1
|
Finsterer J. Assessing the effect of oral glutamine on the MELAS phenotype requires appropriate study designs. Neuroradiology 2024; 66:459-460. [PMID: 38194084 DOI: 10.1007/s00234-024-03284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Affiliation(s)
- Josef Finsterer
- Neurology Department, Neurology & Neurophysiology Center, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
2
|
Snyder MT, Manor J, Gijavanekar C, Mizerik E, Kralik SF, Elsea SH, Machol K, Emrick L, Scaglia F. Heteroplasmic pathogenic m.12315G>A variant in MT-TL2 presenting with MELAS syndrome and depletion of nitric oxide donors. Am J Med Genet A 2024; 194:e63461. [PMID: 37953071 DOI: 10.1002/ajmg.a.63461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The MT-TL2 m.12315G>A pathogenic variant has previously been reported in five individuals with mild clinical phenotypes. Herein we report the case of a 5-year-old child with heteroplasmy for this variant who developed neurological regression and stroke-like episodes similar to those observed in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochemical evaluation revealed depletion of arginine on plasma amino acid analysis and low z-scores for citrulline on untargeted plasma metabolomics analysis. These findings suggested that decreased availability of nitric oxide may have contributed to the stroke-like episodes. The use of intravenous arginine during stroke-like episodes and daily enteral L-citrulline supplementation normalized her biochemical values of arginine and citrulline. Untargeted plasma metabolomics showed the absence of nicotinamide and 1-methylnicotinamide, and plasma total glutathione levels were low; thus, nicotinamide riboside and N-acetylcysteine therapies were initiated. This report expands the phenotype associated with the rare mitochondrial variant MT-TL2 m.12315G>A to include neurological regression and a MELAS-like phenotype. Individuals with this variant should undergo in-depth biochemical analysis to include untargeted plasma metabolomics, plasma amino acids, and glutathione levels to help guide a targeted approach to treatment.
Collapse
Affiliation(s)
- Matthew T Snyder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Joshua Manor
- Metabolic Diseases Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Stephen F Kralik
- Texas Children's Hospital, Houston, Texas, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Lisa Emrick
- Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Ng YS, Gorman GS. Stroke-like episodes in adult mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:65-78. [PMID: 36813321 DOI: 10.1016/b978-0-12-821751-1.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Stroke-like episode is a paroxysmal neurological manifestation which affects a specific group of patients with mitochondrial disease. Focal-onset seizures, encephalopathy, and visual disturbances are prominent findings associated with stroke-like episodes, with a predilection for the posterior cerebral cortex. The most common cause of stroke-like episodes is the m.3243A>G variant in MT-TL1 gene followed by recessive POLG variants. This chapter aims to review the definition of stroke-like episode and delineate the clinical phenomenology, neuroimaging and EEG findings typically seen in patients. In addition, several lines of evidence supporting neuronal hyper-excitability as the key mechanism of stroke-like episodes are discussed. The management of stroke-like episodes should focus on aggressive seizure management and treatment for concomitant complications such as intestinal pseudo-obstruction. There is no robust evidence to prove the efficacy of l-arginine for both acute and prophylactic settings. Progressive brain atrophy and dementia are the sequalae of recurrent stroke-like episode, and the underlying genotype in part predicts prognosis.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Leaffer EB, De Vivo DC, Engelstad K, Fryer RH, Gu Y, Shungu DC, Hirano M, DiMauro S, Hinton VJ. Visual memory failure presages conversion to MELAS phenotype. Ann Clin Transl Neurol 2022; 9:841-852. [PMID: 35522125 PMCID: PMC9186137 DOI: 10.1002/acn3.51564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To examine the correlation between verbal and visual memory function and correlation with brain metabolites (lactate and N-Acetylaspartate, NAA) in individuals with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). METHODS Memory performance and brain metabolites (ventricular lactate, occipital lactate, and occipital NAA) were examined in 18 MELAS, 58 m.3243A > G carriers, and 20 familial controls. Measures included the Selective Reminding Test (verbal memory), Benton Visuospatial Retention Test (visual memory), and MR Spectroscopy (NAA, Lactate). ANOVA, chi-squared/Fisher's exact tests, paired t-tests, Pearson correlations, and Spearman correlations were used. RESULTS When compared to carriers and controls, MELAS patients had the: (1) most impaired memory functions (Visual: p = 0.0003; Verbal: p = 0.02), (2) greatest visual than verbal memory impairment, (3) highest brain lactate levels (p < 0.0001), and (4) lowest brain NAA levels (p = 0.0003). Occipital and ventricular lactate to NAA ratios correlated significantly with visual memory performance (p ≤ 0.001). Higher lactate levels (p ≤ 0.01) and lower NAA levels (p = 0.0009) correlated specifically with greater visual memory dysfunction in MELAS. There was little or no correlation with verbal memory. INTERPRETATION Individuals with MELAS are at increased risk for impaired memory. Although verbal and visual memory are both affected, visual memory is preferentially affected and more clearly associated with brain metabolite levels. Preferential involvement of posterior brain regions is a distinctive clinical signature of MELAS. We now report a distinctive cognitive phenotype that targets visual memory more prominently and earlier than verbal memory. We speculate that this finding in carriers presages a conversion to the MELAS phenotype.
