1
|
Janzing AM, Eklund E, De Koning TJ, Eggink H. Clinical Characteristics Suggestive of a Genetic Cause in Cerebral Palsy: A Systematic Review. Pediatr Neurol 2024; 153:144-151. [PMID: 38382247 DOI: 10.1016/j.pediatrneurol.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cerebral palsy (CP) is a clinical diagnosis and was long categorized as an acquired disorder, but more and more genetic etiologies are being identified. This review aims to identify the clinical characteristics that are associated with genetic CP to aid clinicians in selecting candidates for genetic testing. METHODS The PubMed database was systematically searched to identify genes associated with CP. The clinical characteristics accompanying these genetic forms of CP were compared with published data of large CP populations resulting in the identification of potential indicators of genetic CP. RESULLTS Of 1930 articles retrieved, 134 were included. In these, 55 CP genes (described in two or more cases, n = 272) and 79 candidate genes (described in only one case) were reported. The most frequently CP-associated genes were PLP1 (21 cases), ARG1 (17 cases), and CTNNB1 (13 cases). Dyskinesia and the absence of spasticity were identified as strong potential indicators of genetic CP. Presence of intellectual disability, no preterm birth, and no unilateral distribution of symptoms were classified as moderate genetic indicators. CONCLUSIONS Genetic causes of CP are increasingly identified. The clinical characteristics associated with genetic CP can aid clinicians regarding to which individual with CP to offer genetic testing. The identified potential genetic indicators need to be validated in large CP cohorts but can provide the first step toward a diagnostic algorithm for genetic CP.
Collapse
Affiliation(s)
- Anna M Janzing
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Eklund
- Faculty of Medicine, Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Tom J De Koning
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands; Faculty of Medicine, Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Filingeri D, Mackey S, Soller H, Guarneri-Tragone A, Cooper J, Escobar O, Bedoyan JK. A novel GK Ala469Val variant resulting in glycerol kinase deficiency with concurrent hepatoblastoma: A case report. Mol Genet Metab Rep 2024; 38:101058. [PMID: 38469098 PMCID: PMC10926216 DOI: 10.1016/j.ymgmr.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024] Open
Abstract
Glycerol kinase deficiency (GKD) is a rare X-linked condition where glycerol cannot be phosphorylated to glycerol-3-phosphate, a key component of gluconeogenesis. Clinical presentation varies widely. We present a novel variant of the responsible GK in a patient with concurrent hepatoblastoma, whose course was complicated by hypoglycemia. Hepatoblastoma has not previously been described with GKD, highlighting the need for further research into GKD and its potential role in the pathogenesis of some forms of hepatoblastoma.
Collapse
Affiliation(s)
- Domenic Filingeri
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah Mackey
- Division of Hematology-Oncology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haley Soller
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alissa Guarneri-Tragone
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James Cooper
- Division of Hematology-Oncology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oscar Escobar
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jirair K. Bedoyan
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Satgé D, Nishi M, Trétarre B. Assessing cancer in people with profound and multiple disabilities. BMC Cancer 2023; 23:798. [PMID: 37626285 PMCID: PMC10463777 DOI: 10.1186/s12885-023-11313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cancers are as common in individuals with intellectual disabilities as in the general population (GP). For the subgroup of people with profound and multiple disabilities (PMD) who present with both severe intellectual disability and major motor disorders, the frequency and distribution of cancers are currently not known, preventing proper cancer surveillance. METHODS We carried out a systematic and synthetic review of the medical literature, including a focused search of Japanese data. RESULTS The total risk of cancer in individuals with PMD is thought to be lower than in the GP, possibly due to a shorter life expectancy. They have reduced exposure to cancer risk factors, such as alcohol, tobacco, sunlight, human papillomavirus infection, occupational toxins, and being overweight. On the other hand, individuals with PMD present a greater frequency of gastroesophageal reflux disease, Helicobacter pylori gastritis, chronic cystitis, and cryptorchidism, which increase the risk for cancer of the esophagus, stomach, urinary bladder, and testes. In addition, certain genetic disorders underlying compromised motor and cognitive functions are associated with higher risk of childhood cancers. An analysis of 135 cancers in persons with PMD in Japan suggested that they present a particular tumor profile, with certain cancers rarer than in the GP, whereas cancers of the digestive tract are frequent. Cancers of the digestive tract occurred significantly earlier than in the GP (colon: average age 48.3 years vs. 71.3 years in the GP, esophagus: 39 years vs. 72 years in the GP). An increasing number of therapeutic successes in children and adults with PMD have been reported in different countries when cancers are discovered early. CONCLUSION Individuals with PMD must be appropriately monitored for cancer. Screenings for breast and colon cancer, as well as regular monitoring of the esophagus, stomach, urinary bladder, and testicles, are necessary. Population-based epidemiological studies are needed to better understand risk factors, frequency, and distribution of cancers in the PMD population.
Collapse
Affiliation(s)
- Daniel Satgé
- Oncodéfi, 209 Avenue des Apothicaires, Parc Euromédecine, Montpellier, 34090, France.
