ther 2022; 39:102928. [DOI: 10.1016/j.pdpdt.2022.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
|
18
|
Silva PGDB, Neto RADLP, Lima LA, Lemos JVM, Rodrigues MIDQ, Alves APNN, Dantas TS, Lima RA. Photodynamic therapy and photobiomodulation therapy in zoledronic acid-induced osteonecrosis in rats. Photodiagnosis Photodyn Ther 2022; 38:102889. [PMID: 35489689 DOI: 10.1016/j.pdpdt.2022.102889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND This study investigated the effect of antimicrobial photodynamic therapy (PDT), using methylene blue (MBO) and photobiomodulation therapy (PT), on the alveolar bone of rats submitted to bisphosphonate-induced osteonecrosis of the maxillaries (OMB) model using zoledronic acid (ZA). METHODS Sixty rats divided into six groups were used: SALINE, PDT, ZA, ZA+PDT, ZA+PT, and ZA+MBO. Three weekly administrations (Days 0, 7, and 14) of ZA 0.20 mg/kg or saline solution were performed. After one month (Day 42), the exodontia of the left lower first molars were performed. An additional dose of ZA was administered at Day 49. PDT was performed on days 42, 45, 49, and 54. One month after exodontia (Day 70), the animals were euthanized to obtain samples for imaging and microscopic analysis. ANOVA/Bonferroni tests were used for statistical analysis. RESULTS The ZA+PDT group showed a significantly lower percentage of apoptotic osteocytes than the ZA group (p<0.001). The ZA+MBO, ZA+PT, and PDT groups significantly reduced the number of mononuclear cells compared to the ZA group (p<0.001). The ZA+PT and ZA+PDT groups showed a significant reduction in the number of CD 68+ (p<0.001) and CD3+ (p=0.002) cells compared to the ZA group. The number of cells expressing INF-y had a significant reduction in the groups co-treated with PT and PDT compared to the ZA group (p<0.001). CONCLUSIONS We conclude that PDT and PT attenuated the severity of OMB and the inflammatory process due to a reduction of macrophages, T lymphocytes, and cytokines that stimulate the activity of these cells.
Collapse
Affiliation(s)
- Paulo Goberlânio de Barros Silva
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil; Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Laís Aragão Lima
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil; Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - José Vitor Mota Lemos
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil; Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Maria Imaculada De Queiroz Rodrigues
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Thinali Sousa Dantas
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil; Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Ramille Araújo Lima
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil.
| |
Collapse
|
19
|
de Lapena SAB, Terra-Garcia M, Ward RADC, Rossoni RD, Melo VMM, Junqueira JC. Enhancing effect of chitosan on methylene blue-mediated photodynamic therapy against C. albicans: a study in planktonic growth, biofilms, and persister cells. Photodiagnosis Photodyn Ther 2022; 38:102837. [PMID: 35367386 DOI: 10.1016/j.pdpdt.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Chitosan (CS) is a natural polymer extracted from the exoskeleton of crustaceans. Due to its cationic structure, CS has been studied as a possible enhancer of antimicrobial photodynamic therapy (aPDT). The objective was to evaluate the association of CS with methylene blue (MB)-mediated aPDT on Candida albicans, investigating its effects on planktonic growth, biofilms, and cells persistent to fluconazole. The ability of CS to interfere with MB absorption by Candida cells was also evaluated. For the assays, planktonic cells of C. albicans were cultivated for 24 h, and the biofilms were formed for 48 h. For the induction of persister cells, C. albicans was cultivated with high concentration of fluconazole for 48 h. Treatments were performed with MB, CS or MB+CS, followed by irradiation with LED (660 nm). As results, aPDT with MB (300 µm) reduced the planktonic cells by 1.6 log10 CFU, while the MB+CS association led to a reduction of 4.8 log10 CFU. For aPDT in biofilms, there was a microbial reduction of 2.9 log10 CFU for the treatment with MB (600 µm) and 5.3 log10 CFU for MB+CS. In relation to persister cells, the fungal reductions were 0.4 log10 CFU for MB and 1.5 log10 CFU for MB+CS. In the absorption assays, the penetration of MB into Candida cells was increased in the presence of CS. It was concluded that CS enhanced the antimicrobial activity of aPDT in planktonic growth, biofilms, and persister cells of C. albicans, probably by facilitating the penetration of MB into fungal cells.
