1
|
Pucelik B, Barzowska A, Sułek A, Werłos M, Dąbrowski JM. Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms. Photochem Photobiol Sci 2024; 23:539-560. [PMID: 38457119 DOI: 10.1007/s43630-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
- Sano Centre for Computational Medicine, Kraków, Poland.
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Sano Centre for Computational Medicine, Kraków, Poland
| | - Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
2
|
Ruanchaiman S, Amornchai P, Wuthiekanun V, Langla S, Maroongruang P, Le KK, Blacksell SD. Effectiveness of Umonium 38 against Burkholderia pseudomallei, Escherichia coli, Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus (MRSA). BMC Infect Dis 2024; 24:212. [PMID: 38365598 PMCID: PMC10873964 DOI: 10.1186/s12879-024-09102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
AIMS We investigated the antibacterial efficacy of Umonium38 and Virkon® against Burkholderia pseudomallei, Escherichia coli, Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus (MRSA) up to 14 days following treatment. METHODS AND RESULTS Umonium38 was diluted to 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3%, tested against the bacterial strains at various contact times (15 min to 24 h), and incubated for up to 14 days. A minimum concentration of 0.5% Umonium38 with a contact time of 15 min effectively killed approximately 108 CFU/ml of all four bacterial species. No growth was observed on agar plates from day 0 until day 14 for all six concentrations. The bacteria were also inactivated by a 30-minute treatment time using Virkon® 1% solution. CONCLUSIONS Umonium38 effectively inactivates B. pseudomallei, E. coli, P. aeruginosa and MRSA at a concentration of ≥ 0.5% with a contact time of at least 15 min. The antimicrobial effect of Umonium38 remained for 14 days.
Collapse
Affiliation(s)
- Soiratchaneekorn Ruanchaiman
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Peerapol Maroongruang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Khanh Kim Le
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Stuart D Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand.
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ, Oxford, UK.
| |
Collapse
|
3
|
Sammarro Silva KJ, Lima AR, Dias LD, de Souza M, Nunes Lima TH, Bagnato VS. Hydrogen peroxide preoxidation as a strategy for enhanced antimicrobial photodynamic action against methicillin-resistant Staphylococcus aureus. JOURNAL OF WATER AND HEALTH 2023; 21:1922-1932. [PMID: 38153721 PMCID: wh_2023_245 DOI: 10.2166/wh.2023.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Antimicrobial photodynamic treatment (aPDT) is a photooxidative process based on the excitation of a photosensitizer (PS) in the presence of molecular oxygen, under specific wavelengths of light. It is a promising method for advanced treatment of water and wastewater, particularly targeting disinfection challenges, such as antibiotic-resistant bacteria (ARB). Research in improved aPDT has been exploring new PS materials, and additives in general. Hydrogen peroxide (H2O2) a widely applied disinfectant, mostly in the food industry and clinical settings, present environmentally negligible residuals at the usually applied concentrations, making it friendly for the water and wastewater sectors. Here, we explored the effects of preoxidation with H2O2 followed by blue light-mediated (450 nm) aPDT using curcumin (a natural-based PS) against methicillin-resistant Staphylococcus aureus (MRSA). Results of the sequential treatment pointed to a slight hampering in aPDT efficiency at very low H2O2 concentrations, followed by an increasing cooperative effect up to a deleterious point (≥7 log10 inactivation in CFU mL-1), suggesting a synergistic interaction of preoxidation and aPDT. The increased performance in H2O2-pretreated aPDT encourages studies of optimal operational conditions for the assisted technology and describes potentials for using the described strategy to tackle the issue of ARB spread.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil E-mail:
| | - Alessandra Ramos Lima
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Lucas Danilo Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil
| | - Mariana de Souza
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Thalita Hellen Nunes Lima
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Vanderlei Salvador Bagnato
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil; Biomedical Engineering, Texas A&M University College of Engineering, 3127 TAMU, College Station, TX 77843-3127, USA
| |
Collapse
|
4
|
Moura NMM, Moreira X, Da Silva ES, Faria JL, Neves MGPMS, Almeida A, Faustino MAF, Gomes ATPC. Efficient Strategies to Use β-Cationic Porphyrin-Imidazolium Derivatives in the Photoinactivation of Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:15970. [PMID: 37958951 PMCID: PMC10647407 DOI: 10.3390/ijms242115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Bacterial resistance to antibiotics is a critical global health issue and the development of alternatives to conventional antibiotics is of the upmost relevance. Antimicrobial photodynamic therapy (aPDT) is considered a promising and innovative approach for the photoinactivation of microorganisms, particularly in cases where traditional antibiotics may be less effective due to resistance or other limitations. In this study, two β-modified monocharged porphyrin-imidazolium derivatives were efficiently incorporated into polyvinylpyrrolidone (PVP) formulations and supported into graphitic carbon nitride materials. Both porphyrin-imidazolium derivatives displayed remarkable photostability and the ability to generate cytotoxic singlet oxygen. These properties, which have an important impact on achieving an efficient photodynamic effect, were not compromised after incorporation/immobilization. The prepared PVP-porphyrin formulations and the graphitic carbon nitride-based materials displayed excellent performance as photosensitizers to photoinactivate methicillin-resistant Staphylococcus aureus (MRSA) (99.9999% of bacteria) throughout the antimicrobial photodynamic therapy. In each matrix, the most rapid action against S. aureus was observed when using PS 2. The PVP-2 formulation needed 10 min of exposure to white light at 5.0 µm, while the graphitic carbon nitride hybrid GCNM-2 required 20 min at 25.0 µm to achieve a similar level of response. These findings suggest the potential of graphitic carbon nitride-porphyrinic hybrids to be used in the environmental or clinical fields, avoiding the use of organic solvents, and might allow for their recovery after treatment, improving their applicability for bacteria photoinactivation.