1
|
Hemmati YB, Bahrami R, Pourhajibagher M. Assessing the physico-mechanical, anti-bacterial, and anti-demineralization properties of orthodontic resin composite containing different concentrations of photoactivated zinc oxide nanoparticles on Streptococcus mutans biofilm around ceramic and metal orthodontic brackets: An ex vivo study. Int Orthod 2024; 22:100901. [PMID: 39173494 DOI: 10.1016/j.ortho.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to evaluate the physico-mechanical, anti-bacterial, and anti-demineralization properties of orthodontic resin composite containing photoactivated zinc oxide nanoparticles (ZnONPs) on Streptococcus mutans biofilm around ceramic and metal brackets. MATERIAL AND METHODS Following the minimum inhibitory concentration (MIC) determination for ZnONPs, shear bond strength (SBS) was tested for composites containing different concentrations of ZnONPs. The chosen concentration was used to evaluate the microleakage, anti-bacterial, and anti-demineralization properties. RESULTS Adding 50μg/mL of ZnONPs to the orthodontic composite did not negatively affect its physico-mechanical properties. ZnONPs (50μg/mL)-mediated aPDT and 0.2% chlorhexidine significantly (P=0.000) reduced S. mutans biofilms compared to the phosphate-buffered saline (PBS) groups (metal/PBS=7.47±0.7×106, and ceramic/PBS=7.47±0.7×106), with the lowest colony count observed in these groups (metal/chlorhexidine=1.06±0.4×105, ceramic/chlorhexidine=1±0.2×105, metal/ZnONPs-mediated aPDT=1.33±0.3×105, and ceramic/ZnONPs-mediated aPDT=1.2±0.3×105). Sodium fluoride varnish and ZnONPs-mediated aPDT showed the highest efficacy in anti-demineralization and significantly improving the enamel surface microhardness compared to the artificial saliva, especially in ceramic bracket groups (524.17±42.78N and 441.00±29.48N, 394.17±46.83N, P=0.000, and P=0.003, respectively). CONCLUSION ZnONPs (50μg/mL)-mediated aPDT effectively inhibited S. mutans biofilm and promoted anti-demineralization without adverse effects on the physico-mechanical properties of the composite resin. These results suggest the potential of this method in preventing white spot lesions during orthodontic treatment.
Collapse
Affiliation(s)
- Yasamin Babaee Hemmati
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ahuja D, Singh AK, Batra P. Antibacterial efficacy of nanoparticles on orthodontic materials-A systematic review and meta-analysis. Int Orthod 2024; 23:100955. [PMID: 39591841 DOI: 10.1016/j.ortho.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
AIM This study aims to evaluate the efficacy of coated nanoparticles within orthodontic appliances as a novel strategy to enhance their antibacterial properties. MATERIAL AND METHODS A systematic search for relevant articles published between 2013 and March 2024 was conducted across electronic databases including PubMed, Scopus, Web of Science, and EBSCOhost. Studies meeting pre-defined eligibility criteria were included and assessed for methodological quality. Data on the antibacterial activity of coated nanoparticles on orthodontic appliances was extracted from included studies. RESULTS A range of antimicrobial agents, including metallic nanoparticles (silver, titanium dioxide, silver-platinum alloy, zinc oxide, copper oxide), and others like chitosan, quaternary ammonium-modified gold nanoclusters, titanium nitride doped with calcium phosphate, and graphene oxide, have been explored for incorporation into orthodontic materials. Studies have shown a significant boost in the antibacterial capacity of these materials compared to controls, suggesting promise for improved oral hygiene during orthodontic treatment. CONCLUSION It can be concluded that incorporating nanoparticles into orthodontic appliances holds promise for enhancing their antibacterial properties. However, the studies displayed significant heterogeneity therefore, further research with standardized protocols for factors like nanoparticle size, concentration, and incorporation techniques across various orthodontic materials is crucial to guide future clinical applications. PROSPERO REGISTRATION CRD42024521326.