Collapse
Affiliation(s)
- Simone Aparecida Biazzi de Lapena
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Maíra Terra-Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Rafael Araújo da Costa Ward
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Rodney Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Vania Maria Maciel Melo
- Department of Biology, Laboratory of Microbial Ecology and Biotechnology Pici, Ceará Federal University, Fortaleza, CE, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
20
|
Shahmoradi S, Shariati A, Amini SM, Zargar N, Yadegari Z, Darban-Sarokhalil D. The application of selenium nanoparticles for enhancing the efficacy of photodynamic inactivation of planktonic communities and the biofilm of Streptococcus mutans. BMC Res Notes 2022; 15:84. [PMID: 35209935 PMCID: PMC8876442 DOI: 10.1186/s13104-022-05973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Streptococcus mutans is one of the principal causative agents of dental caries (tooth decay) found in the oral cavity. Therefore, this study investigates whether selenium nanoparticles (SeNPs) enhance the efficacy of photodynamic therapy (PDT) against both planktonic communities and the one-day-old biofilm of S. mutans. In this study, the planktonic and 24-h biofilm of S. mutans have been prepared in 96-cell microplates. These forms were treated by methylene blue (MB) and SeNPs and then were exposed to light-emitting diode (LED) lighting. Finally, the results have been reported as CFU/ml. Results The outcomes demonstrated that MB-induced PDT and SeNPs significantly reduced the number of planktonic bacteria (P-value < 0.001). The comparison between the treated and untreated groups showed that combining therapy with SeNPs and PDT remarkably decreased colony-forming units of one-day-old S. mutans biofilm (P-value < 0.05). The findings revealed that PDT modified by SeNPs had a high potential to destroy S. mutans biofilm. This combination therapy showed promising results to overcome oral infection in dental science.
Collapse
Affiliation(s)
- Samane Shahmoradi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zargar
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Plant extract incorporated into glass ionomer cement as a photosensitizing agent for antimicrobial photodynamic therapy on Streptococcus mutans. Photodiagnosis Photodyn Ther 2022; 38:102788. [DOI: 10.1016/j.pdpdt.2022.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022]
|
22
|
Tisler CE, Chifor R, Badea ME, Moldovan M, Prodan D, Carpa R, Cuc S, Chifor I, Badea AF. Photodynamic Therapy (PDT) in Prosthodontics: Disinfection of Human Teeth Exposed to Streptococcus mutans and the Effect on the Adhesion of Full Ceramic Veneers, Crowns, and Inlays: An In Vitro Study. Biomedicines 2022; 10:144. [PMID: 35052823 PMCID: PMC8773555 DOI: 10.3390/biomedicines10010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
The use of PDT in prosthodontics as a disinfection protocol can eradicate bacteria from tooth surfaces by causing the death of the microorganisms to which the photosensitizer binds, absorbing the energy of laser light during irradiation. The aim of the study was to investigate the capacity of PDT to increase the bond strength of full ceramic restorations. In this study, 45 extracted human teeth were prepared for veneers, crowns, and inlays and contaminated with Streptococcus mutans. Tooth surfaces decontamination was performed using a diode laser and methylene blue as a photosensitizer. The disinfection effect and the impact on tensile bond strength were evaluated by scanning electron microscopy (SEM) and pull-out tests of the cemented ceramic prosthesis. Results show that the number of bacteria was reduced from colonized prepared tooth surfaces, and the bond strength was increased when PDT was used. In conclusion, the present study indicates that using PDT as a protocol before the final adhesive cementation of ceramic restorations could be a promising approach, with outstanding advantages over conventional methods.
Collapse
Affiliation(s)
- Corina Elena Tisler
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Radu Chifor
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania; (M.E.B.); (I.C.)
| | - Mindra Eugenia Badea
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania; (M.E.B.); (I.C.)
| | - Marioara Moldovan
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 400294 Cluj-Napoca, Romania; (M.M.); (D.P.)
| | - Doina Prodan
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 400294 Cluj-Napoca, Romania; (M.M.); (D.P.)
