1
|
Ho KY, Lin CD, Hsu TJ, Huang YH, Tsai FJ, Liang CY. Increased risks of retinal vascular occlusion in patients with migraine and the protective effects of migraine treatment: a population-based retrospective cohort study. Sci Rep 2024; 14:15429. [PMID: 38965381 PMCID: PMC11224338 DOI: 10.1038/s41598-024-66363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Associations between migraine and retinal vascular occlusion have been reported, but there is no large-scale and comprehensive study. Therefore, we aimed to determine risks of retinal vascular occlusion in patients with migraine. Using the Taiwan National Health Insurance Research Database from 2009 to 2020, we enrolled 628,760 patients with migraine and 628,760 matched individuals without migraine. Study outcomes were diagnoses of retinal vascular occlusion, including retinal artery occlusion (RAO) and retinal vein occlusion (RVO). Adjusted hazard ratio (aHR) of retinal vascular occlusion related to migraine was estimated. The cumulative incidences of subsequent retinal vascular occlusion, RAO, and RVO were significantly higher in migraine patients compared with controls (0.31% vs. 0.21%; 0.09% vs. 0.05%; 0.22% vs. 0.17%; all p < 0.001). The hazards of retinal vascular occlusion, RAO, and RVO were significantly greater in the migraine group (aHR, 1.69 [95% CI, 1.57, 1.83], 2.13 [95% CI, 1.84, 2.48] and 1.53 [95% CI, 1.40, 1.68], respectively). Risks of retinal vascular occlusion were significantly higher in migraine both with aura (MA) and without aura (MO) (aHR, 1.77 [95% CI, 1.58, 1.98], and 1.92 [95% CI, 1.64, 2.25]). Among patients with migraine, nonsteroidal anti-inflammatory drugs, propranolol, and flunarizine significantly reduce their risks of retinal vascular occlusion (aHR, 0.19 [95% CI, 0.16, 0.22], 0.73 [95% CI, 0.62, 0.86], 0.84 [95% CI, 0.76, 0.93]). Migraine, MA and MO are independently associated with higher risks of retinal vascular occlusion, RAO, and RVO.
Collapse
Affiliation(s)
- Kuan-Yun Ho
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Der Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Ju Hsu
- Management Office for Health Data (DryLab), Clinical Trial Research Center (CTC), China Medical University Hospital, Taichung, Taiwan
| | - Yu-Han Huang
- Management Office for Health Data (DryLab), Clinical Trial Research Center (CTC), China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiao-Ying Liang
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Chaliha DR, Vaccarezza M, Charng J, Chen FK, Lim A, Drummond P, Takechi R, Lam V, Dhaliwal SS, Mamo JCL. Using optical coherence tomography and optical coherence tomography angiography to delineate neurovascular homeostasis in migraine: a review. Front Neurosci 2024; 18:1376282. [PMID: 38686331 PMCID: PMC11057254 DOI: 10.3389/fnins.2024.1376282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Migraine is one of the world's most debilitating disorders, and it has recently been shown that changes in the retina can be a potential biomarker for the disease. These changes can be detected by optical coherence tomography (OCT), which measures retinal thickness, and optical coherence tomography angiography (OCTA), which measures vessel density. We searched the databases Google Scholar, ProQuest, Scopus, and Web of Science for studies in English using OCT and OCTA in migraineurs, using the search terms "optical coherence tomography," "OCT," "optical coherence tomography angiography," "OCTA" and "migraine." We found 73 primary studies, 11 reviews, and 8 meta-analyses pertaining to OCT and OCTA findings in migraineurs. They showed that migraineurs had reduced retinal thickness (via OCT), retinal vessel density, and greater foveal avascular zone area (via OCTA) than controls. OCTA changes reflect a perfusion compromise occurring in migraineurs as opposed to in healthy controls. OCT and OCTA deficits were worse in migraine-with-aura and chronic migraine than in migraine-without-aura and episodic migraine. Certain areas of the eye, such as the fovea, may be more vulnerable to these perfusion changes than other parts. Direct comparison between study findings is difficult because of the heterogeneity between the studies in terms of both methodology and analysis. Moreover, as almost all case-control studies were cross-sectional, more longitudinal cohort studies are needed to determine cause and effect between migraine pathophysiology and OCT/OCTA findings. Current evidence suggests both OCT and OCTA may serve as retinal markers for migraineurs, and further research in this field will hopefully enable us to better understand the vascular changes associated with migraine, perhaps also providing a new diagnostic and therapeutic biomarker.