Collapse
Affiliation(s)
- Dhruv Ahuja
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India
| | - Ashish Kumar Singh
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India.
| | - Puneet Batra
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India
| |
Collapse
|
3
|
Rezaei H, Iranbakhsh A, Sepahi AA, Mirzaie A, Larijani K. Formulation, preparation of niosome loaded zinc oxide nanoparticles and biological activities. Sci Rep 2024; 14:16692. [PMID: 39030347 PMCID: PMC11271597 DOI: 10.1038/s41598-024-67509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
In this study, zinc oxide nanoparticles (Zn-NPs) were prepared by the green synthesis method and loaded inside niosomes as a drug release system and their physicochemical and biological properties were determined. Zn-NPs were prepared by the eco-friendly green strategy, the structure, and morphological properties were studied and loaded into niosomes. Subsequently, different formulations of niosomes containing Zn-NPs were prepared and the optimal formulation was used for biological studies. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were used to investigate the morphology and size of nanoparticles. Fourier transform infrared spectroscopy (FTIR) and UV-Vis were used to confirm the synthesis of Zn-NPs. Energy dispersive X-ray spectrometer (EDS) determined the elemental analysis of the Zn-NPs synthesis solution and the crystalline structure of Zn-NPs was analysed by XRD (X-Ray diffraction). Furthermore, Zn-NPs were loaded inside the niosomes, and their structural characteristics, entrapment efficiency (EE%), the release profile of Zn-NPs, and their stability also were assessed. Moreover, its antimicrobial properties against some microbial pathogens, its effect on the expression of biofilm genes, and its anticancer activity on the breast cancer cell lines were also determined. To study the cytocompatibility, exposure of niosomes against normal HEK-293 cells was carried out. In addition, the impact of niosomes on the expression of genes involved in the apoptosis (Bcl2, Casp3, Casp9, Bax) at the mRNA level was measured. Our findings revealed that the Zn-NPs have a round shape and an average size of 27.60 nm. Meanwhile, UV-Vis, FTIR, and XRD results confirmed the synthesis of Zn-NPs. Also, the EE% and the size of the optimized niosomal formulation were 31.26% and 256.6 ± 12 nm, respectively. The release profile showed that within 24 h, 26% of Zn-NPs were released from niosomes, while in the same period, 99% of free Zn-NPs were released, which indicates the slow release of Zn-NPs from niosomes. Antimicrobial effects exhibited that niosomes containing Zn-NPs had more significant antimicrobial and anti-biofilm effects than Zn-NPs alone, the antimicrobial and anti-biofilm effects increased 2 to 4 times. Cytotoxic effects indicated that when Zn-NPs are loaded into niosomes, the anticancer activity increases compared to Zn-NPs alone and has low cytotoxicity on cancer cells. Niosomes containing ZnNPs increased the apoptosis-related gene expression level and reduced the Bcl2 genes. In general, the results show that niosomes can increase the biological effects of free Zn-NPs and therefore can be a suitable carrier for targeted delivery of Zn-NPs.
Collapse
Affiliation(s)
- Hossein Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Messaoudi H, Yaşa Atmaca G, Türkkol A, Bilgin MD, Erdoğmuş A. Monitoring of singlet oxygen generation of a novel Schiff-base substituted silicon phthalocyanines by sono-photochemical studies and in vitro activities on prostate cancer cell. J Biol Inorg Chem 2024; 29:303-314. [PMID: 38727821 PMCID: PMC11111517 DOI: 10.1007/s00775-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 05/24/2024]
Abstract
This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.