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Stanca Cuc
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 400294 Cluj-Napoca, Romania; (M.M.); (D.P.)
| | - Ioana Chifor
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania; (M.E.B.); (I.C.)
| | - Alexandru Florin Badea
- Department of Morphological Sciences, Discipline of Anatomy and Embryology, Faculty of General Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 3–5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
23
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
24
|
Garcia MT, Ward RADC, Gonçalves NMF, Pedroso LLC, Neto JVDS, Strixino JF, Junqueira JC. Susceptibility of Dental Caries Microcosm Biofilms to Photodynamic Therapy Mediated by Fotoenticine. Pharmaceutics 2021; 13:pharmaceutics13111907. [PMID: 34834321 PMCID: PMC8619263 DOI: 10.3390/pharmaceutics13111907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/20/2023] Open
Abstract
Photodynamic therapy (PDT) mediated by Fotoenticine® (FTC), a new photosensitizer derived from chlorin e-6, has shown in vitro inhibitory activity against the cariogenic bacterium Streptococcus mutans. However, its antimicrobial effects must be investigated on biofilm models that represent the microbial complexity of caries. Thus, we evaluated the efficacy of FTC-mediated PDT on microcosm biofilms of dental caries. Decayed dentin samples were collected from different patients to form in vitro biofilms. Biofilms were treated with FTC associated with LED irradiation and analyzed by counting the colony forming units (log10 CFU) in selective and non-selective culture media. Furthermore, the biofilm structure and acid production by microorganisms were analyzed using microscopic and spectrophotometric analysis, respectively. The biofilms from different patients showed variations in microbial composition, being formed by streptococci, lactobacilli and yeasts. Altogether, PDT decreased up to 3.7 log10 CFU of total microorganisms, 2.8 log10 CFU of streptococci, 3.2 log10 CFU of lactobacilli and 3.2 log10 CFU of yeasts, and reached eradication of mutans streptococci. PDT was also capable of disaggregating the biofilms and reducing acid concentration in 1.1 to 1.9 mmol lactate/L. It was concluded that FTC was effective in PDT against the heterogeneous biofilms of dental caries.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - Rafael Araújo da Costa Ward
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - Nathália Maria Ferreira Gonçalves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - Lara Luise Castro Pedroso
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
| | - José Vieira da Silva Neto
- Associate Laboratory of Sensors and Materials/LABAS, National Institute for Space Research, São José dos Campos 12227-010, Brazil;
| | - Juliana Ferreira Strixino
- Photobiology Applied to Health, Research and Development Institute IP&D, University of Vale do Paraiba/UNIVAP, São José dos Campos 12244-390, Brazil;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology/ICT, São Paulo State University/UNESP, São José dos Campos 12245-000, Brazil; (M.T.G.); (R.A.d.C.W.); (N.M.F.G.); (L.L.C.P.)
- Correspondence:
| |
Collapse
|
25
|
Suvorov N, Pogorilyy V, Diachkova E, Vasil’ev Y, Mironov A, Grin M. Derivatives of Natural Chlorophylls as Agents for Antimicrobial Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms22126392. [PMID: 34203767 PMCID: PMC8232654 DOI: 10.3390/ijms22126392] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The rapid growth of drug-resistant bacteria all over the world has given rise to a major research challenge, namely a search for alternative treatments to which bacteria will be unable to develop resistance. Photodynamic therapy is an approach of this kind. It involves the use of photosensitizers in combination with visible light at a certain wavelength to excite the former and generate reactive oxygen species. Various synthetic heterocyclic compounds are used as photosensitizers. Of these, derivatives of natural chlorophylls have a special place due to their properties. This review deals with the use of such compounds in antimicrobial PDT.
Collapse
Affiliation(s)
- Nikita Suvorov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
- Correspondence: (N.S.); (E.D.)
| | - Viktor Pogorilyy
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| | - Ekaterina Diachkova
- Department of Oral Surgery of Bororovsky Institute of Dentistry, II.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia
- Correspondence: (N.S.); (E.D.)
| | - Yuri Vasil’ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia;
| | - Andrey Mironov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119571 Moscow, Russia; (V.P.); (A.M.); (M.G.)