Collapse
Affiliation(s)
- Emily B Leaffer
- Sergievsky Center & Department of Neurology, Columbia University, New York City, New York, USA.,Department of Psychology, Queens College & The Graduate Center, City University of New York, New York City, New York, USA.,Northeast Cognitive Assessment, Rye Brook, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Robert H Fryer
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Yian Gu
- Taub Institute, Department of Neurology, Department of Epidemiology, Columbia University, New York City, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Veronica J Hinton
- Sergievsky Center & Department of Neurology, Columbia University, New York City, New York, USA.,Department of Psychology, Queens College & The Graduate Center, City University of New York, New York City, New York, USA
| |
Collapse
|
5
|
Stefanetti R, Ng Y, Errington L, Blain A, McFarland R, Gorman GS. L-arginine in Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes: A Systematic Review. Neurology 2022; 98:e2318-e2328. [PMID: 35428733 PMCID: PMC9202525 DOI: 10.1212/wnl.0000000000200299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives Stroke management in the context of primary mitochondrial disease is clinically challenging, and the best treatment options for patients with stroke-like episodes remain uncertain. We sought to perform a systematic review of the safety and efficacy of l-arginine use in the acute and prophylactic management of stroke-like episodes in patients with mitochondrial disease. Methods The systematic review was registered in PROSPERO (CRD42020181230). We searched 6 databases from inception to January 15, 2021: MEDLINE, Embase, Scopus, Web of Science, CINAHL, and ClinicalTrials.gov. Original articles and registered trials available, in English, reporting l-arginine use in the acute or prophylactic management of stroke-like episodes in patients with genetically confirmed mitochondrial disease were eligible for inclusion. Data on safety and treatment response were extracted and summarized by multiple observers. Risk of bias was assessed by the methodologic quality of case reports, case series, and a risk-of-bias checklist for nonrandomized studies. Quality of evidence was synthesized with the Oxford Centre for Evidence-Based Medicine Levels of Evidence and Grade of Recommendations. The predetermined main outcome measures were clinical response to l-arginine treatment, adverse events, withdrawals, and deaths (on treatment and/or during follow-up), as defined by the author. Results Thirty-seven articles met inclusion criteria (0 randomized controlled trials; 3 open-label; 1 retrospective cohort; 33 case reports/case series) (N = 91 patients; 86% m.3243A>G). In the case reports, 54% of patients reported a positive clinical response to acute l-arginine, of which 40% were concomitantly treated with antiepileptic drugs. Improved headache at 24 hours was the greatest reported benefit in response to IV l-arginine in the open-label trials (31 of 39, 79%). In 15 of 48 patients (31%) who positively responded to prophylactic l-arginine, antiepileptic drugs were either used (7 of 15) or unreported (8 of 15). Moderate adverse events were reported in the follow-up of both IV and oral l-arginine treatment, and 11 patients (12%) died during follow-up or while on prophylactic treatment. Discussion The available evidence is of poor methodologic quality and classified as Level 5. IV and oral l-arginine confers no demonstrable clinical benefit in either the acute or prophylactic treatment of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes, with more robust controlled trials required to assess its efficacy and safety profile.