- UMR 1302 Institute Desbrest of Epidemiology and Public Health, INSERM, Univ Montpellier, Montpellier, France.
| | - Motoi Nishi
- Department of Fundamental Health Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Brigitte Trétarre
- Oncodéfi, 209 Avenue des Apothicaires, Parc Euromédecine, Montpellier, 34090, France
- Registre des Cancers de l'Hérault, 208 Avenue des Apothicaires, Montpellier, 34090, France
- Center for Epidemiology and Research in Population Health (CERPOP), Toulouse, France
| |
Collapse
|
4
|
Kuyama N, Nagaki S, Miyamoto A, Etou K, Maruyama H, Osawa M. Arginase deficiency with parotid gland swelling and hyperamylasemia: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231181836. [PMID: 37377459 PMCID: PMC10291395 DOI: 10.1177/2050313x231181836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Arginase deficiency is a progressive neurological disorder characterized by episodic hyperammonemia crises. Our patient had been diagnosed with cerebral palsy (spastic paraplegia) in childhood and received rehabilitation. She had suffered parotid swelling since the age of 5 years, prior to liver dysfunction becoming apparent, and then developed hyperamylasemia at 8 years of age. At age 25 years, she presented with hyperammonemia and elevations of aspartate aminotransferase and alanine aminotransferase. At age 27 years, she was diagnosed with arginase deficiency due to hyperargininemia and absent arginase activity in erythrocytes. Liver cirrhosis was also present. She was hospitalized several times for management of episodic hyperammonemia due to recurrent viral infections, an unbalanced diet, and poor compliance with medications.
Collapse
Affiliation(s)
- Noboru Kuyama
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
- Kuyama Children’s Clinic, Chiba, Japan
| | - Shigeru Nagaki
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
- Nagaki Children’s Clinic, Tokyo, Japan
| | - Akie Miyamoto
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kaoru Etou
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroshi Maruyama
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
- Matudo Clinic, Chiba, Japan
| | - Makiko Osawa
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
5
|
McNutt MC, Foreman N, Gotway G. Arginase 1 Deficiency in Patients Initially Diagnosed with Hereditary Spastic Paraplegia. Mov Disord Clin Pract 2022; 10:109-114. [PMID: 36698992 PMCID: PMC9847303 DOI: 10.1002/mdc3.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Background Arginase 1 Deficiency (ARG1-D) is a rare autosomal recessive urea cycle disorder (UCD) characterized by pathologic elevation of plasma arginine and debilitating manifestations. Based on clinical commonalities and low disease awareness, ARG1-D can be diagnosed as hereditary spastic paraplegia (HSP), leading to treatment delays. Cases A Hispanic woman with unremarkable medical history experienced progressive lower-limb spasticity in her 20s and received a diagnosis of HSP. She developed significant gait abnormalities and is unable to walk without assistance. More recently, two Hispanic brothers with childhood-onset manifestations including lower-limb spasticity, developmental delays, and seizures presented with suspected HSP. All three patients were ultimately diagnosed with ARG1-D based on plasma arginine several-fold above normal levels and loss-of-function ARG1 variants. Disease progression occurred before ARG1-D was correctly diagnosed. Literature Review Retrospective analyses demonstrate that diagnostic delays in ARG1-D are common and can be lengthy. Because of clinical similarities between ARG1-D and HSP, such as insidious onset and progressive spasticity, accurate diagnosis of ARG1-D is challenging. Timely ARG1-D diagnosis is critical because this UCD is a treatable genetic cause of progressive lower-limb spasticity. Conclusions Arginase 1 Deficiency should be considered in HSP differential diagnosis until biochemically/genetically excluded, and should be routinely included in HSP gene panels.
Collapse
|
6
|
Keshavan N, Wood M, Alderson LM, Cortina‐Borja M, Skeath R, McSweeney M, Dixon M, Cleary MA, Footitt E, Batzios S. Clinical status, biochemical profile and management of a single cohort of patients with arginase deficiency. JIMD Rep 2022; 63:123-130. [PMID: 35281666 PMCID: PMC8898719 DOI: 10.1002/jmd2.12266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Arginase deficiency is a rare autosomal recessive urea cycle disorder (UCD) caused by mutations in the ARG1 gene encoding arginase that catalyses the hydrolysis of arginine to ornithine and urea. Patients have hyperargininaemia and progressive neurological impairment but generally suffer fewer metabolic decompensations compared to other UCDs. The objective is to describe the clinical features, biochemical profile, neuroradiological findings and experience of managing children with arginase deficiency. Twenty-year retrospective review of patient medical records at a single metabolic centre was performed. Six patients from three unrelated families were identified. Mean age at first symptom was 3.3 (1.5-9.0) years, while mean age at diagnosis was 8.8 (0.16-15.92) years. Four patients developed spastic diplegia and two of six with spastic quadriplegia with classical features including hyperreflexia, clonus and toe walking. This resulted in gait abnormalities that have been monitored using the GAITRite system and required Achilles tendon release in five children. Generalised tonic-clonic seizures and/or absences were present in three of six children and were controlled with anticonvulsants. All patients had moderate learning difficulties. Neuroimaging showed cerebral/cerebellar atrophy in four patients and basal ganglia abnormalities in two. Arginine levels were universally elevated throughout follow-up despite protein restriction, essential amino acid supplementation and ammonia scavengers, and neurological outcome was generally poor. Two patients died following severe metabolic decompensation in adolescence. Children with arginase deficiency continue to present a management challenge of what appears to be an inexorable course of neurocognitive impairment. Further insight into disease mechanisms may provide insight into novel treatment strategies.