| |
Collapse
|
26
|
Kim J, Kim S, Lee K, Kim RH, Hwang KT. Antibacterial Photodynamic Inactivation of Fagopyrin F from Tartary Buckwheat ( Fagopyrum tataricum) Flower against Streptococcus mutans and Its Biofilm. Int J Mol Sci 2021; 22:6205. [PMID: 34201389 PMCID: PMC8226997 DOI: 10.3390/ijms22126205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing mechanisms involving FFF with light exposure were determined using a spectrophotometer and a fluorometer. S. mutans and its biofilm inactivation after PDI treatment of FFF using blue light (BL; 450 nm) were determined by plate count method and crystal violet assay, respectively. The biofilm destruction by ROS produced from FFF after exposure to BL was visualized using confocal laser scanning microscopy (CLSM) and field emission scanning electron microscope (FE-SEM). BL among 3 light sources produced type 1 ROS the most when applying FFF as a photosensitizer. FFF exposed to BL (5 and 10 J/cm2) significantly more inhibited S. mutans viability and biofilm formation than FFF without the light exposure (p < 0.05). In the PDI of FFF exposed to BL (10 J/cm2), an apparent destruction of S. mutans and its biofilm were observed by the CLSM and FE-SEM. Antibacterial PDI effect of FFF was determined for the first time in this study.
Collapse
Affiliation(s)
- Jaecheol Kim
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul 08826, Korea
| | - Suna Kim
- Division of Human Ecology, College of Natural Science, Korea National Open University, Seoul 03078, Korea;
| | - Kiuk Lee
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
| | - Ryun Hee Kim
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul 08826, Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Antimicrobial effects of photodynamic therapy with Fotoenticine on Streptococcus mutans isolated from dental caries. Photodiagnosis Photodyn Ther 2021; 34:102303. [PMID: 33887495 DOI: 10.1016/j.pdpdt.2021.102303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a promising strategy to control cariogenic pathogens, such as Streptococcus mutans. Seeking to reach the total bacterial elimination from dental surfaces, novel photosensitizers have been investigated, such as Fotoenticine (FTC) derived from chlorin e6. The objective of this study was to investigate the photodynamic effects of FTC against several clinical strains of S. mutans. Clinical isolates were obtained from patients with active carious lesions, identified by molecular analysis and subjected to PDT using laser irradiation (660 nm and 39.5 J/cm2) in planktonic and biofilm stages. We identified 11 S. mutans strains from cervical, occlusal and proximal caries. PDT mediated by FTC has totally eliminated the S. mutans cells in planktonic growth for all analyzed strains. In biofilms, PDT with FTC reached statistically significant reductions compared with the non-treated control group, at 5.4, 5.5 and 6.5 Log10 (CFU/mL), respectively, for the strains from proximal, occlusal and cervical caries. The scanning electron microscopy evaluations confirmed that PDT mediated by FTC was able to disaggregate and kill the S. mutans cells adhered to enamel surface, suggesting its potential to disinfect the dental tissues.
Collapse
|
28
|
Chitosan enhances the antimicrobial photodynamic inactivation mediated by Photoditazine® against Streptococcus mutans. Photodiagnosis Photodyn Ther 2020; 32:102001. [DOI: 10.1016/j.pdpdt.2020.102001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
29
|
Warrier A, Mazumder N, Prabhu S, Satyamoorthy K, Murali TS. Photodynamic therapy to control microbial biofilms. Photodiagnosis Photodyn Ther 2020; 33:102090. [PMID: 33157331 DOI: 10.1016/j.pdpdt.2020.102090] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
Microorganisms thrive in well-organized biofilm ecosystems. Biofilm-associated cells typically show increased resistance to antibiotics and contribute significantly to treatment failure. This has prompted investigations aimed at developing advanced and novel antimicrobial approaches that could effectively overcome the shortcomings associated with conventional antibiotic therapy. Studies are ongoing to develop effective curative strategies ranging from the use of peptides, small molecules, nanoparticles to bacteriophages, sonic waves, and light energy targeting various structural and physiological aspects of biofilms. In photodynamic therapy, a light source of a specific wavelength is used to irradiate non-toxic photosensitizers such as tetrapyrroles, synthetic dyes or, naturally occurring compounds to generate reactive oxygen species that can exert a lethal effect on the microbe especially by disrupting the biofilm. The photosensitizer preferentially binds to and accumulates in the microbial cells without causing any damage to the host tissue. Currently, photodynamic therapy is increasingly being used for the treatment of oral caries and dental plaque, chronic wound infections, infected diabetic foot ulcers, cystic fibrosis, chronic sinusitis, implant device-associated infections, etc. This approach is recognized as safe, as it is non-toxic and minimally invasive, making it a reliable, realistic, and promising therapeutic strategy for reducing the microbial burden and biofilm formation in chronic infections. In this review article, we discuss the current and future potential strategies of utilizing photodynamic therapy to extend our ability to impede and eliminate biofilms in various medical conditions.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sudharshan Prabhu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