Collapse
|
6
|
Ni Cathain D, Browne E, Skehan K, Boyle K. MELAS syndrome: an acute stroke-like episode complicated by renal tubular acidosis. BMJ Case Rep 2021; 14:e245898. [PMID: 34728512 PMCID: PMC8565551 DOI: 10.1136/bcr-2021-245898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/03/2022] Open
Abstract
MELAS, a mitochondrially inherited multisystem disorder, can present with acute stroke-like episodes. The literature thus far supports the use of L-arginine therapy in acute MELAS flares to alleviate and shorten the duration of symptoms. This is the case of a patient who presented with ataxia and worsening confusion on a background of genetically confirmed MELAS syndrome. In this instance, intravenous L-arginine therapy, along with corticosteroids, was administered in keeping with best practice. However, in a metabolically vulnerable patient, L-arginine therapy resulted in a further deterioration in his clinical status and the development of a non-anion gap metabolic acidosis.
Collapse
|
7
|
Fan HC, Lee HF, Yue CT, Chi CS. Clinical Characteristics of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes. Life (Basel) 2021; 11:life11111111. [PMID: 34832987 PMCID: PMC8617702 DOI: 10.3390/life11111111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, a maternally inherited mitochondrial disorder, is characterized by its genetic, biochemical and clinical complexity. The most common mutation associated with MELAS syndrome is the mtDNA A3243G mutation in the MT-TL1 gene encoding the mitochondrial tRNA-leu(UUR), which results in impaired mitochondrial translation and protein synthesis involving the mitochondrial electron transport chain complex subunits, leading to impaired mitochondrial energy production. Angiopathy, either alone or in combination with nitric oxide (NO) deficiency, further contributes to multi-organ involvement in MELAS syndrome. Management for MELAS syndrome is amostly symptomatic multidisciplinary approach. In this article, we review the clinical presentations, pathogenic mechanisms and options for management of MELAS syndrome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chen-Tang Yue
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Correspondence: ; Tel.: +886-4-26581919-4301
| |
Collapse
|
8
|
Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest 2021; 131:136055. [PMID: 33463549 DOI: 10.1172/jci136055] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, β-hydroxy acylcarnitines, and β-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.
Collapse
Affiliation(s)
- Rohit Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Bryn Reinstadler
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Owen S Skinner
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Erin Stackowitz
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Institute for Exercise and Environmental Medicine of Texas Health Presbyterian Hospital, Dallas, Texas, USA
| | | | | | - Melissa A Walker
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert Fryer
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ashok Khatri
- Endocrine Division and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
L-Arginine Reduces Nitro-Oxidative Stress in Cultured Cells with Mitochondrial Deficiency. Nutrients 2021; 13:nu13020534. [PMID: 33562042 PMCID: PMC7914615 DOI: 10.3390/nu13020534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
L-Arginine (L-ARG) supplementation has been suggested as a therapeutic option in several diseases, including Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like syndrome (MELAS), arguably the most common mitochondrial disease. It is suggested that L-ARG, a nitric oxide (NO) precursor, can restore NO levels in blood vessels, improving cerebral blood flow. However, NO also participates in mitochondrial processes, such as mitochondrial biogenesis, the regulation of the respiratory chain, and oxidative stress. This study investigated the effects of L-ARG on mitochondrial function, nitric oxide synthesis, and nitro-oxidative stress in cell lines harboring the MELAS mitochondrial DNA (mtDNA) mutation (m.3243A>G). We evaluated mitochondrial enzyme activity, mitochondrial mass, NO concentration, and nitro-oxidative stress. Our results showed that m.3243A>G cells had increased NO levels and protein nitration at basal conditions. Treatment with L-ARG did not affect the mitochondrial function and mass but reduced the intracellular NO concentration and nitrated proteins in m.3243A>G cells. The same treatment led to opposite effects in control cells. In conclusion, we showed that the main effect of L-ARG was on protein nitration. Lowering protein nitration is probably involved in the mechanism related to L-ARG supplementation benefits in MELAS patients.