Collapse
Affiliation(s)
- Nandaki Keshavan
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
- UCL Great Ormond Street Hospital Institute of Child HealthLondonUK
| | - Michelle Wood
- Department of PhysiotherapyGreat Ormond Street Hospital NHS TrustLondonUK
| | - Lucy M. Alderson
- UCL Great Ormond Street Hospital Institute of Child HealthLondonUK
- Department of PhysiotherapyGreat Ormond Street Hospital NHS TrustLondonUK
| | - Mario Cortina‐Borja
- Population, Policy and Practice Research and Teaching DepartmentUCL Great Ormond Street Hospital Institute of Child HealthLondonUK
| | - Rachel Skeath
- Department of DieteticsGreat Ormond Street Hospital NHS TrustLondonUK
| | - Mel McSweeney
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| | - Marjorie Dixon
- Department of DieteticsGreat Ormond Street Hospital NHS TrustLondonUK
| | - Maureen A. Cleary
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| | - Emma Footitt
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| | - Spyros Batzios
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| |
Collapse
|
7
|
Lam CW. Ending diagnostic odyssey using clinical whole-exome sequencing (CWES). J LAB MED 2021. [DOI: 10.1515/labmed-2021-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objectives
Most rare diseases are genetic diseases. Due to the diversity of rare diseases and the high likelihood of patients with rare diseases to be undiagnosed or misdiagnosed, it is not unusual that these patients undergo a long diagnostic odyssey before they receive a definitive diagnosis. This situation presents a clear need to set up a dedicated clinical service to end the diagnostic odyssey of patients with rare diseases.
Methods
Therefore, in 2014, we started an Undiagnosed Diseases Program in Hong Kong with the aim of ending the diagnostic odyssey of patients and families with rare diseases by clinical whole-exome sequencing (CWES), who have not received a definitive diagnosis after extensive investigation.
Results
In this program, we have shown that genetic diseases diagnosed by CWES were different from that using traditional approaches indicating that CWES is an essential tool to diagnose rare diseases and ending diagnostic odysseys. In addition, we identified several novel genes responsible for monogenic diseases. These include the TOP2B gene for autism spectrum disorder, the DTYMK gene for severe cerebral atrophy, the KIF13A gene for a new mosaic ectodermal syndrome associated with hypomelanosis of Ito, and the CDC25B gene for a new syndrome of cardiomyopathy and endocrinopathy.
Conclusions
With the incorporation of CWES in an Undiagnosed Diseases Program, we have ended diagnostic odysseys of patients with rare diseases in Hong Kong in the past 7 years. In this program, we have shown that CWES is an essential tool to end diagnostic odysseys. With the declining cost of next-generation sequencers and reagents, CWES set-ups are now affordable for clinical laboratories. Indeed, owing to the increasing availability of CWES and treatment modalities for rare diseases, precedence can be given to both common and rare medical conditions.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Pathology , The University of Hong Kong , Hong Kong , P.R. China
| |
Collapse
|
8
|
Nagamani SCS, Ali S, Izem R, Schady D, Masand P, Shneider BL, Leung DH, Burrage LC. Biomarkers for liver disease in urea cycle disorders. Mol Genet Metab 2021; 133:148-156. [PMID: 33846069 PMCID: PMC8195846 DOI: 10.1016/j.ymgme.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Urea cycle disorders (UCDs) are among the most common inborn errors of liver metabolism. As therapies for hyperammonemia associated with urea cycle dysfunction have improved, chronic complications, such as liver disease, have become increasingly apparent in individuals with UCDs. Liver disease in UCDs may be associated with hepatic inflammation, hepatic fibrosis, portal hypertension, liver cancer and even liver failure. However, except for monitoring serum aminotransferases, there are no clear guidelines for screening and/or monitoring individuals with UCDs for liver disease. Thus, we systematically evaluated the potential utility of several non-invasive biomarkers for liver fibrosis in UCDs. METHODS We evaluated grey-scale ultrasonography, liver stiffness obtained from shear wave elastography (SWE), and various serum biomarkers for hepatic fibrosis and necroinflammation, in a cohort of 28 children and adults with various UCDs. RESULTS Overall, we demonstrate a high burden of liver disease in our participants with 46% of participants having abnormal grey-scale ultrasound pattern of the liver parenchyma, and 52% of individuals having increased liver stiffness. The analysis of serum biomarkers revealed that 32% of participants had elevated FibroTest™ score, a marker for hepatic fibrosis, and 25% of participants had increased ActiTest™ score, a marker for necroinflammation. Interestingly, liver stiffness did not correlate with ultrasound appearance or FibroTest™. CONCLUSION Overall, our results demonstrate the high overall burden of liver disease in UCDs and highlights the need for further studies exploring new tools for identifying and monitoring individuals with UCDs who are at risk for this complication. TRIAL REGISTRATION This study has been registered in ClinicalTrials.gov (NCT03721367).
Collapse
MESH Headings
- Adolescent
- Adult
- Argininosuccinate Lyase/blood
- Biomarkers/blood
- Child
- Child, Preschool
- Elasticity Imaging Techniques
- Female
- Genetic Diseases, Inborn/blood
- Genetic Diseases, Inborn/diagnostic imaging
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/pathology
- Humans
- Hyperammonemia/blood
- Hyperammonemia/genetics
- Hyperammonemia/metabolism
- Hyperammonemia/pathology
- Liver/diagnostic imaging
- Liver/pathology
- Liver Cirrhosis/blood
- Liver Cirrhosis/diagnostic imaging
- Liver Cirrhosis/genetics
- Liver Cirrhosis/pathology
- Liver Diseases/blood
- Liver Diseases/genetics
- Liver Diseases/metabolism
- Liver Diseases/pathology
- Male
- Metabolism, Inborn Errors/genetics
- Middle Aged
- Ultrasonography
- Urea Cycle Disorders, Inborn/blood
- Urea Cycle Disorders, Inborn/genetics
- Urea Cycle Disorders, Inborn/metabolism
- Urea Cycle Disorders, Inborn/pathology
- Young Adult
Collapse
Affiliation(s)
- Sandesh C S Nagamani
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Saima Ali
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rima Izem
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Silver Spring, MD, USA; Department of Pediatrics, George Washington University, Washington, DC, USA; Department of Epidemiology, George Washington University, Washington, DC, USA
| | - Deborah Schady
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Prakash Masand
- Texas Children's Hospital, Houston, TX, USA; Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Benjamin L Shneider
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Daniel H Leung
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
9
|
Saputra L, Kumar KR. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr Neurol Neurosci Rep 2021; 21:15. [PMID: 33646413 PMCID: PMC7921051 DOI: 10.1007/s11910-021-01099-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP. Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments. Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.