30
|
TIȘLER CE, BADEA ME, BUDURU S, KUI A, FLORIA M, POPESCU Ș, MITARIU M, NEGUCIOIU M. Biofilm Inactivation using Photodynamic Therapy in Dentistry: a review of literature. BALNEO RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2020.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Photodynamic therapy (PDT) is a therapy involving light and a photosensitising chemical substance, used in conjunction with molecular oxygen in order to elicit cell death (photo-toxicity) and thus ability to kill microbial cells, including bacteria, fungi and viruses. Photodynamic therapy is an alternative method of biofilm disruption and it is considered a new way of microorganism inactivation. It is also an additional procedure to reduce the infection rate in patients, caused by the increasing antimicrobials resistance of bacteria. The aim of this literature review was to evaluate the specific effects and the antibacterial effectiveness of photodynamic therapy using different types of photosensitizers (Erythrosine, Rose Bengal, Toluidine blue, Methylene blue, Ozone, Riboflavin, Curcumin, Chlorhexidine, SAPYR) and a visible light of a specific wavelength for each photosensitizer and to reveal the applications of PDT in periodontics, endodontics, prosthodontics and dental caries. Methods: A research of literature was performed in an attempt to find all the articles published on this topic in the last 10 years. The articles was searched by using a certain combination of different keywords (photodynamic therapy ) and (diode laser ) and (teeth) in PubMed database. Results: A total number of 83 articles were found. After applying inclusion and exclusion criteria, 35 articles were taken into consideration for our study and among them 4 were a manuscript, 3 was a review of literature, 1 was an in vivo evaluation and 27 were in vitro studies. Conclusion: Considering that none of the disinfection methods can completely remove the biofilm, PDT is a therapeutic tool complementary to conventional disinfection, with great applicability in dentistry. PDT showed significantly efficacy in reduction of biofilms. Exposure to light in the presence of a photosensitizing chemical substance helps in the reduction of microbes and the protocols could be recommended for clinical usage, but only together with ‘classic ‘ disinfection.
Collapse
Affiliation(s)
- Corina-Elena TIȘLER
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mîndra-Eugenia BADEA
- 2. Prevention in Dentistry Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Smaranda BUDURU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea KUI
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela FLORIA
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ștefan POPESCU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai MITARIU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius NEGUCIOIU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Nie M, Deng DM, Wu Y, de Oliveira KT, Bagnato VS, Crielaard W, Rastelli ANDS. Photodynamic inactivation mediated by methylene blue or chlorin e6 against Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2020; 31:101817. [DOI: 10.1016/j.pdpdt.2020.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
|
32
|
Antimicrobial Photodynamic Therapy with Chlorin e6 Is Bactericidal against Biofilms of the Primary Human Otopathogens. mSphere 2020; 5:5/4/e00492-20. [PMID: 32669474 PMCID: PMC7364218 DOI: 10.1128/msphere.00492-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Otitis media (OM), or middle ear disease, is the most prevalent bacterial infection in children and the primary reason for antibiotic use and surgical intervention in the pediatric population. Biofilm formation by the major bacterial otopathogens, Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae, has been shown to occur within the middle ears of OM patients and is a key factor in the development of recurrent disease, which may result in hearing impairment and developmental delays. Bacterial biofilms are inherently impervious to most antibiotics and present a significant challenge to the immune system. In this study, we demonstrate that antimicrobial photodynamic therapy (aPDT) using the photosensitizer chlorin e6 elicits significant bactericidal activity versus planktonic and biofilm-associated otopathogens and supports further analyses of this novel, efficacious, and promising technology as an adjunctive treatment for acute and recurrent OM. Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae (NTHi) are ubiquitous upper respiratory opportunistic pathogens. Together, these three microbes are the most common causative bacterial agents of pediatric otitis media (OM) and have therefore been characterized as the primary human otopathogens. OM is the most prevalent bacterial infection in children and the primary reason for antibiotic administration in this population. Moreover, biofilm formation has been confirmed as a primary mechanism of chronic and recurrent OM disease. As bacterial biofilms are inherently metabolically recalcitrant to most antibiotics and these complex structures also present a significant challenge to the immune system, there is a clear need to identify novel antimicrobial approaches to treat OM infections. In this study, we evaluated the potential efficacy of antibacterial photodynamic therapy (aPDT) with the photosensitizer chlorin e6 (Ce6) against planktonic as well as biofilm-associated M. catarrhalis, S. pneumoniae, and NTHi. Our data indicate aPDT with Ce6 elicits significant bactericidal activity against both planktonic cultures and established biofilms formed by the three major otopathogens (with an efficacy of ≥99.9% loss of viability). Notably, the implementation of a novel, dual-treatment aPDT protocol resulted in this disinfectant effect on biofilm-associated bacteria and, importantly, inhibited bacterial regrowth 24 h posttreatment. Taken together, these data suggest this novel Ce6-aPDT treatment may be a powerful and innovative therapeutic strategy to effectively treat and eradicate bacterial OM infections and, significantly, prevent the development of recurrent disease. IMPORTANCE Otitis media (OM), or middle ear disease, is the most prevalent bacterial infection in children and the primary reason for antibiotic use and surgical intervention in the pediatric population. Biofilm formation by the major bacterial otopathogens, Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae, has been shown to occur within the middle ears of OM patients and is a key factor in the development of recurrent disease, which may result in hearing impairment and developmental delays. Bacterial biofilms are inherently impervious to most antibiotics and present a significant challenge to the immune system. In this study, we demonstrate that antimicrobial photodynamic therapy (aPDT) using the photosensitizer chlorin e6 elicits significant bactericidal activity versus planktonic and biofilm-associated otopathogens and supports further analyses of this novel, efficacious, and promising technology as an adjunctive treatment for acute and recurrent OM.
Collapse
|
33
|
Garcia de Carvalho G, Sanchez-Puetate JC, Donatoni MC, Maquera Huacho PM, de Souza Rastelli AN, de Oliveira KT, Palomari Spolidorio DM, Leal Zandim-Barcelos D. Photodynamic inactivation using a chlorin-based photosensitizer with blue or red-light irradiation against single-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2020; 31:101916. [PMID: 32645434 DOI: 10.1016/j.pdpdt.2020.101916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Chlorin-e6 (Ce6), as a photosensitizer (PS), has demonstrated significant reduction of microorganisms' viability when irradiated by red light. However, the main absorption peak of this PS is located at blue light spectrum, which is less investigated. This study aimed to evaluate the effect of pure-chlorin-e6-mediated photodynamic inactivation (PDI) using different light sources (450 or 660 nm) against biofilms related to periodontitis. Streptococcus oralis, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans single-species biofilms were developed under proper conditions for five days. PDI was performed using different concentrations of Ce6 (100 and 200 mM), wavelengths (450 and 660 nm) and comparisons were made after colony forming unit and confocal laser scanning microscopy (CLSM) analysis. The use of light and PS were also individually tested. The greatest bacterial elimination was observed in the group where PDI was employed with blue light and concentration of 200 mM for all bacterial strains tested (4.01 log10 for A. actinomycetemcomitans, and total elimination for P. gingivalis and S. oralis), except for F. nucleatum, where 3.46 log10 reduction was observed when red light and 200 mM Ce6 were applied (p < 0.05). The antimicrobial effects of PDI mediated by Ce6 for all single pathogenic biofilms were confirmed by live/dead staining under CLSM analysis. For all single-species biofilms, the use of PDI mediated by chlorin-e6 photosensitizer under blue or red-light irradiation (450 and 660 nm) demonstrated a significant reduction in bacterial viability, but blue light showed a promising higher photobiological effect, encouraging its adjuvant use to basic periodontitis treatment.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Julio Cesar Sanchez-Puetate