Collapse
Affiliation(s)
- Devahuti R. Chaliha
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
| | - Mauro Vaccarezza
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Jason Charng
- Centre for Ophthalmology and Visual Sciences (Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
- Department of Optometry, School of Allied Health, The University of Western Australia, Perth, WA, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Sciences (Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Amy Lim
- Department of Optometry, School of Allied Health, The University of Western Australia, Perth, WA, Australia
| | - Peter Drummond
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Ryusuke Takechi
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| | - Virginie Lam
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| | - Satvinder S. Dhaliwal
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
- Singapore University of Social Sciences, Singapore, Singapore
| | - John C. L. Mamo
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| |
Collapse
|
3
|
Shen Z, Zhang S, Yu W, Yue M, Hong C. Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. Aging Dis 2024:AD.2024.0112. [PMID: 38300645 DOI: 10.14336/ad.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Optical coherence tomography angiography (OCTA), as a new generation of non-invasive and efficient fundus imaging technology, can provide non-invasive assessment of vascular lesions in the retina and choroid. In terms of anatomy and development, the retina is referred to as an extension of the central nervous system (CNS). CNS diseases are closely related to changes in fundus structure and blood vessels, and direct visualization of fundus structure and blood vessels provides an effective "window" for CNS research. This has important practical significance for identifying the characteristic changes of various CNS diseases on OCTA in the future, and plays a key role in promoting early screening, diagnosis, and monitoring of disease progression in CNS diseases. This article reviews relevant fundus studies by comparing and summarizing the unique advantages and existing limitations of OCTA in various CNS disease patients, in order to demonstrate the clinical significance of OCTA in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Zeqi Shen
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weitao Yu
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengmeng Yue
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Chaoyang Hong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Podraza K, Bangera N, Feliz A, Charles A. Reduction in retinal microvascular perfusion during migraine attacks. Headache 2024; 64:16-36. [PMID: 38031892 DOI: 10.1111/head.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To determine if there are changes in structure and function of the retinal vasculature during and between migraine attacks using optical coherence tomography angiography (OCTA). BACKGROUND Migraine attacks commonly include visual symptoms, but the potential role of the retina in these symptoms is not well understood. OCTA is a rapid, non-invasive imaging technique that is used to visualize the retinal microvasculature with high spatial resolution in a clinical setting. In this study we used OCTA to quantify different features of the retinal vasculature in patients with migraine during and between attacks, as well as in healthy controls (HCs). METHODS We performed a prospective cohort study of 37 patients with migraine with aura (MA) (median [interquartile range, IQR] age of 37 [14] years, 86% female) and 30 with migraine without aura (MO) (median [IQR] age of 37 [17] years, 77% female) and 20 HCs (median [IQR] age of 35 [7] years, 50% female). Macular OCTA scans were obtained for all participants for the interictal analysis. In 12 MA and eight MO, scans were captured both during and outside of migraine attacks and five HCs had initial and repeat scans. In addition to analyzing the morphology of the foveal avascular zone, we calculated the vessel flux index (VFI), which is an indicator of retinal perfusion and conventional metrics (such as vessel area density) in the foveal and parafoveal regions. RESULTS There was a significant difference in the parafoveal VFI in the ictal state between the groups (p = 0.009). During migraine attacks there was a significant reduction in the parafoveal region VFI in MA (-7%, 95% confidence interval [CI] -10% to -4%; p = 0.006) and MO (-7%, 95% CI -10% to -3%; p = 0.016) from their interictal baseline as compared to the change between repeat scans in HCs (2%, 95% CI -3% to 7%). Interictally, there was a mean (standard deviation [SD]) 13% (10%) (p = 0.003) lower blood perfusion in the MA group as compared to the MO group in the foveal region (mean [SD] 0.093 [0.023] vs. 0.107 [0.021], p = 0.003). Interictal analysis also revealed higher circularity in the superficial foveal avascular zone in the MA group compared with the MO group (mean [SD] 0.686 [0.088] vs. 0.629 [0.120], p = 0.004). In addition, interictal analysis of the patients with MA or MO and unilateral headache showed increased retinal vascular parameters consistent with greater perfusion in the eye ipsilateral to the side of the pain as compared with the contralateral eye. CONCLUSIONS These results indicate that perfusion is reduced in MA and MO in the parafoveal retina during the ictal period. Interictally, the foveal retina in MA has reduced perfusion when compared to the foveal retina in MO. Patients with unilateral headache showed interictal asymmetry of retinal perfusion between eyes. These results indicate that changes in retinal perfusion could be a part of migraine pathophysiology, and that distinct retinal vascular signatures identified with OCTA could represent biomarkers for migraine.