Collapse
|
11
|
Ewida A, Ahmed R, Luo A, Ghonim HT, Anilkumar AC. Mitochondrial Myopathy, Encephalopathy, Lactic acidosis and Stroke-Like Episodes Syndrome Presenting With Anton-Babinski Syndrome and Concurrent Occipital Lobe Seizures. Cureus 2021; 13:e12908. [PMID: 33654593 PMCID: PMC7904536 DOI: 10.7759/cureus.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a complex group of disorders with multisystem involvement that have a wide range of biochemical and genetic defects. The earliest symptoms of MELAS typically include easy fatigability, muscle weakness, encephalopathy with stroke-like episodes, recurrent headaches and seizures. The pathogenesis of stroke-like episodes manifesting as focal deficits like acute cortical blindness is not fully understood. We present an eight-year-old, right-handed boy with MELAS confirmed by the presence of pathogenic missense variant mutation (mt.3243A>G) presenting with acute intermittent reversible episodes of cortical blindness and Anton-Babinski Syndrome secondary to concurrent occipital lobe seizures captured during video electroencephalography (V-EEG) monitoring, in addition to the neuro-imaging which was not consistent with acute ischemic stroke. This case highlights the importance of the V-EEG monitoring besides clinical testing and radiographic correlation during acute cortical blindness episodes in MELAS as occipital lobe seizures could be a part of the symptomatology.
Collapse
Affiliation(s)
- Amr Ewida
- Neurology, Upstate University Hospital, Syracuse, USA
| | - Rashid Ahmed
- Neurology, Upstate University Hospital, Syracuse, USA
| | - Anqi Luo
- Neurology, University of Texas (UT) Health Science Center at San Antonio, San Antonio, USA
| | - Hesham T Ghonim
- Neurology, University of Pittsburgh Medical Center, Pittsburgh, USA
| | | |
Collapse
|
12
|
Finsterer J, Zarrouk-Mahjoub S. Is vascular compromise during stroke-like episodes primary or secondary? Acta Neurol Belg 2020; 120:439-440. [PMID: 30056482 DOI: 10.1007/s13760-018-0997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Josef Finsterer
- Neurological Department, Krankenanstalt Rudolfstiftung, 1030, Vienna, Austria.
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia
| |
Collapse
|
13
|
Finsterer J, Aliyev R. Metabolic stroke or stroke-like lesion: Peculiarities of a phenomenon. J Neurol Sci 2020; 412:116726. [PMID: 32088469 DOI: 10.1016/j.jns.2020.116726] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES One of the most frequent cerebral lesions in mitochondrial disorders(MIDs) on imaging is the stroke-like lesion(SLL) clinically manifesting as stroke-like episode (SLE, metabolic stroke). This review aims at discussing recent advances concerning the presentation, diagnosis, and treatment of SLLs. METHODS Systematic literature review using appropriate search terms. RESULTS SLLs are the hallmark of MELAS but occasionally occur in other MIDs. SLLs are best identified on multimodal, cerebral MRI. SLLs may present as uni-/multilocular, symmetric/asymmetric, cortical/subcortical, supra-/infratentorial condition, initially resembling a cytotoxic edema and later a vasogenic edema, or a variable mix between them. SLLs run through an acute and a chronic stage. The acute stage is characterised by a progressively expanding lesion over days, weeks, or months, showing up as increasing hyperintensity on T2/FLAIR, DWI, and PWI and by hyperperfusion, that does not conform to a vascular territory. ADC maps are initially hypointens to become hyperintens during the course. More rarely, a variable mixture of hyper- and hypointensities may be found. The chronic stage is characterised by hypoperfusion, gadolinium enhancement, and regression of hyperintensities to various endpoints. SLLs originate from an initial cortical lesion due to focal metabolic breakdown, which either remains stable or expands within the cortex or to subcortical areas. Some SLLs show spontaneous reversibility (fleeing cortical lesions) suggesting that neuronal/glial damage does not reach the threshold of irreversible cell death. CONCLUSIONS SLLs are a unique feature of various MIDs in particular MELAS. SLLs are dynamic and change their appearance over time. SLLs are accessible to treatment.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria.