Collapse
Affiliation(s)
- Lydia Saputra
- Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
| | - Kishore Raj Kumar
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia. .,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
10
|
Burrage LC, Madan S, Li X, Ali S, Mohammad M, Stroup BM, Jiang MM, Cela R, Bertin T, Jin Z, Dai J, Guffey D, Finegold M, Nagamani S, Minard CG, Marini J, Masand P, Schady D, Shneider BL, Leung DH, Bali D, Lee B. Chronic liver disease and impaired hepatic glycogen metabolism in argininosuccinate lyase deficiency. JCI Insight 2020; 5:132342. [PMID: 31990680 PMCID: PMC7101134 DOI: 10.1172/jci.insight.132342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDLiver disease in urea cycle disorders (UCDs) ranges from hepatomegaly and chronic hepatocellular injury to cirrhosis and end-stage liver disease. However, the prevalence and underlying mechanisms are unclear.METHODSWe estimated the prevalence of chronic hepatocellular injury in UCDs using data from a multicenter, longitudinal, natural history study. We also used ultrasound with shear wave elastography and FibroTest to evaluate liver stiffness and markers of fibrosis in individuals with argininosuccinate lyase deficiency (ASLD), a disorder with high prevalence of elevated serum alanine aminotransferase (ALT). To understand the human observations, we evaluated the hepatic phenotype of the AslNeo/Neo mouse model of ASLD.RESULTSWe demonstrate a high prevalence of elevated ALT in ASLD (37%). Hyperammonemia and use of nitrogen-scavenging agents, 2 markers of disease severity, were significantly (P < 0.001 and P = 0.001, respectively) associated with elevated ALT in ASLD. In addition, ultrasound with shear wave elastography and FibroTest revealed increased echogenicity and liver stiffness, even in individuals with ASLD and normal aminotransferases. The AslNeo/Neo mice mimic the human disorder with hepatomegaly, elevated aminotransferases, and excessive hepatic glycogen noted before death (3-5 weeks of age). This excessive hepatic glycogen is associated with impaired hepatic glycogenolysis and decreased glycogen phosphorylase and is rescued with helper-dependent adenovirus expressing Asl using a liver-specific (ApoE) promoter.CONCLUSIONOur results link urea cycle dysfunction and impaired hepatic glucose metabolism and identify a mouse model of liver disease in the setting of urea cycle dysfunction.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov (NCT03721367, NCT00237315).FUNDINGFunding was provided by NIH, Burroughs Wellcome Fund, NUCDF, Genzyme/ACMG Foundation, and CPRIT.
Collapse
Affiliation(s)
- Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Simran Madan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine and
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Saima Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahmoud Mohammad
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Food Science and Nutrition, National Research Centre, Dokki, Giza, Egypt
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Terry Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Dai
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research and
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Sandesh Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | | | - Juan Marini
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Prakash Masand
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Deborah Schady
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin L. Shneider
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel H. Leung
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
11
|
Yin Y, Phạm TL, Shin J, Shin N, Kang DW, Lee SY, Lee W, Kim CS, Kim SR, Hong J, Kim DW. Arginase 2 Deficiency Promotes Neuroinflammation and Pain Behaviors Following Nerve Injury in Mice. J Clin Med 2020; 9:jcm9020305. [PMID: 31979015 PMCID: PMC7073606 DOI: 10.3390/jcm9020305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia, the resident macrophages, act as the first and main form of active immune defense in the central nervous system. Arginase 2 (Arg2) is an enzyme involved in L-arginine metabolism and is expressed in macrophages and nervous tissue. In this study, we determined whether the absence of Arg2 plays a beneficial or detrimental role in the neuroinflammatory process. We then investigated whether the loss of Arg2 potentiated microglia activation and pain behaviors following nerve injury-induced neuropathic pain. A spinal nerve transection (SNT) experimental model was used to induce neuropathic pain in mice. As a result of the peripheral nerve injury, SNT induced microgliosis and astrogliosis in the spinal cord, and upregulated inflammatory signals in both wild-type (WT) and Arg2 knockout (KO) mice. Notably, inflammation increased significantly in the Arg2 KO group compared to the WT group. We also observed a more robust microgliosis and a lower mechanical threshold in the Arg2 KO group than those in the WT group. Furthermore, our data revealed a stronger upregulation of M1 pro-inflammatory cytokines, such as interleukin (IL)-1β, and a stronger downregulation of M2 anti-inflammatory cytokines, including IL4 and IL-10, in Arg2 KO mice. Additionally, stronger formation of enzyme-inducible nitric oxide synthase, oxidative stress, and decreased expression of CD206 were detected in the Arg2 KO group compared to the WT group. These results suggest that Arg2 deficiency contributes to inflammatory response. The reduction or the loss of Arg2 results in the stronger neuroinflammation in the spinal dorsal horn, followed by more severe pain behaviors arising from nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Yuhua Yin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dong-Wook Kang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Physiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.Y.L.); (W.L.)
| | - Wonhyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.Y.L.); (W.L.)