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Maria Carolina Donatoni
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
34
|
Costa Magacho C, Guerra Pinto J, Müller Nunes Souza B, Correia Pereira AH, Ferreira-Strixino J. Comparison of photodynamic therapy with methylene blue associated with ceftriaxone in gram-negative bacteria; an in vitro study. Photodiagnosis Photodyn Ther 2020; 30:101691. [PMID: 32109621 DOI: 10.1016/j.pdpdt.2020.101691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
The resistance of microorganisms increases the need for new antimicrobial therapies. The aim of this study was to evaluate the in vitro action of photodynamic therapy and its combination with ceftriaxone in third generation cephalosporin resistant gram-negative bacteria. Clinical strains of Klebsiella pneumoniae, Enterobacter aerogenes and Escherichia coli were obtained, incubated with MB for 15 min combined or not with ceftriaxone and irradiated with fluence of 10 and 25 J/cm². MB internalization was evaluated by confocal microscopy. Cell viability was assessed by counting colony forming units and bacterian metabolism by the resazurin test. MB has been observed within cells, although not in all bacteria. PDT-MB alone and combined with Ceftriaxone reduced bacterial growth by approximately 1 log at 10 J/cm² of fluence and 4 logs by 25 J/cm², with a significant difference from the control group. The reduction in bacterial growth between the treated groups was similar, without significant difference between them. The Resazurin test showed lower bacterial metabolic activity in the treated groups, but it did not allow to observe difference between fluences. It was concluded with this study that the internalization of MB was not observed in all cells of K. pneumoniae, E. aerogenes and E. coli strains. There was less bacterial metabolic activity in the treated groups, with no variation between different fluences. PDT-MB 25 J/cm² alone and combined with Ceftriaxone showed antimicrobial action, but the PDT-MB/Ceftriaxone combination had no potentiating effect.
Collapse
Affiliation(s)
- Christiane Costa Magacho
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Beatriz Müller Nunes Souza
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - André Henrique Correia Pereira
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
35
|
Afrasiabi S, Pourhajibagher M, Chiniforush N, Aminian M, Bahador A. Anti-biofilm and anti-metabolic effects of antimicrobial photodynamic therapy using chlorophyllin-phycocyanin mixture against Streptococcus mutans in experimental biofilm caries model on enamel slabs. Photodiagnosis Photodyn Ther 2019; 29:101620. [PMID: 31841686 DOI: 10.1016/j.pdpdt.2019.101620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Partial (selective) removal of dental caries is a suitable manner to treat deep carious lesions in vital teeth with asymptomatic pulps. Antimicrobial photodynamic therapy (aPDT) was proposed as a promising ancillary approach for reduction of the residual bacteria from the cavity. Therefore, the focus of this study was to investigate the influence of aPDT using diode laser (DL) plus PhotoActive+ (chlorophyllin-phycocyanin mixture [CHL-PC]) as photosensitizer (PS) on metabolic activity and the reduction in the number of living bacteria within the preformed biofilm caries model on enamel slabs of Streptococcus mutans. MATERIALS AND METHODS The lethal and sub-significant inhibitory (SSI) potential of aPDT using CHL-PC and 635 nm DL against experimental biofilm caries model on enamel slabs and metabolic activity of S. mutans was analyzed using crystal violet and XTT reduction assays, respectively. Intracellular ROS formation by DCFH-DA assay was measured in CHL-PC mediated aPDT treated bacterial samples. Tooth discoloration and cell cytotoxicity of CHL-PC were assessed in the CIEL*a*b* color space and neutral red assay, respectively. RESULTS In this study aPDT at a maximum concentration level of CHL-PC (5000 μg/mL) with 3 min DL irradiation time (103.12 J/cm2) reduced the ex-vivo cariogenic biofilm of S. mutans by 36.93 % (P < 0.05). Although chlorhexidine (CHX) had an anti-biofilm effect about 1.7 fold compared to CHL-PC mediated aPDT, this difference was not significant (36.93 in comparison to 63.05 %; P > 0.05). CHL-PC mediated aPDT demonstrated a significant reduction in bacterial metabolic activity, with rates of 77 % at a SSI dose (using 156 μg/mL of CHL-PC and 3 min DL irradiation time with the energy density of 103.12 J/cm2). The treated bacterial cells exhibited significant (P < 0.05) increment in the ROS generation. The least color change (ΔE) was found using CHL-PC at a concentration of 156 μg/mL (ΔE = 2.74). CHL-PC in different concentrations showed no significant reduction in human gingival fibroblasts (HGFs) cell survival (P > 0.05). CONCLUSION CHL-PC mediated aPDT not only reduces the number of living bacteria within the biofilms of S. mutans in an experimental biofilm caries model on enamel slabs but also its influences microbial virulence by reducing the metabolic activity of the S. mutants.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasim Chiniforush