| | - Rahim Aliyev
- Department of Neurology and Clinical Neurophysiology, Azerbaijan State Advanced Training Institute for Doctors named after A. Aliyev, Baku, Azerbaijan
| |
Collapse
|
14
|
Ikawa M, Povalko N, Koga Y. Arginine therapy in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Curr Opin Clin Nutr Metab Care 2020; 23:17-22. [PMID: 31693521 PMCID: PMC6903379 DOI: 10.1097/mco.0000000000000610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW We would like to inform clinicians that the systematic administration of oral and intravenous L-arginine is therapeutically beneficial and clinically useful for patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), when they maintain plasma arginine concentration at least 168 μmol/l. RECENT FINDINGS MELAS is associated with endothelial dysfunction by decreased plasma L-arginine, nitric oxide (NO), and cyclic guanosine monophosphate. Endothelial dysfunction is also evident using flow-mediated vasodilation measurement by high-resolution Doppler echocardiography in the forearm artery in patients with MELAS. L-arginine is known to be an important precursor of NO to normalize the endothelial function in MELAS. In our clinical trial followed by 7 years follow-up study, the systematic administration of L-arginine to patients with MELAS significantly improved the survival curve of patients compared with natural history. Maintaining plasma arginine concentration at least 168 μmol/l may prevent the ictuses through the putative pathophysiologic mechanism and optimal normalization of endothelial dysfunction. SUMMARY Neither death nor bedriddenness occurred during the 2-year clinical trials, and the latter did not develop during the 7-year follow-up despite the progressively neurodegenerative and eventually life-threatening nature of MELAS. Therapeutic regimen of L-arginine on MELAS may be beneficial and clinically useful for patient care with MELAS.
Collapse
Affiliation(s)
- Masamichi Ikawa
- Department of Advanced Medicine for Community Healthcare, Faculty of Medical Sciences
- Biomedical Imaging Research Center, University of Fukui, Fukui
| | - Nataliya Povalko
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan
- Institute of Fundamental Medicine and Biology, OpenLab Gene and Cell Technology, Kazan Federal University, Kazan Respublika Tatarstan, Russia
| | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan
| |
Collapse
|
15
|
Finsterer J. Mitochondrial metabolic stroke: Phenotype and genetics of stroke-like episodes. J Neurol Sci 2019; 400:135-141. [PMID: 30946993 DOI: 10.1016/j.jns.2019.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Stroke-like episodes (SLEs) are the hallmark of mitochondrial encephalopathy with lactic acidosis and stroke-like episode (MELAS) syndrome but rarely occur also in other specific or nonspecific mitochondrial disorders. Pathophysiologically, SLLs are most likely due to a regional disruption of the blood-brain barrier triggered by the underlying metabolic defect, epileptic activity, drugs, or other factors. SLEs manifest clinically with a plethora of cerebral manifestations, which not only include features typically seen in ischemic stroke, but also headache, epilepsy, ataxia, visual impairment, vomiting, and psychiatric abnormalities. The morphological correlate of a SLE is the stroke-like lesion (SLL), best visualised on multimodal MRI. In the acute stages, a SLL presents as vasogenic edema but may be mixed up with cytotoxic components. Additionally, SLLs are characterized by hyperperfusion on perfusion studies. In the chronic stage, SLLs present with a colorful picture before they completely disappear, or end up as white matter lesion, cyst, laminar cortical necrosis, focal atrophy, or as toenail sign. Treatment of SLLs is symptomatic and relies on recommendations by experts. Beneficial effects have been reported with nitric-oxide precursors, antiepileptic drugs, antioxidants, the ketogenic diet, and steroids. Lot of research is still needed to uncover the enigma SLE/SLL.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria.
