1
|
Imaizumi U, Inaba K, Kurahashi A, Kuroda H, Sanuki T, Yoshida A, Yoshino F, Hamada N. Effectiveness of curcumin-based antimicrobial photodynamic therapy against Staphylococcus aureus. J Oral Sci 2023; 65:270-274. [PMID: 37778986 DOI: 10.2334/josnusd.23-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
PURPOSE This study investigated the effectiveness of curcumin-based antimicrobial photodynamic therapy (aPDT) against Staphylococcus aureus (S. aureus), the causative agent of ventilator-associated pneumonia. METHODS Curcumin was added to S. aureus culture medium at concentrations of 25, 2.5, and 0.25 µM. After 60 min (20-25°C), each culture was irradiated for 1 and 3 min, and viable bacteria were counted. Curcumin (25 µM) was also added to a bacterial suspension with D-mannitol and sodium azide; microbial counts were determined after irradiation for 3 min. RESULTS S. aureus was significantly reduced in the 1-min (P = 0.043) and 3-min (P = 0.011) irradiation groups in comparison to the 0-min irradiation group with 25 µM curcumin. No significant differences were observed between the curcumin alone group and the curcumin plus D-mannitol or sodium azide group. CONCLUSION The findings of this study indicate that prolonged exposure (≥1 min) of S. aureus to LED in 25 μM curcumin solution induces cell wall injury. Curcumin-based aPDT as an adjunct to conventional oral care, employing existing dentistry equipment, offers a promising approach that does not rely on antimicrobial drugs or allows the emergence of resistant bacterial strains. This suggests its potential role in future strategies aimed at preventing ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Uno Imaizumi
- Department of Dental Anesthesiology, Kanagawa Dental University
| | - Keitaro Inaba
- Department of Oral Microbiology, Kanagawa Dental University
| | | | - Hidetaka Kuroda
- Department of Dental Anesthesiology, Kanagawa Dental University
| | - Takuro Sanuki
- Department of Dental Anesthesiology, Kanagawa Dental University
| | - Ayaka Yoshida
- Department of Dental Education, Kanagawa Dental University
| | | | | |
Collapse
|
2
|
Dadi NCT, Bujdák J, Medvecká V, Pálková H, Barlog M, Bujdáková H. Surface Characterization and Anti-Biofilm Effectiveness of Hybrid Films of Polyurethane Functionalized with Saponite and Phloxine B. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7583. [PMID: 34947179 PMCID: PMC8703816 DOI: 10.3390/ma14247583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
The main objective of this work was to synthesize composites of polyurethane (PU) with organoclays (OC) exhibiting antimicrobial properties. Layered silicate (saponite) was modified with octadecyltrimethylammonium cations (ODTMA) and functionalized with phloxine B (PhB) and used as a filler in the composites. A unique property of composite materials is the increased concentration of modifier particles on the surface of the composite membranes. Materials of different compositions were tested and investigated using physico-chemical methods, such as infrared spectroscopy, X-ray diffraction, contact angle measurements, absorption, and fluorescence spectroscopy in the visible region. The composition of an optimal material was as follows: nODTMA/mSap = 0.8 mmol g-1 and nPhB/mSap = 0.1 mmol g-1. Only about 1.5% of present PhB was released in a cultivation medium for bacteria within 24 h, which proved good stability of the composite. Anti-biofilm properties of the composite membranes were proven in experiments with resistant Staphylococcus aureus. The composites without PhB reduced the biofilm growth 100-fold compared to the control sample (non-modified PU). The composite containing PhB in combination with the photodynamic inactivation (PDI) reduced cell growth by about 10,000-fold, thus proving the significant photosensitizing effect of the membranes. Cell damage was confirmed by scanning electron microscopy. A new method of the synthesis of composite materials presented in this work opens up new possibilities for targeted modification of polymers by focusing on their surfaces. Such composite materials retain the properties of the unmodified polymer inside the matrix and only the surface of the material is changed. Although these unique materials presented in this work are based on PU, the method of surface modification can also be applied to other polymers. Such modified polymers could be useful for various applications in which special surface properties are required, for example, for materials used in medical practice.