Collapse
Affiliation(s)
- Hiba Messaoudi
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
| | - Ayşegül Türkkol
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Mehmet Dinçer Bilgin
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| |
Collapse
|
5
|
Pourhajibagher M, Bahrami R, Bahador A. Application of antimicrobial sonodynamic therapy as a potential treatment modality in dentistry: A literature review. J Dent Sci 2024; 19:787-794. [PMID: 38618114 PMCID: PMC11010677 DOI: 10.1016/j.jds.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Indexed: 04/16/2024] Open
Abstract
The accumulation of dental plaque is a precursor to various dental infections, including lesions, inflammation around dental implants, and inflammation under dentures. Traditional cleaning methods involving physical removal and chemical agents often fall short of eliminating bacteria and their protective biofilms. These methods can also inadvertently lead to bacteria that resist drugs and upset the mouth's microbial harmony. To counter these issues, a new approach is needed that can target and clear away dental plaque, minimize biofilms and bacteria, and thus support sustained dental health. Enter antimicrobial sonodynamic therapy (aSDT), a supplementary treatment that uses gentle ultrasound waves to trigger a sonosensitizer compound, destroying bacterial cells. This process works by generating heat, mechanical pressure, initiating chemical reactions, and producing reactive oxygen species (ROS), offering a fresh tactic for managing dental plaque and biofilms. The study reviews how aSDT could serve as an innovative dental treatment option to enhance oral health.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Bahrami
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pourhajibagher M, Bahrami R, Bahador A. Application of photosensitive dental materials as a novel antimicrobial option in dentistry: A literature review. J Dent Sci 2024; 19:762-772. [PMID: 38618073 PMCID: PMC11010690 DOI: 10.1016/j.jds.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Indexed: 04/16/2024] Open
Abstract
The formation of dental plaque is well-known for its role in causing various oral infections, such as tooth decay, inflammation of the dental pulp, gum disease, and infections of the oral mucosa like peri-implantitis and denture stomatitis. These infections primarily affect the local area of the mouth, but if not treated, they can potentially lead to life-threatening conditions. Traditional methods of mechanical and chemical antimicrobial treatment have limitations in fully eliminating microorganisms and preventing the formation of biofilms. Additionally, these methods can contribute to the development of drug-resistant microorganisms and disrupt the natural balance of oral bacteria. Antimicrobial photodynamic therapy (aPDT) is a technique that utilizes low-power lasers with specific wavelengths in combination with a photosensitizing agent called photosensitizer to kill microorganisms. By inducing damage through reactive oxygen species (ROS), aPDT offers a new approach to addressing dental plaque and associated microbial biofilms, aiming to improve oral health outcomes. Recently, photosensitizers have been incorporated into dental materials to create photosensitive dental materials. This article aimed to review the use of photosensitive dental materials for aPDT as an innovative antimicrobial option in dentistry, with the goal of enhancing oral health.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Bahrami
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Bahrami R, Nikparto N, Gharibpour F, Pourhajibagher M, Bahador A. The effects of antimicrobial photocatalytic nanoparticles on the flexural strength of orthodontic acrylic resins: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2024; 46:104021. [PMID: 38401821 DOI: 10.1016/j.pdpdt.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND/PURPOSE Orthodontic acrylic resins containing antimicrobial photocatalytic nanoparticles aims to reduce oral lesions including denture stomatitis and white spot lesions but they should not imperil its mechanical properties. This systematic review was done to evaluate the effect of various photocatalytic nanoparticles on the flexural strength (FS) of acrylic resins. MATERIALS AND METHODS We systematically searched the PubMed/Medline, Cochrane Library, and Scopus databases from January 2018 to October 2023. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the quality of the studies was evaluated using the QUIN tool, which is specifically designed to assess the risk of bias in vitro studies. RESULTS Following screening of 1016 initial records, 23 studies were deemed eligible for inclusion. The addition of photocatalytic nanoparticles, such as emodin (Emo), curcumin (Cur), Cur nisin (CurNis), zeolite/zinc oxide (Zeo/ZnO), and Ulva lactuca (U. lactuca), to acrylic resins resulted in a reduction in FS, with the extent of reduction dependent on the nanoparticle concentration. Specifically, the addition of Emo (≥0.5 %), Cur (≥0.5 %), CurNis (≥5 %), Zeo/ZnO (≥2), and U. lactuca (≥1 %) to acrylic resins significantly decreased FS. Conversely, the inclusion of ZnO and titanium dioxide (TiO2) in acrylic resins improved FS, but higher concentrations (≥5 % for TiO2) had a limited positive effect. CONCLUSION Our study supports the use of low concentrations of photocatalytic nanoparticles, such as ZnO (≤2 %), TiO2 (≤3 %), Emo (≤0.5 %), Cur (≤0.5 %), CurNis (≤5 %), and U. lactuca (≤1 %), in orthodontic acrylic resins without compromising FS.