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Xavier Moreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Eliana Sousa Da Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joaquim Luís Faria
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Ana T. P. C. Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
5
|
Sarabando SN, Dias CJ, Vieira C, Bartolomeu M, Neves MGPMS, Almeida A, Monteiro CJP, Faustino MAF. Sulfonamide Porphyrins as Potent Photosensitizers against Multidrug-Resistant Staphylococcus aureus (MRSA): The Role of Co-Adjuvants. Molecules 2023; 28:molecules28052067. [PMID: 36903314 PMCID: PMC10004250 DOI: 10.3390/molecules28052067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Sulfonamides are a conventional class of antibiotics that are well-suited to combat infections. However, their overuse leads to antimicrobial resistance. Porphyrins and analogs have demonstrated excellent photosensitizing properties and have been used as antimicrobial agents to photoinactivate microorganisms, including multiresistant Staphylococcus aureus (MRSA) strains. It is well recognized that the combination of different therapeutic agents might improve the biological outcome. In this present work, a novel meso-arylporphyrin and its Zn(II) complex functionalized with sulfonamide groups were synthesized and characterized and the antibacterial activity towards MRSA with and without the presence of the adjuvant KI was evaluated. For comparison, the studies were also extended to the corresponding sulfonated porphyrin TPP(SO3H)4. Photodynamic studies revealed that all porphyrin derivatives were effective in photoinactivating MRSA (>99.9% of reduction) at a concentration of 5.0 μM upon white light radiation with an irradiance of 25 mW cm-2 and a total light dose of 15 J cm-2. The combination of the porphyrin photosensitizers with the co-adjuvant KI during the photodynamic treatment proved to be very promising allowing a significant reduction in the treatment time and photosensitizer concentration by six times and at least five times, respectively. The combined effect observed for TPP(SO2NHEt)4 and ZnTPP(SO2NHEt)4 with KI seems to be due to the formation of reactive iodine radicals. In the photodynamic studies with TPP(SO3H)4 plus KI, the cooperative action was mainly due to the formation of free iodine (I2).
Collapse
Affiliation(s)
- Sofia N. Sarabando
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristina J. Dias
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Vieira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| | - Maria Amparo F. Faustino
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| |
Collapse
|
6
|
Bartolomeu M, Monteiro CJP, Fontes M, Neves MGPMS, Faustino MAF, Almeida A. Photodynamic inactivation of microorganisms in different water matrices: The effect of physicochemical parameters on the treatment outcome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160427. [PMID: 36435255 DOI: 10.1016/j.scitotenv.2022.160427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Wastewater (WW) insufficiently treated for the disinfection of microorganisms, including pathogenic ones, is a source of concern and a possible generator of public health problems. Traditional disinfection methods to reduce pathogens concentration (e.g., chlorination, ozonation, UV) are expensive, unsafe, and/or sometimes ineffective, highlighting the need for new disinfection technologies. The promising results of photodynamic inactivation (PDI) treatment to eradicate microorganisms suggest the efficacy of this treatment to improve WW quality. This work aimed to assess if PDI can be successfully extended to real contexts for the microbial inactivation in WW. For the first time, PDI experiments with 9 different water matrices compositions were performed to inquire about the influence of some of their physicochemical parameters on the effectiveness of microbial inactivation. Bacterial photoinactivation was tested in freshwater, aquaculture water, and seawater samples, as well as in influents and effluents samples from domestic, industrial, and a mixture of industrial and domestic WW receiving wastewater treatment plants (WWTPs). Additionally, PDI assays were performed in phosphate-buffered saline isotonic solution (PBS), used as an aqueous comparative matrix. To relate the PDI disinfection efficiency with the physicochemical compositions of the different used water matrices, a series of statistical analysis were performed, in order to support our main conclusions. Overall, the results showed that PDI is an effective and promising alternative to traditionally used WW disinfection methods, with a bacterial reduction of >3.0 log CFU/mL in all the water matrices within the first hour of PDI treatment, but also that the physicochemical composition of the aqueous matrices to be PDI-disinfected must be taken into account since they seem to influence the PDI efficacy, namely the pH, with acidic pH conditions seeming to be associated to a better PDI performance in general.
