1
|
Jacob M, Brugger M, Andres S, Wagner M, Graf E, Berutti R, Tilch E, Pavlov M, Mayerhanser K, Hoefele J, Meitinger T, Winkelmann J, Brunet T. Genome Sequencing for Cases Unsolved by Exome Sequencing: Identifying a Single-Exon Deletion in TBCK in a Case from 30 Years Ago. Neuropediatrics 2024; 55:260-264. [PMID: 38547905 DOI: 10.1055/s-0044-1782680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
In patients with neurodevelopmental disorders (NDDs), exome sequencing (ES), the diagnostic gold standard, reveals an underlying monogenic condition in only approximately 40% of cases. We report the case of a female patient with profound NDD who died 30 years ago at the age of 3 years and for whom genome sequencing (GS) now identified a single-exon deletion in TBCK previously missed by ExomeDepth, the copy number variation (CNV) detection algorithm in ES.Deoxyribonucleic acid (DNA) was extracted from frozen muscle tissue of the index patient and the parents' blood. Genome data were analyzed for structural variants and single nucleotide variants (SUVs)/indels as part of the Bavarian Genomes consortium project.Biallelic variants in TBCK, which are linked to the autosomal recessive disorder TBCK syndrome, were detected in the affected individual: a novel frameshift variant and a deletion of exon 23, previously established as common but underrecognized pathogenic variant in individuals with TBCK syndrome. While in the foregoing ES analysis, calling algorithms for (SNVs)/indels were able to identify the frameshift variant, ExomeDepth failed to call the intragenic deletion.Our case illustrates the added value of GS for the detection of single-exon deletions for which calling from ES data remains challenging and confirms that the deletion of exon 23 in TBCK may be underdiagnosed in patients with NDDs. Furthermore, it shows the importance of "molecular or genetic autopsy" allowing genetic risk counseling for family members as well as the end of a diagnostic odyssey of 30 years.
Collapse
Affiliation(s)
- Maureen Jacob
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
| | - Stephanie Andres
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
| | - Riccardo Berutti
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Erik Tilch
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Martin Pavlov
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
| | - Juliane Winkelmann
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Bavarian Genomes Network for Rare Disorders
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| |
Collapse
|
2
|
Durham EL, Angireddy R, Black A, Melendez-Perez A, Smith S, Gonzalez EM, Navarro KG, Díaz A, Bhoj EJK, Katsura KA. TBCK syndrome: a rare multi-organ neurodegenerative disease. Trends Mol Med 2023; 29:783-785. [PMID: 37455236 PMCID: PMC10868401 DOI: 10.1016/j.molmed.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
TBCK syndrome is an autosomal recessive disorder primarily characterized by global developmental delay, hypotonia, abnormal magnetic resonance imaging (MRI), and distinctive craniofacial phenotypes. High variability is observed among affected individuals and their corresponding variants, making clinical diagnosis challenging. Here, we discuss recent breakthroughs in clinical considerations, TBCK function, and therapeutic development.
Collapse
Affiliation(s)
- Emily L Durham
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Rajesh Angireddy
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Aaron Black
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Ashley Melendez-Perez
- Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarina Smith
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Elizabeth M Gonzalez
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen G Navarro
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Abdias Díaz
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J K Bhoj
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Kaitlin A Katsura
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Bullock G, Johnson GS, Pattridge SG, Mhlanga-Mutangadura T, Guo J, Cook J, Campbell RS, Vite CH, Katz ML. A Homozygous MAN2B1 Missense Mutation in a Doberman Pinscher Dog with Neurodegeneration, Cytoplasmic Vacuoles, Autofluorescent Storage Granules, and an α-Mannosidase Deficiency. Genes (Basel) 2023; 14:1746. [PMID: 37761886 PMCID: PMC10531151 DOI: 10.3390/genes14091746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A 7-month-old Doberman Pinscher dog presented with progressive neurological signs and brain atrophy suggestive of a hereditary neurodegenerative disorder. The dog was euthanized due to the progression of disease signs. Microscopic examination of tissues collected at the time of euthanasia revealed massive accumulations of vacuolar inclusions in cells throughout the central nervous system, suggestive of a lysosomal storage disorder. A whole genome sequence generated with DNA from the affected dog contained a likely causal, homozygous missense variant in MAN2B1 that predicted an Asp104Gly amino acid substitution that was unique among whole genome sequences from over 4000 dogs. A lack of detectable α-mannosidase enzyme activity confirmed a diagnosis of a-mannosidosis. In addition to the vacuolar inclusions characteristic of α-mannosidosis, the dog exhibited accumulations of autofluorescent intracellular inclusions in some of the same tissues. The autofluorescence was similar to that which occurs in a group of lysosomal storage disorders called neuronal ceroid lipofuscinoses (NCLs). As in many of the NCLs, some of the storage bodies immunostained strongly for mitochondrial ATP synthase subunit c protein. This protein is not a substrate for α-mannosidase, so its accumulation and the development of storage body autofluorescence were likely due to a generalized impairment of lysosomal function secondary to the accumulation of α-mannosidase substrates. Thus, it appears that storage body autofluorescence and subunit c accumulation are not unique to the NCLs. Consistent with generalized lysosomal impairment, the affected dog exhibited accumulations of intracellular inclusions with varied and complex ultrastructural features characteristic of autophagolysosomes. Impaired autophagic flux may be a general feature of this class of disorders that contributes to disease pathology and could be a target for therapeutic intervention. In addition to storage body accumulation, glial activation indicative of neuroinflammation was observed in the brain and spinal cord of the proband.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Savannah G. Pattridge
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA;
| | - Rebecca S. Campbell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Web-accessible application for identifying pathogenic transcripts with RNA-seq: Increased sensitivity in diagnosis of neurodevelopmental disorders. Am J Hum Genet 2023; 110:251-272. [PMID: 36669495 PMCID: PMC9943747 DOI: 10.1016/j.ajhg.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.