Collapse
Affiliation(s)
- Rashin Bahrami
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Nariman Nikparto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fateme Gharibpour
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bahrami R, Pourhajibagher M, Gharibpour F. Antimicrobial photodynamic therapy for the management of gingivitis and white spot lesions in fixed orthodontic patients: A systematic review. Int Orthod 2024; 22:100821. [PMID: 37992475 DOI: 10.1016/j.ortho.2023.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 11/24/2023]
Abstract
AIM We conducted this review to evaluate the safety and efficacy of antimicrobial photodynamic therapy (aPDT) for the management of gingivitis and white spot lesions (WSLs) in fixed orthodontic patients. METHODS The PubMed/MEDLINE, Cochrane Library, Scopus, and Google Scholar databases were searched for randomized controlled trials and clinical trials assessing the clinical effectiveness of aPDT for the management of gingivitis and WSLs in fixed orthodontic patients without time limitation. Primary outcomes were the changes in clinical parameters such as DIAGNOdent, plaque index (PI), bleeding on probing (BOP), and gingival index (GI). Secondary outcomes included measurements of microbial and inflammatory factors, such as cytokine levels (tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1β], and interleukin-6 [IL-6]), and bacterial counts. RESULTS Our search yielded a total of 12 studies that met the inclusion criteria. Among the 11 studies that evaluated gingivitis, the majority employed a diode laser (670nm, 150 mW, 22J/cm2, 60seconds) as the light source and methylene blue at a concentration of 0.0005% (applied for 3minutes) as the photosensitizer in a single treatment session. The included studies reported positive effects of aPDT on gingivitis management, with more improvements observed in PI, BOP, and GI following aPDT treatment. Additionally, aPDT was found to reduce the counts of periopathogens such as Porphyromonas gingivalis, as well as inflammatory factors (TNF-α, IL-1β, and IL-6). Two studies demonstrated that aPDT, particularly when administered in multiple sessions, effectively controlled the extent of WSLs during orthodontic treatment and yielded favorable outcomes that persisted for several months after treatment. CONCLUSION Based on the available evidence, aPDT appears to be a safe and effective treatment option for managing WSLs and gingivitis in patients with fixed orthodontic appliances. However, further high-quality RCTs are necessary to investigate the impact of potential confounding factors on the efficacy of aPDT.
Collapse
Affiliation(s)
- Rashin Bahrami
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Gharibpour
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Aboelmahasen MMF, Othman SS, Dena ASA, Zhran M, Ma M, El-Destawy MT, Bilal AM. Histomorphometric and CBCT comparison of osseointegration around orthodontic titanium miniscrews coated with different nanoparticles: An in-vivo animal study. Int Orthod 2024; 22:100823. [PMID: 37992473 DOI: 10.1016/j.ortho.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Temporarily installed titanium orthodontic miniscrews are usually used for many orthodontic applications, especially those cases that need high force, such as skeletally anchored orthodontic appliance cases. Surface modification of titanium miniscrews has proved success in preventing failure and overcoming their limitations. OBJECTIVE The present study aims at the assessment of the quality of osseointegration of surface modified titanium miniscrews installed in the maxilla of albino rabbits with cone-beam computed tomography (CBCT) imaging as well as histomorphometric investigations. MATERIAL AND METHODS The orthodontic titanium miniscrews (TMSs) were coated with silver/hydroxyapatite (Ag/HA) nanoparticles (NPs) or zinc oxide (ZnO) NPs via electrochemical deposition. The coating nanomaterials were then characterized with X-ray diffractometry (XRD) and scanning electron microscopy (SEM) imaging. Moreover, the antimicrobial activity of the coated titanium miniscrews were evaluated in the rabbits' oral cavity to investigate their ability to prevent biofilm formation. RESULTS It was found that the Ag/HA-coated TMSs demonstrated the highest antimicrobial activity and bone area fill, followed by the ZnO NPs-coated TMSs when compared to their uncoated counterparts. In the anterior area surrounding the installed TMSs, the highest osseointegration was demonstrated by ZnO NPs-coated TMSs. However, Ag/HA-coated TMSs showed the highest osseointegration values in the posterior peri-implant area. CONCLUSIONS Ag/HA- and ZnO NPs-coated TMSs may provide a promising solution to overcome the 30% probable failure in temporarily installed orthodontic miniscrews, as they can enhance the osseointegration process and prevent biofilm formation.