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Physiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| | - Jinpyo Hong
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dong-Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
12
|
Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 2019; 18:1136-1146. [PMID: 31377012 DOI: 10.1016/s1474-4422(19)30235-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Hereditary spastic paraplegia (HSP) describes a heterogeneous group of genetic neurodegenerative diseases characterised by progressive spasticity of the lower limbs. The pathogenic mechanism, associated clinical features, and imaging abnormalities vary substantially according to the affected gene and differentiating HSP from other genetic diseases associated with spasticity can be challenging. Next generation sequencing-based gene panels are now widely available but have limitations and a molecular diagnosis is not made in most suspected cases. Symptomatic management continues to evolve but with a greater understanding of the pathophysiological basis of individual HSP subtypes there are emerging opportunities to provide targeted molecular therapies and personalised medicine.
Collapse
|
13
|
Abstract
Inborn errors of metabolism comprise a wide array of diseases and complications in the pediatric patient. The rarity of these disorders limits the ability to conduct and review robust literature regarding the disease states, mechanisms of dysfunction, treatments, and outcomes. Often, treatment plans will be based on the pathophysiology associated with the disorder and theoretical agents that may be involved in the metabolic process. Medication therapies usually consist of natural or herbal products. Established efficacious pediatric doses for these products are difficult to find in tertiary resources, and adverse effects are routinely limited to single case reports. This review article attempts to summarize some of the more common inborn errors of metabolism in a manner that is applicable to pharmacists who will provide care for these patients.
Collapse
|
14
|
Kiykim E, Zubarioglu T, Cansever MS, Celkan T, Häberle J, Aktuglu Zeybek AC. Coagulation Disturbances in Patients with Argininemia. Acta Haematol 2018; 140:221-225. [PMID: 30355940 DOI: 10.1159/000493678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Argininemia is an autosomal recessive urea cycle disorder (UCD). Unlike other UCD, hyperammonemia is rarely seen. Patients usually present in childhood with neurological symptoms. Uncommon presentations like neonatal cholestasis or cirrhosis have been reported. Although transient elevations of liver transaminases and coagulopathy have been reported during hyperammonemia episodes, a permanent coagulopathy has never been reported. METHODS In this retrospective study, coagulation disturbances are examined in 6 argininemia patients. All of the patients were routinely followed up for hepatic involvement due to argininemia. Laboratory results, including liver transaminases, albumin, prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), and clotting factor levels, were assessed in all of the patients. RESULTS All of the patients had a prolonged PT and an increased INR, while none of the patients had a prolonged aPTT. Five patients had slightly elevated liver transaminases. A liver biopsy was performed in 1 patient but neither cirrhosis nor cholestasis was documented. Five of the 6 patients had low factor VII and factor IX levels, while other clotting factors were normal. CONCLUSIONS Argininemia patients should be investigated for coagulation disorders even if there is no apparent liver dysfunction or major bleeding symptoms.
Collapse
Affiliation(s)
- Ertugrul Kiykim
- Division of Nutrition and Metabolism, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Tanyel Zubarioglu
- Division of Nutrition and Metabolism, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul,
| | - Mehmet Serif Cansever
- Central Laboratory, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Tiraje Celkan
- Division of Hematology and Oncology, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Johannes Häberle
- Division of Metabolism, University Children's Hospital, Zurich, Switzerland
| | - Ayse Cigdem Aktuglu Zeybek
- Division of Nutrition and Metabolism, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
15
|
Yucel H, Kasapkara ÇS, Akcaboy M, Aksoy E, Sahin GE, Derinkuyu BE, Senel S, Ceylaner S. Recurrent hepatic failure and status epilepticus: an uncommon presentation of hyperargininemia. Metab Brain Dis 2018; 33:1775-1778. [PMID: 29961243 DOI: 10.1007/s11011-018-0281-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Argininemia is a rare hereditary disease due to a deficiency of hepatic arginase, which is the last enzyme of the urea cycle and hydrolyzes arginine to ornithine and urea. Herein we report a patient with arginase I (ARG1) deficiency who presented with recurrent nonconvulsive status epilepticus and liver failure. A novel homozygous frameshift mutation c.703_707delGGACTinsAGACTGGACC (p.G235Rfs*20) was detected.
Collapse
Affiliation(s)
- Husniye Yucel
- Department of Pediatrics, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Babur Caddesi No. 44, 06080, Altındag, Ankara, Turkey
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolism and Nutrition, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Meltem Akcaboy
- Department of Pediatrics, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Babur Caddesi No. 44, 06080, Altındag, Ankara, Turkey.
| | - Erhan Aksoy
- Department of Pediatric Neurology, Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gülseren Evirgen Sahin
- Department of Pediatric Gastroenterology, Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Betul Emine Derinkuyu
- Department of Pediatric Radiology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Saliha Senel
- Department of Pediatrics, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Babur Caddesi No. 44, 06080, Altındag, Ankara, Turkey
| | | |
Collapse
|
16
|
Jichlinski A, Clarke L, Whitehead MT, Gropman A. "Cerebral Palsy" in a Patient With Arginase Deficiency. Semin Pediatr Neurol 2018; 26:110-114. [PMID: 29961498 DOI: 10.1016/j.spen.2017.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inborn errors of metabolism (IEMs) are thought to present in infancy with acute decompensation including feeding intolerance and vomiting, lethargy, and coma. Most practitioners assume that children will be diagnosed in their first months of life. However, certain IEMs present more insidiously, and occasionally children fail to receive newborn screening resulting in delayed diagnoses, as metabolic and genetic disorders are overlooked causes of cognitive and neurologic deficits. Although signs and symptoms may be present but subtle, careful and detailed history taking, particularly of a child's diet and neurologic medical history, in addition to certain physical examination findings may suggest a diagnosis that is later supported by laboratory and radiographic testing. We present the case of an 11-year-old girl who presented with a diagnosis of cerebral palsy, seizure disorder, and concerns of fatigue and increasing seizure frequency. During hospitalization, she was found to have hyperammonemia, and a diagnosis of arginase deficiency was made. More thorough review of her previous records may have raised suspicion for IEM earlier.