- Laser Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Aminian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Addition of hydrogen peroxide to methylene blue conjugated to β-cyclodextrin in photodynamic antimicrobial chemotherapy in S. mutans biofilm. Photodiagnosis Photodyn Ther 2019; 28:226-233. [DOI: 10.1016/j.pdpdt.2019.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/20/2019] [Accepted: 09/19/2019] [Indexed: 11/19/2022]
|
37
|
Kurakina D, Khilov A, Shakhova M, Orlinskaya N, Sergeeva E, Meller A, Turchin I, Kirillin M. Comparative analysis of single- and dual-wavelength photodynamic therapy regimes with chlorin-based photosensitizers: animal study. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-17. [PMID: 31872580 PMCID: PMC7013345 DOI: 10.1117/1.jbo.25.6.063804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 05/25/2023]
Abstract
Two pronounced absorption peaks in blue and red ranges of the chlorin-based photosensitizer (PS) absorption spectrum provide additional benefits in photodynamic therapy (PDT) performance. Differing optical properties of biological tissues in these ranges allow for both dual-wavelength diagnostics and PDT performance. We provide a comparative analysis of different PDT regimes performed with blue and red lights and their combination, with doses varying from 50 to 150 J / cm2. The study was performed on the intact skin of a rabbit ear inner surface, with the use of chlorin e6 as a PS. PDT procedure protocol included monitoring of the treated site with fluorescence imaging technique to evaluate PS accumulation and photobleaching, as well as with optical coherence tomography (OCT) to register morphological and functional responses of the tissue. Optical diagnostic observations were compared with the results of histopathology examination. We demonstrated that PDT procedures with the considered regimes induce weaker organism reaction manifested by edema in normal tissue as compared to irradiation-only exposures with the same light doses. The light doses delivered with red light induce weaker tissue reaction as compared to the same doses delivered with blue light only or with a combination of red and blue lights in equal parts. Results of in-vivo OCT monitoring of tissue reaction are in agreement with the results of histopathology study.
Collapse
Affiliation(s)
- Daria Kurakina
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | | | - Maria Shakhova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Alina Meller
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ilya Turchin
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | | |
Collapse
|
38
|
de Oliveira AB, Ferrisse TM, Marques RS, de Annunzio SR, Brighenti FL, Fontana CR. Effect of Photodynamic Therapy on Microorganisms Responsible for Dental Caries: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20143585. [PMID: 31340425 PMCID: PMC6678311 DOI: 10.3390/ijms20143585] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to perform a systematic review of the literature followed by a meta-analysis about the efficacy of photodynamic therapy (PDT) on the microorganisms responsible for dental caries. The research question and the keywords were constructed according to the PICO strategy. The article search was done in Embase, Lilacs, Scielo, Medline, Scopus, Cochrane Library, Web of Science, Science Direct, and Pubmed databases. Randomized clinical trials and in vitro studies were selected in the review. The study was conducted according the PRISMA guideline for systematic review. A total of 34 articles were included in the qualitative analysis and four articles were divided into two subgroups to perform the meta-analysis. Few studies have achieved an effective microbial reduction in microorganisms associated with the pathogenesis of dental caries. The results highlight that there is no consensus about the study protocols for PDT against cariogenic microorganisms, although the results showed the PDT could be a good alternative for the treatment of dental caries.
Collapse
Affiliation(s)
- Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo 14801-903, Brazil
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo 14801-903, Brazil
| | - Raquel Souza Marques
- São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo 14801-903, Brazil
| | - Sarah Raquel de Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14800-903, Brazil
| | | | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
39
|
Reis ACM, Regis WFM, Rodrigues LKA. Scientific evidence in antimicrobial photodynamic therapy: An alternative approach for reducing cariogenic bacteria. Photodiagnosis Photodyn Ther 2019; 26:179-189. [DOI: 10.1016/j.pdpdt.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
|