Collapse
Affiliation(s)
- Maria Bartolomeu
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos J P Monteiro
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Milton Fontes
- Águas do Centro Litoral (AdCL), 3030-410 Coimbra, Portugal.
| | | | | | - Adelaide Almeida
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
de Oliveira Silva JV, Meneguello JE, Formagio MD, de Freitas CF, Hioka N, Pilau EJ, Marchiosi R, Machinski Junior M, de Abreu Filho BA, Zanetti Campanerut-Sá PA, Graton Mikcha JM. Proteomic Investigation over the Antimicrobial Photodynamic Therapy Mediated by Rose Bengal Against Staphylococcus aureus. Photochem Photobiol 2022; 99:957-966. [PMID: 36054748 DOI: 10.1111/php.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
Abstract
In order, to understand the antimicrobial action of photodynamic therapy and how this technique can contribute to its application in the control of pathogens. The objective of the study was to employ a proteomic approach to investigate the protein profile of S. aureus after antimicrobial photodynamic therapy mediated by rose bengal (RB-aPDT). S. aureus was treated with RB (10 nmol/l) and illuminated with green LED (0.17 J/cm2 ) for cell viability evaluation. Afterward, proteomic analysis was employed for protein identification and bioinformatic tools to classify the differentially expressed proteins. The reduction of S. aureus after photoinactivation was ~2.5 log CFU/ml. A total of 12 proteins (four up-regulated and eight down-regulated), correspond exclusively to alteration by RB-aPDT. Functionally these proteins are distributed in protein binding, structural constituent of ribosome, proton transmembrane transporter activity, and ATPase activity. The effects of photodamage include alterations of levels of several proteins resulting in an activated stress response, altered membrane potential, and effects on energy metabolism. These 12 proteins required the presence of both light and RB suggesting a unique response to photodynamic effects. The information about this technique contributes valuable insights into bacterial mechanisms and the mode of action of photodynamic therapy.
Collapse
Affiliation(s)
| | - Jean Eduardo Meneguello
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Maíra Dante Formagio
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Camila Fabiano de Freitas
- Department of Chemistry, State University of Maringá, Paraná, Brazil.,Departament of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Paraná, Brazil
| | | | | | | | | |
Collapse
|
8
|
Bartolomeu M, Vieira C, Dias M, Conde T, Couto D, Lopes D, Neves B, Melo T, Rey F, Alves E, Silva J, Abreu H, Almeida A, Domingues MR. Bioprospecting antibiotic properties in photodynamic therapy of lipids from Codium tomemtosum and Chlorella vulgaris. Biochimie 2022; 203:32-39. [DOI: 10.1016/j.biochi.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
|
9
|
Lacerda PSS, Bartolomeu M, Gomes ATPC, Duarte AS, Almeida A, Faustino MAF, Neves MGPMS, Barata JFB. Can Corrole Dimers Be Good Photosensitizers to Kill Bacteria? Microorganisms 2022; 10:microorganisms10061167. [PMID: 35744685 PMCID: PMC9230841 DOI: 10.3390/microorganisms10061167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Corroles possess key photophysical and photochemical properties to be exploited as therapeutic agents in antimicrobial photodynamic therapy (aPDT). Herein, we present for the first time the antimicrobial efficiency of three corrole dimers and of the corresponding precursor against the Gram(+) bacterium Staphylococcus aureus. Additionally, to explore future clinical applications, the cytotoxicity of the most promising derivatives towards Vero cells was evaluated. The aPDT assays performed under white light irradiation (50 mW/cm2; light dose 450 J/cm2) and at a corrole concentration of 15 µM showed that some dimers were able to reduce 99.9999% of S. aureus strain (decrease of 5 log10 CFU/mL) and their photodynamic efficiency was dependent on position, type of linkage, and aggregation behavior. Under the same light conditions, the corrole precursor 1 demonstrated notable photodynamic efficiency, achieving total photoinactivation (>8.0 log10 CFU/mL reduction) after the same period of irradiation (light dose 450 J/cm2). No cytotoxicity was observed when Vero cells were exposed to corrole 1 and dimer 3 for 24 h according to ISO guidelines (ISO 10993-5) for in vitro cytotoxicity of medical devices. The results show that corrole dimers, dependent on their structures, can be considered good photosensitizers to kill Staphylococcus aureus.