Collapse
|
5
|
Dai H, Zhu W, Yuan B, Walley N, Schoch K, Jiang YH, Phillips JA, Jones MS, Liu P, Murdock DR, Burrage LC, Lee B, Rosenfeld JA, Xiao R. A recurrent single-exon deletion in TBCK might be under-recognized in patients with infantile hypotonia and psychomotor delay. Hum Mutat 2022; 43:1816-1823. [PMID: 36317458 PMCID: PMC9772143 DOI: 10.1002/humu.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.
Collapse
Affiliation(s)
- Hongzheng Dai
- Molecular and Human Genetics, Baylor College of Medicine
- Molecular Genomics, Baylor Genetics
| | | | - Bo Yuan
- Molecular and Human Genetics, Baylor College of Medicine
- Molecular Genomics, Baylor Genetics
| | | | | | | | - John A. Phillips
- Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine
| | | | - Pengfei Liu
- Molecular and Human Genetics, Baylor College of Medicine
- Molecular Genomics, Baylor Genetics
| | | | - Lindsay C. Burrage
- Molecular and Human Genetics, Baylor College of Medicine
- Texas Children’s Hospital
| | - Brendan Lee
- Molecular and Human Genetics, Baylor College of Medicine
| | | | - Rui Xiao
- Molecular and Human Genetics, Baylor College of Medicine
- Molecular Genomics, Baylor Genetics
| | | |
Collapse
|
6
|
Moreira DDP, Suzuki AM, Silva ALTE, Varella-Branco E, Meneghetti MCZ, Kobayashi GS, Fogo M, Ferrari MDFR, Cardoso RR, Lourenço NCV, Griesi-Oliveira K, Zachi EC, Bertola DR, Weinmann KDS, de Lima MA, Nader HB, Sertié AL, Passos-Bueno MR. Neuroprogenitor Cells From Patients With TBCK Encephalopathy Suggest Deregulation of Early Secretory Vesicle Transport. Front Cell Neurosci 2022; 15:803302. [PMID: 35095425 PMCID: PMC8793280 DOI: 10.3389/fncel.2021.803302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Biallelic pathogenic variants in TBCK cause encephaloneuropathy, infantile hypotonia with psychomotor retardation, and characteristic facies 3 (IHPRF3). The molecular mechanisms underlying its neuronal phenotype are largely unexplored. In this study, we reported two sisters, who harbored biallelic variants in TBCK and met diagnostic criteria for IHPRF3. We provided evidence that TBCK may play an important role in the early secretory pathway in neuroprogenitor cells (iNPC) differentiated from induced pluripotent stem cells (iPSC). Lack of functional TBCK protein in iNPC is associated with impaired endoplasmic reticulum-to-Golgi vesicle transport and autophagosome biogenesis, as well as altered cell cycle progression and severe impairment in the capacity of migration. Alteration in these processes, which are crucial for neurogenesis, neuronal migration, and cytoarchitecture organization, may represent an important causative mechanism of both neurodevelopmental and neurodegenerative phenotypes observed in IHPRF3. Whether reduced mechanistic target of rapamycin (mTOR) signaling is secondary to impaired TBCK function over other secretory transport regulators still needs further investigation.