Collapse
Affiliation(s)
| | - Samer Salim Othman
- Department of Clinical Dental Sciences, College of Dentistry, Ibnsina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt; Faculty of Oral and Dental Medicine, Future University in Egypt (FUE), New Cairo, Egypt
| | - Monira Zhran
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ma
- Oral pathology Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Taha El-Destawy
- Oral medicine Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Mohamed Bilal
- Oral medicine Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, Badkoobeh A, Yasamineh S, Joudaki A. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 2024; 22:21. [PMID: 38183090 PMCID: PMC10770920 DOI: 10.1186/s12951-023-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nader Ghotbi
- General Dentist, Isfahan Azad University, School of Dentistry, Isfahan, Iran
| | - Azadeh Tadayonfard
- Maxillofacial prosthetics fellow, Postgraduate department of prosthodontics, Dental Faculty,Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Saman Yasamineh
- Azad Researchers, Viro-Biotech, Tehran, Iran.
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ali Joudaki
- Department of Oral and Maxillofacial Surgery, Lorestan University of Medical Sciences, Khorram Abad, Lorestan, Iran.
| |
Collapse
|
11
|
Andrucioli MCD, Ferreira Amato PA, Kuchler ÉC, Matsumoto MAN, Bergamo AZN, Silva RABD, Silva LABD, Nelson-Filho P. Effect of chlorhexidine mouthwashes on periodontal parameters and extrinsic tooth staining in orthodontic patients. Am J Orthod Dentofacial Orthop 2023; 164:855-861. [PMID: 37642605 DOI: 10.1016/j.ajodo.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Periodontal health and biofilm control are primordial to success in orthodontic treatment. This study aimed to evaluate the effect of chlorhexidine (CHX) mouthwashes on periodontal status and extrinsic tooth staining in orthodontic patients. METHODS Thirty-three patients of both sexes, aged 11-33 years, under orthodontic treatment with fixed appliances at <16 months, were randomly distributed into 2 groups. In the control group, patients received mechanical hygiene instruction, and in the experimental group, patients also used CHX wash twice a week for 60 days. The effectivity of the protocols was evaluated using the plaque, gingival, gingival bleeding, and discoloration indexes before the hygiene protocol was applied, 15, 30, and 60 days after protocol implementation. RESULTS In the experimental group, there was a decrease in the plaque, gingival, and gingival bleeding indexes at the different evaluation periods (P <0.05). In addition, there was a significant difference in the discoloration index at 60 days compared with initial time points after implementing hygiene protocols in the experimental group (P <0.05). In contrast, there were no significant differences in plaque, gingival, gingival bleeding, and discoloration indexes in the control group at any time (P >0.05). CONCLUSIONS CHX mouthwash administered 30 days, twice a week, significantly improved the periodontal status with mild brown staining. After this period, expressive extrinsic tooth staining was observed.