| |
Collapse
|
16
|
Finsterer J. Genotype/Phenotype Issues of CARS2 Variants. Pediatr Neurol 2019; 91:73. [PMID: 30389111 DOI: 10.1016/j.pediatrneurol.2018.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, and Messerli Institute, Veterinary University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Gagliardi D, Mauri E, Magri F, Velardo D, Meneri M, Abati E, Brusa R, Faravelli I, Piga D, Ronchi D, Triulzi F, Peverelli L, Sciacco M, Bresolin N, Comi GP, Corti S, Govoni A. Can Intestinal Pseudo-Obstruction Drive Recurrent Stroke-Like Episodes in Late-Onset MELAS Syndrome? A Case Report and Review of the Literature. Front Neurol 2019; 10:38. [PMID: 30766507 PMCID: PMC6365425 DOI: 10.3389/fneur.2019.00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a maternally inherited mitochondrial disorder that is most commonly caused by the m. 3243A>G mutation in the MT-TL1 mitochondrial DNA gene, resulting in impairment of mitochondrial energy metabolism. Although childhood is the typical age of onset, a small fraction (1–6%) of individuals manifest the disease after 40 years of age and usually have a less aggressive disease course. The clinical manifestations are variable and mainly depend on the degree of heteroplasmy in the patient's tissues and organs. They include muscle weakness, diabetes, lactic acidemia, gastrointestinal disturbances, and stroke-like episodes, which are the most commonly observed symptom. We describe the case of a 50-year-old male patient who presented with relapsing intestinal pseudo-obstruction (IPO) episodes, which led to a late diagnosis of MELAS. After diagnosis, he presented several stroke-like episodes in a short time period and developed a rapidly progressive cognitive decline, which unfortunately resulted in his death. We describe the variable clinical manifestations of MELAS syndrome in this atypical and relatively old patient, with a focus on paralytic ileus and stroke-like episodes; the first symptom may have driven the others, leading to a relentless decline. Moreover, we provide a brief revision of previous reports of IPO occurrence in MELAS patients with the m.3243A>G mutation, and we investigate its relationship with stroke-like episodes. Our findings underscore the importance of recognizing gastrointestinal disturbance to prevent neurological comorbidities.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Eleonora Mauri
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Francesca Magri
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Daniele Velardo
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Roberta Brusa
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Irene Faravelli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Daniela Piga
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Ronchi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Peverelli
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.,Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.,Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.,Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
18
|
Finsterer J. Antiepileptics and NO-precursors may be beneficial for stroke-like episodes. eNeurologicalSci 2019; 14:38-39. [PMID: 30619949 PMCID: PMC6304340 DOI: 10.1016/j.ensci.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/16/2018] [Indexed: 11/25/2022] Open
Abstract
Pathogenesis and management of stroke-like episodes in mitochondrial disorders is under debate and no consensus has been reached thus far how this phenomenon should be managed. Frequently applied are nitric oxide (NO) precursors but a well-designed study confirming the effectiveness of such an approach is lacking. Administration of antiepileptic drugs can be meaningful if there is paroxysmal activity on EEG or if a patient presents with seizures. The case reported by Sakai et al. suggests that administration of antiepileptic drugs for a stroke-like episode may be beneficial even in the absence of seizures or paroxysmal EEG activity.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180 Vienna, Austria
| |
Collapse
|
19
|
Whether NO-precursors are truly beneficial for stroke-like episodes remains unsolved. J Neurol 2019; 266:245-246. [DOI: 10.1007/s00415-018-9090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
20
|
Santacatterina F, Torresano L, Núñez-Salgado A, Esparza-Molto PB, Olive M, Gallardo E, García-Arumi E, Blazquez A, González-Quintana A, Martín MA, Cuezva JM. Different mitochondrial genetic defects exhibit the same protein signature of metabolism in skeletal muscle of PEO and MELAS patients: A role for oxidative stress. Free Radic Biol Med 2018; 126:235-248. [PMID: 30138712 DOI: 10.1016/j.freeradbiomed.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
A major challenge in mitochondrial diseases (MDs) is the identification of biomarkers that could inform of the mechanisms involved in the phenotypic expression of genetic defects. Herein, we have investigated the protein signature of metabolism and of the antioxidant response in muscle biopsies of clinically and genetically diagnosed patients with Progressive External Ophthalmoplegia due to single large-scale (PEO-sD) or multiple (PEO-mD) deletions of mtDNA and Mitochondrial Encephalopathy Lactic Acidosis and Stroke-like episode (MELAS) syndrome, and healthy donors. A high-throughput immunoassay technique that quantitates the expression of relevant proteins of glycolysis, glycogenolysis, pentose phosphate pathway, oxidative phosphorylation, pyruvate and fatty acid oxidation, tricarboxylic acid cycle and the antioxidant response in two large independent and retrospectively collected cohorts of PEO-sD, PEO-mD and MELAS patients revealed that despite the heterogeneity of the genetic alterations, the three MDs showed the same metabolic signatures in both cohorts of patients, which were highly divergent from those of healthy individuals. Linear Discriminant Analysis and Support Vector Machine classifier provided a minimum of four biomarkers to discriminate healthy from pathological samples. Regardless of the induction of a large number of enzymes involved in ameliorating oxidative stress, the down-regulation of mitochondrial superoxide dismutase (SOD2) and catalase expression favored the accumulation of oxidative damage in patients' proteins. Down-regulation of SOD2 and catalase expression in MD patients is not due to relevant changes in the availability of their mRNAs, suggesting that oxidative stress regulates the expression of the two enzymes post-transcriptionally. We suggest that SOD2 and catalase could provide specific targets to improve the detoxification of reactive oxygen species that affects muscle proteins in these patients.