Collapse
Affiliation(s)
- Danielle de Paula Moreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Angela May Suzuki
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Elisa Varella-Branco
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gerson Shigeru Kobayashi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana Fogo
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Rafaela Regina Cardoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Naila Cristina Vilaça Lourenço
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Karina Griesi-Oliveira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Elaine Cristina Zachi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Débora Romeo Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto da Criança do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karina de Souza Weinmann
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Andrade de Lima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrea Laurato Sertié
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Maria Rita Passos-Bueno,
| |
Collapse
|
7
|
Tintos-Hernández JA, Santana A, Keller KN, Ortiz-González XR. Lysosomal dysfunction impairs mitochondrial quality control and is associated with neurodegeneration in TBCK encephaloneuronopathy. Brain Commun 2021; 3:fcab215. [PMID: 34816123 PMCID: PMC8603245 DOI: 10.1093/braincomms/fcab215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/14/2022] Open
Abstract
Biallelic variants in the TBCK gene cause intellectual disability with remarkable clinical variability, ranging from static encephalopathy to progressive neurodegeneration (TBCK-Encephaloneuronopathy). The biological factors underlying variable disease penetrance remain unknown. Since previous studies had suggested aberrant autophagy, we tested whether mitophagy and mitochondrial function are altered in TBCK−/− fibroblasts derived from patients exhibiting variable clinical severity. Our data show significant accumulation of mitophagosomes, reduced mitochondrial respiratory capacity and mitochondrial DNA content, suggesting impaired mitochondrial quality control. Furthermore, the degree of mitochondrial dysfunction correlates with a neurodegenerative clinical course. Since mitophagy ultimately depends on lysosomal degradation, we also examined lysosomal function. Our data show that lysosomal proteolytic function is significantly reduced in TBCK−/− fibroblasts. Moreover, acidifying lysosomal nanoparticles rescue the mitochondrial respiratory defects in fibroblasts, suggesting impaired mitochondrial quality control secondary to lysosomal dysfunction. Our data provide insight into the disease mechanisms of TBCK Encephaloneuronopathy and the potential relevance of mitochondrial function as a biomarker beyond primary mitochondrial disorders. It also supports the benefit of lysosomal acidification strategies for disorders of impaired lysosomal degradation affecting mitochondrial quality control.
Collapse
Affiliation(s)
- Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adrian Santana
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kierstin N Keller
- Department of Genetics, Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Epilepsy Neurogenetics Initiative and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Westland R, Renkema KY, Knoers NV. Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract. Clin J Am Soc Nephrol 2021; 16:128-137. [PMID: 32312792 PMCID: PMC7792653 DOI: 10.2215/cjn.14661119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT.
Collapse
Affiliation(s)
- Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V.A.M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Wu J, Lu G. Multiple functions of TBCK protein in neurodevelopment disorders and tumors. Oncol Lett 2021; 21:17. [PMID: 33240423 PMCID: PMC7681195 DOI: 10.3892/ol.2020.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
TBC1 domain containing kinase (TBCK) protein is composed of three conserved domains, including N-terminal Serine/Threonine kinase domain, central TBC domain and C-terminal rhodanese homology domain (RHOD). A total of 9 different transcripts (classified as long and short TBCK) generated by alternative splicing have been reported in different cell lines. Exogenous expression of long TBCK has been identified to function as a suppressor of cell growth in certain cell types. On the contrary, TBCK has also been reported to serve a tumor-promoting role in other cell lines, indicating that TBCK might function differentially, depending on the context in different cellular environments. Furthermore, deleterious homozygous or compound heterozygous mutations identified by whole-exome sequencing in the TBCK gene could ablate the function of TBCK, further impacting the mTOR signaling pathway and leading to neurogenetic disorders, such as hypotonia, global developmental delay, facial dysmorphic features and brain abnormalities. However, as a poorly explored protein, there are a lot of studies associated with the functions of TBCK that need to be performed in the future. The present review summarizes data regarding the structural features and potential roles of TBCK in developmental and neurological diseases and tumorigenesis. Future prospects of TBCK research lie in revealing numerous biological functions of TBCK.
Collapse
Affiliation(s)
- Jin Wu
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Guanting Lu
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
10
|
Saredi S, Cauley ES, Ruggieri A, Spivey TM, Ardissone A, Mora M, Moroni I, Manzini MC. Myopathic changes associated with psychomotor delay and seizures caused by a novel homozygous mutation in TBCK. Muscle Nerve 2020; 62:266-271. [PMID: 32363625 DOI: 10.1002/mus.26907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/16/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Biallelic mutations in TBC1-domain containing kinase (TBCK) lead to hypotonia, global developmental delay with severe cognitive and motor deficits, and variable presentation of dysmorphic facial features and brain malformations. It remains unclear whether hypotonia in these individuals is purely neurogenic, or also caused by progressive muscle disease. METHODS Whole exome sequencing was performed on a family diagnosed with nonspecific myopathic changes by means of histological analysis and immunohistochemistry of muscle biopsy samples. RESULTS A novel homozygous truncation in TBCK was found in two sisters diagnosed with muscle disease and severe psychomotor delay. TBCK was completely absent in these patients. CONCLUSIONS Our findings identify a novel early truncating variant in TBCK associated with a severe presentation and add muscle disease to the variability of phenotypes associated with TBCK mutations. Inconsistent genotype/phenotype correlation could be ascribed to the multiple roles of TBCK in intracellular signaling and endolysosomal function in different tissues.
Collapse
Affiliation(s)
- Simona Saredi
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Edmund S Cauley
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Alessandra Ruggieri
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Biology and Genetic Division, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Tyler M Spivey
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Anna Ardissone
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M Chiara Manzini
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC.,Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|