Collapse
Affiliation(s)
- Paula S. S. Lacerda
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.S.L.); (M.B.); (A.A.)
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.G.P.M.S.N.)
| | - Maria Bartolomeu
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.S.L.); (M.B.); (A.A.)
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana T. P. C. Gomes
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505 Viseu, Portugal; (A.T.P.C.G.); (A.S.D.)
| | - Ana S. Duarte
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505 Viseu, Portugal; (A.T.P.C.G.); (A.S.D.)
| | - Adelaide Almeida
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.S.L.); (M.B.); (A.A.)
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.G.P.M.S.N.)
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.G.P.M.S.N.)
| | - Joana F. B. Barata
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.S.L.); (M.B.); (A.A.)
- Correspondence:
| |
Collapse
|
10
|
Alqahtani MA. Decontamination of a siloxane impression material by using 5-aminolevulinic acid activated by Photodynamic therapy, microwave irradiation, and hydrogen peroxide. Photodiagnosis Photodyn Ther 2022; 38:102867. [DOI: 10.1016/j.pdpdt.2022.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
11
|
Gomes ATPC, Neves MGPMS, Fernandes R, Ribeiro CF, Cavaleiro JAS, Moura NMM. Unraveling the Photodynamic Activity of Cationic Benzoporphyrin-Based Photosensitizers against Bladder Cancer Cells. Molecules 2021; 26:5312. [PMID: 34500746 PMCID: PMC8434352 DOI: 10.3390/molecules26175312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
In this study, we report the preparation of new mono-charged benzoporphyrin complexes by reaction of the appropriate neutral benzoporphyrin with (2,2'-bipyridine)dichloroplatinum(II) and of the analogs' derivatives synthesized through alkylation of the neutral scaffold with iodomethane. All derivatives were incorporated into polyvinylpyrrolidone (PVP) micelles. The ability of the resultant formulations to generate reactive oxygen species was evaluated, mainly the singlet oxygen formation. Then, the capability of the PVP formulations to act as photosensitizers against bladder cancer cells was assessed. Some of the studied formulations were the most active photosensitizers causing a decrease in HT-1376 cells' viability. This creates an avenue to further studies related to bladder cancer cells.
Collapse
Affiliation(s)
- Ana T. P. C. Gomes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.F.); (C.F.R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | | | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.F.); (C.F.R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carlos F. Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.F.); (C.F.R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - José A. S. Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
12
|
Pérez C, Zúñiga T, Palavecino CE. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther 2021; 34:102285. [PMID: 33836278 DOI: 10.1016/j.pdpdt.2021.102285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive spherical bacterium that commonly causes various infections which can range from superficial to life-threatening. Hospital strains of S. aureus are often resistant to antibiotics, which has made their treatment difficult in recent decades. Other therapeutic alternatives have been postulated to overcome the drawbacks of antibiotic multi-resistance. Of these, photodynamic therapy (PDT) is a promising approach to address the notable shortage of new active antibiotics against multidrug-resistant S. aureus. PDT combines the use of a photosensitizer agent, light, and oxygen to eradicate pathogenic microorganisms. Through a systematic analysis of published results, this work aims to verify the usefulness of applying PDT in treating multidrug-resistant S.aureus infections. METHODS This review was based on a bibliographic search in various databases and the analysis of relevant publications. RESULTS There is currently a large body of evidence demonstrating the efficacy of photodynamic therapy in eliminating S.aureus strains. Both biofilm-producing strains, as well as multidrug-resistant strains. CONCLUSION We conclude that there is sufficient scientific evidence that PDT is a useful adjunct to traditional antibiotic therapy for treating S. aureus infections. Clinical application through appropriate trials should be introduced to further define optimal treatment protocols, safety and efficay.
Collapse
Affiliation(s)
- Camila Pérez
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Tania Zúñiga
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|