Collapse
Affiliation(s)
| | | | - Érika Calvano Kuchler
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Mírian Aiko Nakane Matsumoto
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ana Zilda Nazar Bergamo
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Léa Assed Bezerra da Silva
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Pourhajibagher M, Bahrami R, Bazarjani F, Bahador A. Anti-multispecies microbial biofilms and anti-inflammatory effects of antimicrobial photo-sonodynamic therapy based on acrylic resin containing nano-resveratrol. Photodiagnosis Photodyn Ther 2023; 43:103669. [PMID: 37356699 DOI: 10.1016/j.pdpdt.2023.103669] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Polymethylmethacrylate (PMMA)-based removable orthodontic appliances are susceptible to microbial colonization due to the surface porosity, and accumulating the biofilms causes denture stomatitis. the present study evaluated the anti-biofilm and antiinflammatory effects of antimicrobial photo-sonodynamic therapy (aPSDT) against multispecies microbial biofilms (Candida albicans, Staphylococcus aureus, Streptococcus sobrinus, and Actinomyces naeslundii) formed on acrylic resin modified with nanoresveratrol (NR). MATERIALS AND METHODS Following the determination of the minimum biofilm inhibitory concentration (MBIC) of NR, in vitro anti-biofilm activity of NR was evaluated. The antibiofilm efficacy against multispecies microbial biofilm including C. albicans, S. aureus, S. sobrinus, and A. naeslundii, were assessed by biofilm inhibition test and the results were measured. To reveal the anti-inflammatory effects of aPSDT on human gingival fibroblast (HGF) cells, the gene expression levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated via quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS According to the results, the MBIC dose of NR against multispecies microbial biofilm was considered 512 µg/mL. The highest biofilm reduction activity was observed in MBIC treated with aPSDT and 2 × MBIC exposed to light emitting diode (LED) and ultrasound waves (UW). The expression level of TNF-α and IL-6 genes were significantly increased when HGF cells were exposed to multispecies microbial biofilms (P<0.05), while after treatment with aPSDT, the expression levels of genes were significantly downregulated in all groups (P<0.05). CONCLUSION Overall, NR-mediated aPSDT reduced the growth of the multispecies microbial biofilm and downregulated the expression of TNF-α and IL-6 genes. Therefore, modified PMMA with NR can be serving as a promising new orthodontic acrylic resin against multispecies microbial biofilms and the effect of this new material is amplified when exposed to LED and UW.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
13
|
Nasiri K, Masoumi SM, Amini S, Goudarzi M, Tafreshi SM, Bagheri A, Yasamineh S, Alwan M, Arellano MTC, Gholizadeh O. Recent advances in metal nanoparticles to treat periodontitis. J Nanobiotechnology 2023; 21:283. [PMID: 37605182 PMCID: PMC10440939 DOI: 10.1186/s12951-023-02042-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The gradual deterioration of the supporting periodontal tissues caused by periodontitis, a chronic multifactorial inflammatory disease, is thought to be triggered by the colonization of dysbiotic plaque biofilms in a vulnerable host. One of the most prevalent dental conditions in the world, periodontitis is now the leading factor in adult tooth loss. When periodontitis does develop, it is treated by scraping the mineralized deposits and dental biofilm off the tooth surfaces. Numerous studies have shown that non-surgical treatment significantly improves clinical and microbiological indices in individuals with periodontitis. Although periodontal parameters have significantly improved, certain bacterial reservoirs often persist on root surfaces even after standard periodontal therapy. Periodontitis has been treated with local or systemic antibiotics as well as scaling and root planning. Since there aren't many brand-new antibiotics on the market, several researchers are currently concentrating on creating alternate methods of combating periodontal germs. There is a delay in a study on the subject of nanoparticle (NP) toxicity, which is especially concerned with mechanisms of action, while the area of nanomedicine develops. The most promising of them are metal NPs since they have potent antibacterial action. Metal NPs may be employed as efficient growth inhibitors in a variety of bacteria, making them useful for the treatment of periodontitis. In this way, the new metal NPs contributed significantly to the development of efficient anti-inflammatory and antibacterial platforms for the treatment of periodontitis. The current therapeutic effects of several metallic NPs on periodontitis are summarized in this study. This data might be used to develop NP-based therapeutic alternatives for the treatment of periodontal infections.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | - Sara Amini
- School of Science and Engineering, Duquesne University, Pittsburgh, PA, USA
| | - Mina Goudarzi
- School of Dentistry, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mobin Tafreshi
- School of Dentistry, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bagheri
- Department of Endodontics, School of Dentistry, Shahid Sadoughi University of Medical, Yazd, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mariem Alwan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|