Collapse
Affiliation(s)
- Nitin Chandra Teja Dadi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Juraj Bujdák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia;
| | - Helena Pálková
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Martin Barlog
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
3
|
Yoshida A, Inaba K, Sasaki H, Hamada N, Yoshino F. Impact on Porphyromonas gingivalis of antimicrobial photodynamic therapy with blue light and Rose Bengal in plaque-disclosing solution. Photodiagnosis Photodyn Ther 2021; 36:102576. [PMID: 34628072 DOI: 10.1016/j.pdpdt.2021.102576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Antimicrobial photodynamic therapy (aPDT) in periodontal pockets using lasers is difficult to perform in some cases because of the high cost of irradiation equipment and the narrow irradiation field. The purpose of the present study was to examine the effects of aPDT in combination with a plaque-disclosing solution and blue light-emitting diode (LED), which are used for composite resin polymerization. METHODS The reactive oxygen species generated by irradiating 0.001% RB or MB with blue light were analyzed using electron spin resonance spectroscopy. Blue-light exposure was performed at 6.92, 20.76 and 124.6 J. The microorganism to be sterilized was Porphyromonas gingivalis. After aPDT, colony-forming units (CFUs) were measured to estimate cell survival. Carbonylated protein (PC) levels were used to evaluate oxidative stress. All statistical analyses were performed with Tukey's multiple comparisons test or the unpaired t-test. RESULTS Singlet oxygen (1O2) generation was confirmed by RB+blue LED. 1O2 production was significantly greater with the blue LED irradiation of RB than that of MB (p < 0.0001). CFUs were significantly lower in the blue LED-irradiated group than in the non-LED-irradiated group (p < 0.01). The bactericidal effect increased in a time-dependent manner. aPDT increased PC levels. No morphological changes were observed in P. gingivalis. CONCLUSIONS The present results suggest that aPDT exerts bactericidal effects against P. gingivalis by increasing oxidative stress through the generation of 1O2 in cells. Periodontal disease may be treated by aPDT using the equipment available in dental offices.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Department of Dental Education, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Keitaro Inaba
- Department of Oral Microbiology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Haruka Sasaki
- Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Fumihiko Yoshino
- Department of Pharmacology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan.
| |
Collapse
|
4
|
Zhang M, Lan J, Zhang T, Sun W, Liu P, Wang Z. Oral health and caries/gingivitis-associated factors of adolescents aged 12-15 in Shandong province, China: a cross-sectional Oral Health Survey. BMC Oral Health 2021; 21:288. [PMID: 34088280 PMCID: PMC8178891 DOI: 10.1186/s12903-021-01640-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/17/2021] [Indexed: 01/28/2023] Open
Abstract
Background We aimed to analyse the oral health status of adolescents in Shandong province, including dental caries and gingivitis, and their associated factors. Methods Adolescents aged 12–15-years in Shandong province were recruited. Caries and gingival status were assessed following the World Health Organisation diagnostic criteria. Information including the sociodemographic, oral hygiene knowledge, attitudes and practices were collected through the questionnaire. Chi-square test and multivariate logistic regression analysis were used to investigate the oral diseases associated factors. Results In total, 3868 students (50.2% males) were enrolled. Of these, 39.9% of the participants experienced caries, and 81.7% and 31.3% had calculus and bleeding gingival, respectively. Multivariate logistic regression analysis revealed that there was an association between dental caries and toothaches, dental visits and sleeping troubles caused by oral problems (P < 0.024). A low-frequency of brushing, high sugar consumption and no flossing were more associated with calculus formation and gingival bleeding (P < 0.008). Conclusion Compared to caries, worse gingival condition was more prevalent among adolescents in Shandong province. Brushing behaviour is associated with gingivitis, while dental visits and toothaches are associated with caries. Hence, prevention-oriented dental visits and oral hygiene training are strongly recommended to improve oral health status. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01640-x.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pediatricss Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jing Lan
- Department of Pediatricss Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Tiantian Zhang
- Department of Pediatricss Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Wenshuang Sun
- Department of Pediatricss Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Panpan Liu
- Department of Pediatricss Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zhifeng Wang
- Department of Pediatricss Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Antimicrobial effects of photodynamic therapy with Fotoenticine on Streptococcus mutans isolated from dental caries. Photodiagnosis Photodyn Ther 2021; 34:102303. [PMID: 33887495 DOI: 10.1016/j.pdpdt.2021.102303] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a promising strategy to control cariogenic pathogens, such as Streptococcus mutans. Seeking to reach the total bacterial elimination from dental surfaces, novel photosensitizers have been investigated, such as Fotoenticine (FTC) derived from chlorin e6. The objective of this study was to investigate the photodynamic effects of FTC against several clinical strains of S. mutans. Clinical isolates were obtained from patients with active carious lesions, identified by molecular analysis and subjected to PDT using laser irradiation (660 nm and 39.5 J/cm2) in planktonic and biofilm stages. We identified 11 S. mutans strains from cervical, occlusal and proximal caries. PDT mediated by FTC has totally eliminated the S. mutans cells in planktonic growth for all analyzed strains. In biofilms, PDT with FTC reached statistically significant reductions compared with the non-treated control group, at 5.4, 5.5 and 6.5 Log10 (CFU/mL), respectively, for the strains from proximal, occlusal and cervical caries. The scanning electron microscopy evaluations confirmed that PDT mediated by FTC was able to disaggregate and kill the S. mutans cells adhered to enamel surface, suggesting its potential to disinfect the dental tissues.