Collapse
Affiliation(s)
- Katherine Podraza
- Department of Neurology, University of California, Los Angeles, California, USA
- Hartford Healthcare Headache Center, Mystic, Connecticut, USA
| | - Nitin Bangera
- Department of Neurology, University of California, Los Angeles, California, USA
- Center for Advanced Diagnostics, Evaluation and Therapeutics (CADET NM Inc.), Albuquerque, New Mexico, USA
| | - Akira Feliz
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Andrew Charles
- Department of Neurology, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Liu Z, Jie C, Wang J, Hou X, Zhang W, Wang J, Deng Y, Li Y. Retina and microvascular alterations in migraine: a systemic review and meta-analysis. Front Neurol 2023; 14:1241778. [PMID: 37840933 PMCID: PMC10568463 DOI: 10.3389/fneur.2023.1241778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Objective This study aimed to evaluate the retina and microvascular alterations with optical coherence tomography (OCT) or optical coherence tomography angiography (OCTA) in patients with migraine with aura (MA) and migraine without aura (MO). Methods PubMed, Embase, and Cochrane Library databases were searched to find relevant literature on patients with MA or MO using OCT/OCTA devices. The eligible data were analyzed by Stata Software (version 15.0). Results There were 16 studies identified, involving 379 eyes with MA, 583 eyes with MO, and 658 eyes of healthy controls. The thickness of the peripapillary retinal nerve fiber layer (pRNFL) of patients with MA decreased significantly in most regions. The foveal avascular zone (FAZ) area and perimeter in MA patients significantly enlarged, while the perfusion density (PD) in the macular deep capillary plexus (mDCP) significantly decreased in the whole image and its subregions except for the fovea, with the PD in radial peripapillary capillary (RPC) decreasing inside the disk. Patients with MO demonstrated a significantly decreased thickness of pRNFL in most regions, and the FAZ parameters were significantly enlarged. No statistical significance was observed in the retina and microvascular features of patients with MA and MO. Conclusion The eyes affected by MA and MO demonstrated significantly reduced thickness of pRNFL and enlarged FAZ. Patients with MA showed retinal microvascular impairments, including a decreased PD in mDCP. The OCT and OCTA could detect membrane morphology and circulation status in migraine and might provide the basis for the diagnosis and follow-up of patients with migraine. Systematic review registration https://www.crd.york.ac.uk/prospero/, CRD42023397653.
Collapse
Affiliation(s)
| | - Chuanhong Jie
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Pang Y, Cao T, Zhang Q, Hu H, Wang Z, Nie J, Jin M, Chen G, Zhang X. Retinal microvasculature features in patients with migraine: a systematic review and meta-analysis. Front Neurol 2023; 14:1187559. [PMID: 37780703 PMCID: PMC10540451 DOI: 10.3389/fneur.2023.1187559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Background Migraine is a central nervous system disorder involving neuronal and vascular factors. The brain has a close anatomical relationship with retinal vessels and similar regulatory processes, and the retinal vascular system is the only in vivo vessel that can be directly visualized, while optical coherence tomography angiography (OCTA) is an advanced retinal vascular imaging technique. In this study, OCTA was used to study the retinal vascular density (VD) and foveal avascular zone (FAZ) in migraine patients, which provided a theoretical basis for its use as a candidate for rapid and non-invasive diagnosis of migraine. Methods Published studies comparing retinal microvascular profiles between migraine patients and healthy controls were obtained by a comprehensive search of electronic databases. Nine studies were finally included, including 775 eyes (migraine group: 444 eyes, control group: 331 eyes). Pooled effect sizes were presented as standardized mean differences (SMDs) and 95% confidence intervals (CIs). Statistical analysis was performed using Review Manager software (version 5.30). Results The combined results revealed that the superficial and deep macular whole enface VD (MWEVD) (superficial VD: SMD = -0.30, P = 0.0001; deep VD: SMD = -0.61, P = 0.02), superficial foveal VD (FVD) (SMD = -0.42, P = 0.03), deep parafoveal VD (PFVD) (SMD = -0.31, P = 0.002), and peripapillary VD (PVD) (SMD = -0.49, P = 0.002) were significantly reduced in migraine patients compared with healthy people. However, there was a significant increase in the area of the FAZ in migraine patients (SMD = 0.56, P < 0.0001). Conclusion Migraine patients are prone to retinal microcirculation disorders, such as decreased blood vessel density and increased avascular area in the fovea. This provides a theoretical basis for OCTA as a candidate for rapid, non-invasive diagnosis of migraine.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ting Cao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Department of Orthopaedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qinglin Zhang
- Department of Ophthalmology, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Zhiruo Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Jiahe Nie
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Guiping Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| |
Collapse
|