Collapse
Affiliation(s)
- Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Laura Torresano
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Alfonso Núñez-Salgado
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain
| | - Pau B Esparza-Molto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Montse Olive
- Servicio de Anatomía Patológica, Unidad Patología Neuromuscular, IDIBELL-Hospital Universitario de Bellvitge, Spain
| | - Eduard Gallardo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Elena García-Arumi
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Laboratorio de Patología Mitocondrial y Neuromuscular, Área de Genética Clínica y Molecular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Blazquez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Adrián González-Quintana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Miguel A Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
21
|
Finsterer J, Zarrouk-Mahjoub S. Are NO Precursors Truly Effective in MELAS? JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818755801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- Pasteur Institute of Tunis, University of Tunis El Manar and Genomics Platform, Tunisia
| |
Collapse
|
22
|
Choi HS, Lee JH, Lee SH, Lee YM. Avascular necrosis after long-term glucocorticoid treatment in MELAS: a cautionary note. J Inherit Metab Dis 2018; 41:277-278. [PMID: 29110176 DOI: 10.1007/s10545-017-0110-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Han Som Choi
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jae Hyun Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sun Ho Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Abstract
ABSTRACTThis review aims at summarizing and discussing previous and recent findings concerning the cerebral manifestations of mitochondrial disorders (MIDs). MIDs frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) either already at onset or later in the course. After the muscle, the brain is the organ second most frequently affected in MIMODS. Cerebral manifestations of MIDs are variable and may present with or without a lesion on imaging or functional studies, but there can be imaging/functional lesions without clinical manifestations. The most well-known cerebral manifestations of MIDs include stroke-like episodes, epilepsy, headache, ataxia, movement disorders, hypopituitarism, muscle weakness, psychiatric abnormalities, nystagmus, white and gray matter lesions, atrophy, basal ganglia calcification, and hypometabolism on 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron-emission tomography. For most MIDs, only symptomatic therapy is currently available. Symptomatic treatment should be supplemented by vitamins, cofactors, and antioxidants. In conclusion, cerebral manifestations of MIDs need to be recognized and appropriately managed because they strongly determine the outcome of MID patients.
Collapse
|
24
|
Epilepsy in MELAS. Pediatr Neurol 2017; 67:e7-e8. [PMID: 27867040 DOI: 10.1016/j.pediatrneurol.2016.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
MELAS Syndrome with Cardiac Involvement: A Multimodality Imaging Approach. Case Rep Cardiol 2016; 2016:1490181. [PMID: 27891257 PMCID: PMC5116498 DOI: 10.1155/2016/1490181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
A 49-year-old man presented with chest pain, dyspnea, and lactic acidosis. Left ventricular hypertrophy and myocardial fibrosis were detected. The sequencing of mitochondrial genome (mtDNA) revealed the presence of A to G mtDNA point mutation at position 3243 (m.3243A>G) in tRNALeu(UUR) gene. Diagnosis of cardiac involvement in a patient with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes syndrome (MELAS) was made. Due to increased risk of sudden cardiac death, cardioverter defibrillator was implanted.
Collapse
|
26
|
Finsterer J, Zarrouk-Mahjoub S. Prevalence and Outcome of Mitochondrial Epilepsy. Ann Neurol 2016; 80:313-4. [PMID: 27399203 DOI: 10.1002/ana.24720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 11/10/2022]
|
27
|
|