Collapse
|
6
|
Saruta J, Ozawa R, Hamajima K, Saita M, Sato N, Ishijima M, Kitajima H, Ogawa T. Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement. MATERIALS 2021; 14:ma14051289. [PMID: 33800383 PMCID: PMC7962826 DOI: 10.3390/ma14051289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Polymethylmethacrylate (PMMA)-based acrylic bone cement is commonly used to fix bone and metallic implants in orthopedic procedures. The polymerization initiator tri-n-butylborane (TBB) has been reported to significantly reduce the cytotoxicity of PMMA-based bone cement compared to benzoyl peroxide (BPO). However, it is unknown whether this benefit is temporary or long-lasting, which is important to establish given that bone cement is expected to remain in situ permanently. Here, we compared the biocompatibility of PMMA-TBB and PMMA-BPO bone cements over several days. Rat femur-derived osteoblasts were seeded onto two commercially-available PMMA-BPO bone cements and experimental PMMA-TBB polymerized for one day, three days, or seven days. Significantly more cells attached to PMMA-TBB bone cement during the initial stages of culture than on both PMMA-BPO cements, regardless of the age of the materials. Proliferative activity and differentiation markers including alkaline phosphatase production, calcium deposition, and osteogenic gene expression were consistently and considerably higher in cells grown on PMMA-TBB than on PMMA-BPO, regardless of cement age. Although osteoblastic phenotypes were more favorable on older specimens for all three cement types, biocompatibility increased between three-day-old and seven-day-old PMMA-BPO specimens, and between one-day-old and three-day-old PMMA-TBB specimens. PMMA-BPO materials produced more free radicals than PMMA-TBB regardless of the age of the material. These data suggest that PMMA-TBB maintains superior biocompatibility over PMMA-BPO bone cements over prolonged periods of at least seven days post-polymerization. This superior biocompatibility can be ascribed to both low baseline cytotoxicity and a further rapid reduction in cytotoxicity, representing a new biological advantage of PMMA-TBB as a novel bone cement material.
Collapse
Affiliation(s)
- Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Kanagawa, Japan
| | - Ryotaro Ozawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
- Department of Oral Interdisciplinary Medicine (Prosthodontics & Oral Implantology), Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Kanagawa, Japan
| | - Kosuke Hamajima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 1-1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan
| | - Makiko Saita
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
- Department of Oral Interdisciplinary Medicine (Prosthodontics & Oral Implantology), Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Kanagawa, Japan
| | - Nobuaki Sato
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, 1-1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan
| | - Manabu Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
| | - Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (J.S.); (R.O.); (K.H.); (M.S.); (N.S.); (M.I.); (H.K.)
- Correspondence: ; Tel.: +1-310-825-0727; Fax: +1-310-825-6345
| |
Collapse
|
7
|
Dadi NCT, Dohál M, Medvecká V, Bujdák J, Koči K, Zahoranová A, Bujdáková H. Physico-Chemical Characterization and Antimicrobial Properties of Hybrid Film Based on Saponite and Phloxine B. Molecules 2021; 26:E325. [PMID: 33435210 PMCID: PMC7827291 DOI: 10.3390/molecules26020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
This research was aimed at the preparation of a hybrid film based on a layered silicate saponite (Sap) with the immobilized photosensitizer phloxine B (PhB). Sap was selected because of its high cation exchange capacity, ability to exfoliate into nanolayers, and to modify different surfaces. The X-ray diffraction of the films confirmed the intercalation of both the surfactant and PhB molecules in the Sap film. The photosensitizer retained its photoactivity in the hybrid films, as shown by fluorescence spectra measurements. The water contact angles and the measurement of surface free energy demonstrated the hydrophilic nature of the hybrid films. Antimicrobial effectiveness, assessed by the photodynamic inactivation on hybrid films, was tested against a standard strain and against methicillin-resistant bacteria of Staphylococcus aureus (MRSA). One group of samples was irradiated (green LED light; 2.5 h) and compared to nonirradiated ones. S. aureus strains manifested a reduction in growth from 1-log10 to over 3-log10 compared to the control samples with Sap only, and defects in S. aureus cells were proven by scanning electron microscopy. The results proved the optimal photo-physical properties and anti-MRSA potential of this newly designed hybrid system that reflects recent progress in the modification of surfaces for various medical applications.
Collapse
Affiliation(s)
- Nitin Chandra teja Dadi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Matúš Dohál
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia; (V.M.); (A.Z.)
| | - Juraj Bujdák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
- Institute of Inorganic Chemistry of SAS, 845 36 Bratislava, Slovakia
| | - Kamila Koči
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Anna Zahoranová
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia; (V.M.); (A.Z.)
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| |
Collapse
|