Collapse
Affiliation(s)
- Amanda Jichlinski
- From the Department of Pediatrics, Children's National Health System, Washington, DC.
| | - Lindsay Clarke
- Department of Neurology, Children's National Health System, Washington, DC
| | | | - Andrea Gropman
- Department of Neurology, Children's National Health System, Washington, DC
| |
Collapse
|
17
|
Diez-Fernandez C, Rüfenacht V, Gemperle C, Fingerhut R, Häberle J. Mutations and common variants in the human arginase 1 (ARG1
) gene: Impact on patients, diagnostics, and protein structure considerations. Hum Mutat 2018; 39:1029-1050. [DOI: 10.1002/humu.23545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Carmen Diez-Fernandez
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Véronique Rüfenacht
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Corinne Gemperle
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Ralph Fingerhut
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Johannes Häberle
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| |
Collapse
|
18
|
Long-term dietary restriction up-regulates activity and expression of renal arginase II in aging mice. J Biosci 2018; 42:275-283. [PMID: 28569251 DOI: 10.1007/s12038-017-9683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the agedependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p less than 0.01 and p less than 0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p less than 0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p less than 0.01 and p less than 0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.
Collapse
|
19
|
Cai X, Yu D, Xie Y, Zhou H. Argininemia as a cause of severe chronic stunting and partial growth hormone deficiency (PGHD): A case report. Medicine (Baltimore) 2018; 97:e9880. [PMID: 29443755 PMCID: PMC5839826 DOI: 10.1097/md.0000000000009880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Argininemia is an autosomal recessive inherited disorder of the urea cycle. Because of its atypical symptoms in early age, diagnosis can be delayed until the typical chronic manifestations - including spastic diplegia, deterioration in cognitive function, and epilepsy - appear in later childhood. PATIENT CONCERNS A Chinese boy initially presented with severe stunting and partial growth hormone deficiency (PGHD) at 3 years old and was initially treated with growth hormone replacement therapy. Seven years later (at 10 years old), he presented with spastic diplegia, cognitive function lesions, epilepsy, and peripheral neuropathy. DIAGNOSES Ultimately, the patient was diagnosed with argininemia with homozygous mutation (c.32T>C) of the ARG1 gene at 10 years old. Blood tests showed mildly elevated blood ammonia and creatine kinase, and persistently elevated bilirubin. INTERVENTIONS Protein intake was limited to 0.8 g/kg/day, citrulline (150-200 mg [kg d]) was prescribed. OUTCOMES The patient's mental state and vomiting had improved after 3 months treatment. At 10 years and 9 month old, his height and weight had reached 121cm and 22kg, respectively, but his spastic diplegia symptoms had not improved. LESSONS This case demonstrates that stunting and PGHD that does not respond to growth hormone replacement therapy might hint at inborn errors of metabolism (IEM). IEM should also be considered in patients with persistently elevated bilirubin with or without abnormal liver transaminase, as well as elevated blood ammonia and creatine kinase, in the absence of hepatic disease.
Collapse
Affiliation(s)
- Xiaotang Cai
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Xie
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Koo M, Lipshutz GS, Cederbaum SD, Lassman C. Biopsy-proven Hepatocellular Carcinoma in a 53-year-old Woman With Arginase Deficiency. Pediatr Dev Pathol 2017; 20:517-521. [PMID: 29187023 DOI: 10.1177/1093526617697058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Arginase 1 deficiency, the least common urea cycle disorder, commonly presents with childhood-onset spastic paraplegia, progressive neurologic impairment, epilepsy, and developmental delay or regression. Biopsy-proven cirrhosis and hepatocellular carcinoma diagnosed via clinical and imaging studies (but without biopsy confirmation) have been previously reported. We report, herein, a case of a 53-year-old woman with arginase 1 deficiency who developed symptoms of "abdominal bloating." Imaging studies (ultrasound and magnetic resonance imaging) demonstrated 2 dominant hepatic masses, measuring 5.9 cm and 5.7 cm in greatest dimensions and located in hepatic segments 5 and 6, respectively. Core biopsies of the lesions demonstrated well-differentiated hepatocellular carcinoma. Immunohistochemistry performed on the segment 5 lesion was negative for arginase 1. This report represents, to the best of our knowledge, the first case of biopsy-proven hepatocellular carcinoma in an individual with arginase 1 deficiency.
Collapse
Affiliation(s)
- Matthew Koo
- 1 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, California
| | - Gerald S Lipshutz
- 2 Department of Surgery, David Geffen School of Medicine at UCLA, California.,3 Intellectual and Developmental Disabilities Research Center at UCLA, California
| | - Stephen D Cederbaum
- 3 Intellectual and Developmental Disabilities Research Center at UCLA, California
| | - Charles Lassman
- 1 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, California
| |
Collapse
|
21
|
Bigot A, Tchan MC, Thoreau B, Blasco H, Maillot F. Liver involvement in urea cycle disorders: a review of the literature. J Inherit Metab Dis 2017; 40:757-769. [PMID: 28900784 DOI: 10.1007/s10545-017-0088-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/13/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Urea cycle disorders (UCDs) are inborn errors of metabolism of the nitrogen detoxification pathway and encompass six principal enzymatic deficiencies. The aging of UCD patients leads to a better knowledge of the long-term natural history of the condition and to the reporting of previously unnoticed manifestations. Despite historical evidence of liver involvement in UCDs, little attention has been paid to this organ until recently. Hence, we reviewed the available scientific evidence on acute and chronic liver dysfunction and liver carcinogenesis in UCDs and discuss their pathophysiology. Overall, liver involvement, such as acute liver failure or steatotic-like disease, which may evolve toward cirrhosis, has been reported in all six main UCDs. Excessive glycogen storage is also a prominent histologic feature, and hypoglycemia has been reported in citrin deficiency. Hepatocarcinomas seem frequent in some UCDs, such as in citrin deficiency, and can sometimes occur in non-cirrhotic patients. UCDs may differ in liver involvement according to the enzymatic deficiency. Ornithine transcarbamylase deficiency may be associated more with acute liver failure and argininosuccinic aciduria with chronic liver failure and cirrhosis. Direct toxicity of metabolites, downstream metabolic deficiencies, impaired tricarboxylic acid cycle, oxidative stress, mitochondrial dysfunction, energy deficit, and putative toxicity of therapies combine in various ways to cause the different liver diseases reported.
Collapse
Affiliation(s)
- Adrien Bigot
- CHRU de Tours, service médecine interne, Tours, France.
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France.
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia.
- Service de Médecine Interne, Hôpital Bretonneau, 2, boulevard Tonnelle, 37044, Tours, France.
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Benjamin Thoreau
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| | - Hélène Blasco
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- CHRU de Tours, service de biochimie-biologie moléculaire, Tours, France
- UMR INSERM U930, 37000, Tours, France
| | - François Maillot
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| |
Collapse
|
22
|
Therrell BL, Currier R, Lapidus D, Grimm M, Cederbaum SD. Newborn screening for hyperargininemia due to arginase 1 deficiency. Mol Genet Metab 2017; 121:308-313. [PMID: 28659245 DOI: 10.1016/j.ymgme.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/11/2017] [Accepted: 06/11/2017] [Indexed: 12/31/2022]
Abstract
Hyperargininemia caused by Arginase 1 deficiency is a rare disorder of the urea cycle that can be diagnosed by elevation of arginine in newborn screening blood spots when analyzed by tandem mass spectrometry. Hyperargininemia is currently included as a secondary target on the U.S. Recommended Uniform Screening Panel, which directly influences state-based newborn screening. Because of the apparent low disease frequency and lack of case detection and treatment data, detailed attention has not been given to a model newborn screening algorithm including appropriate analytical cutoff values for disease indicators. In this paper we assess the frequency of hyperargininemia in the U.S. identified by newborn screening to date and document the current status and variability of hyperargininemia newborn screening across U.S. newborn screening programs. We also review other data that support improved screening efficacy by utilizing the arginine/ornithine ratio and other amino acid ratios as discriminators in the screening algorithm. Analysis of archived California screening data showed that an arginine cutoff of 50μM combined with an arginine/ornithine ratio of 1.4 would have resulted in a recall rate of 0.01%. Using an arginine cutoff of 60μM and an arginine/(phenylalanine x leucine) ratio of 1.4, reportedly used in one screening program, or the R4S Tool Runner, would have resulted in a recall rate of <0.005%. All 9 diagnosed patients would have been found for either protocol. Thus, use of appropriate ratios as part of the screening algorithm has the potential to increase both screening sensitivity and specificity. Improved newborn screening effectiveness should lead to better case detection and more rapid treatment to lower plasma arginine levels hence improving long term outcome of individuals with hyperargininemia.
Collapse
Affiliation(s)
- Bradford L Therrell
- National Newborn Screening and Global Resource Center, Austin, TX, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Robert Currier
- Genetic Disease Screening Program, California Department of Public Heath, Richmond, CA, United States
| | | | | | - Stephen D Cederbaum
- Departments of Psychiatry, Pediatrics and Human Genetics, The Intellectual Development and Disabilities Research Center, University of California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Huang J, Rajapakse A, Xiong Y, Montani JP, Verrey F, Ming XF, Yang Z. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity. Front Physiol 2016; 7:560. [PMID: 27920727 PMCID: PMC5118905 DOI: 10.3389/fphys.2016.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/04/2016] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II−/−) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II−/− mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II−/− mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II−/− mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.
Collapse
Affiliation(s)
- Ji Huang
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - Angana Rajapakse
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - François Verrey
- Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland; Institute of Physiology, University of ZurichZurich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| |
Collapse
|
24
|
Sin YY, Baron G, Schulze A, Funk CD. Arginase-1 deficiency. J Mol Med (Berl) 2015; 93:1287-96. [PMID: 26467175 DOI: 10.1007/s00109-015-1354-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.
Collapse
Affiliation(s)
- Yuan Yan Sin
- Department of Biomedical and Molecular Sciences, Queen's University, 433 Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Garrett Baron
- Department of Biomedical and Molecular Sciences, Queen's University, 433 Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Andreas Schulze
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, 433 Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
25
|
Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature. Amino Acids 2015; 47:1751-62. [DOI: 10.1007/s00726-015-2032-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
|
26
|
Ballantyne LL, Sin YY, St. Amand T, Si J, Goossens S, Haenebalcke L, Haigh JJ, Kyriakopoulou L, Schulze A, Funk CD. Strategies to rescue the consequences of inducible arginase-1 deficiency in mice. PLoS One 2015; 10:e0125967. [PMID: 25938595 PMCID: PMC4418594 DOI: 10.1371/journal.pone.0125967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation) either failed to extend lifespan (ornithine) or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug). A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter) rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies.
Collapse
Affiliation(s)
- Laurel L. Ballantyne
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Yuan Yan Sin
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Tim St. Amand
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Joshua Si
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Steven Goossens
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Australia
| | - Lieven Haenebalcke
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jody J. Haigh
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Australia
| | - Lianna Kyriakopoulou
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas Schulze
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Colin D. Funk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Yang Z, Ming XF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 2014; 5:533. [PMID: 25386179 PMCID: PMC4209887 DOI: 10.3389/fimmu.2014.00533] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022] Open
Abstract
Macrophages play a paramount role in immunity and inflammation-associated diseases, including infections, cardiovascular diseases, obesity-associated metabolic imbalances, and cancer. Compelling evidence from studies of recent years demonstrates that macrophages are heterogeneous and undergo heterogeneous phenotypic changes in response to microenvironmental stimuli. The M1 killer type response and the M2 repair type response are best known, and are two extreme examples. Among other markers, inducible nitric oxide synthase and type-I arginase (Arg-I), the enzymes that are involved in l-arginine/nitric oxide (NO) metabolism, are associated with the M1 and M2 phenotype, respectively, and therefore widely used as the markers for characterization of the two macrophage phenotypes. There is also a type-II arginase (Arg-II), which is expressed in macrophages and prevalently viewed as having the same function as Arg-I in the cells. In contrast to Arg-I, little information on the role of Arg-II in macrophage inflammatory responses is available. Emerging evidence, however, suggests that differential roles of Arg-I and Arg-II in regulating macrophage functions. In this article, we will review recent developments on the functional roles of the two arginase isoforms in regulation of macrophage inflammatory responses by focusing on their impact on the pathogenesis of cardiovascular diseases and metabolic disorders.
Collapse
Affiliation(s)
- Zhihong Yang
- Vascular Biology, Division of Physiology, Department of Medicine, Faculty of Science, University of Fribourg , Fribourg , Switzerland
| | - Xiu-Fen Ming
- Vascular Biology, Division of Physiology, Department of Medicine, Faculty of Science, University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
28
|
LEE HHC, MAK CM, Poon GWK, Wong KY, LAM CW. Cost-benefit analysis of Hyperphenylalaninemia Due to 6-Pyruvoyl-Tetrahydropterin Synthase (PTPS) Deficiency: For Consideration of Expanded Newborn Screening in Hong Kong. J Med Screen 2014; 21:61-70. [PMID: 24803483 DOI: 10.1177/0969141314533531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives To evaluate the cost-benefit of implementing an expanded newborn screening programme for hyperphenylalaninemias due to 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency in Hong Kong. Setting Regional public hospitals in Hong Kong providing care for cases of inborn errors of metabolism. Methods Implementational and operational costs of a new expanded mass spectrometry-based newborn screening programme were estimated. Data on various medical expenditures for the mild and severe phenotypic subtypes were gathered from a case cohort diagnosed with PTPS deficiency from 2001 to 2009. Local incidence from a previously published study was used. Results Implementation and operational costs of an expanded newborn screening programme in Hong Kong were estimated at HKD 10,473,848 (USD 1,342,801) annually. Assuming a birthrate of 50,000 per year and an incidence of 1 in 29,542 live births, the medical costs and adjusted loss of workforce per year would be HKD 20,773,207 (USD 2,663,232). Overall the annual savings from implementing the programme would be HKD 9,632,750 (USD 1,234,968). Conclusions Our estimates show that implementation of an expanded newborn screening programme in Hong Kong is cost-effective, with a significant annual saving for public expenditure.
Collapse
Affiliation(s)
- Hencher Han-chih LEE
- Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong SAR, China
| | - Chloe Miu MAK
- Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong SAR, China
| | - Grace Wing-Kit Poon
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Kar-Yin Wong
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Ching-wan LAM
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Novel complex Re-Arrangement of ARG1 commonly shared by unrelated patients with Hyperargininemia. Gene 2014; 533:240-5. [DOI: 10.1016/j.gene.2013.09.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022]
|
30
|
|
31
|
Yang Z, Ming XF. Arginase: the emerging therapeutic target for vascular oxidative stress and inflammation. Front Immunol 2013; 4:149. [PMID: 23781221 PMCID: PMC3679468 DOI: 10.3389/fimmu.2013.00149] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress and inflammation in the vascular wall are essential mechanisms of atherosclerosis and vascular dysfunctions associated with risk factors such as metabolic diseases, aging, hypertension, etc. Evidence has been provided that activation of the vascular endothelial cells in the presence of the risk factors promotes oxidative stress and vascular inflammatory responses, leading to acceleration of atherosclerotic vascular disease. Increasing number of studies from recent years demonstrates that uncoupling of endothelial nitric oxide synthase (eNOS), whereby the enzyme eNOS produces detrimental amount of superoxide anion O2− instead the vasoprotective nitric oxide (NO⋅), plays a critical role in vascular dysfunction under various pathophysiological conditions and in aging. The mechanisms of eNOS-uncoupling seem multiple and complex. Recent research provides emerging evidence supporting an essential role of increased activity of arginases including arginase-I and arginase-II in causing eNOS-uncoupling, which results in vascular oxidative stress and inflammatory responses, and ultimately leading to vascular diseases. This review article will summarize the most recent findings on the functional roles of arginases in vascular diseases and/or dysfunctions and the underlying mechanisms in relation to oxidative stress and inflammations. Moreover, regulatory mechanisms of arginases in the vasculature are reviewed and the future perspectives of targeting arginases as therapeutic options in vascular diseases are discussed.
Collapse
Affiliation(s)
- Zhihong Yang
- Vascular Biology, Division of Physiology, Department of Medicine, University of Fribourg , Fribourg , Switzerland
| | | |
Collapse
|