1
|
Rissardo JP, Byroju VV, Mukkamalla S, Caprara ALF. A Narrative Review of Stroke of Cortical Hand Knob Area. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:318. [PMID: 38399606 PMCID: PMC10890039 DOI: 10.3390/medicina60020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
The cortical hand knob region of the brain is a knob-like segment of the precentral gyrus, projecting into the middle genu of the central sulcus. This anatomic landmark is responsible for intricate control of hand motor movements and has often been implicated in motor weakness following stroke. In some instances, damage to this area has been mistaken for peripheral causes of hand weakness. Our article aims to consolidate clinically relevant information on the cortical hand knob area in a comprehensive review to guide clinicians regarding diagnosis and treatment strategies. We conducted a systematic search within the Medline/PubMed database for reports of strokes in the cortical hand knob region. All studies were published electronically up until December 2023. The search was conducted using the keyword "hand knob". A total of 24 reports containing 150 patients were found. The mean and median ages were 65 and 67 years, respectively. Sixty-two percent of the individuals were male. According to the TOAST criteria for the classification of the stroke, 59 individuals had a stroke due to large-artery atherosclerosis, 8 had small-vessel occlusion, 20 had cardioembolism, 25 were determined, and 38 were undetermined. The most common etiologies for stroke in the hand knob area can be attributed to large vessel occlusions, small vessel occlusions, or cardioembolism. Presentations following damage to this area can mimic ulnar, median, or radial neuropathy as well. Our comprehensive review serves as a resource for recognizing and managing stroke in the cortical hand knob area.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Neurology Department, Cooper University Hospital, Camden, NJ 08103, USA; (J.P.R.); (V.V.B.)
| | - Vishnu Vardhan Byroju
- Neurology Department, Cooper University Hospital, Camden, NJ 08103, USA; (J.P.R.); (V.V.B.)
| | | | | |
Collapse
|
2
|
Shinde K, Craig BT, Hassett J, Dlamini N, Brooks BL, Kirton A, Carlson HL. Alterations in cortical morphometry of the contralesional hemisphere in children, adolescents, and young adults with perinatal stroke. Sci Rep 2023; 13:11391. [PMID: 37452141 PMCID: PMC10349116 DOI: 10.1038/s41598-023-38185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Perinatal stroke causes most hemiparetic cerebral palsy and cognitive dysfunction may co-occur. Compensatory developmental changes in the intact contralesional hemisphere may mediate residual function and represent targets for neuromodulation. We used morphometry to explore cortical thickness, grey matter volume, gyrification, and sulcal depth of the contralesional hemisphere in children, adolescents, and young adults after perinatal stroke and explored associations with motor, attention, and executive function. Participants aged 6-20 years (N = 109, 63% male) with unilateral perinatal stroke underwent T1-weighted imaging. Participants had arterial ischemic stroke (AIS; n = 36), periventricular venous infarction (PVI; n = 37) or were controls (n = 36). Morphometry was performed using the Computational Anatomy Toolbox (CAT12). Group differences and associations with motor and executive function (in a smaller subsample) were assessed. Group comparisons revealed areas of lower cortical thickness in contralesional hemispheres in both AIS and PVI and greater gyrification in AIS compared to controls. Areas of greater grey matter volume and sulcal depth were also seen for AIS. The PVI group showed lower grey matter volume in cingulate cortex and less volume in precuneus relative to controls. No associations were found between morphometry metrics, motor, attention, and executive function. Cortical structure of the intact contralesional hemisphere is altered after perinatal stroke. Alterations in contralesional cortical morphometry shown in perinatal stroke may be associated with different mechanisms of damage or timing of early injury. Further investigations with larger samples are required to more thoroughly explore associations with motor and cognitive function.
Collapse
Affiliation(s)
- Karan Shinde
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
| | - Brandon T Craig
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jordan Hassett
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
| | - Nomazulu Dlamini
- Children's Stroke Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Brian L Brooks
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Wang J, Yamasaki BL, Booth JR. Phonological and Semantic Specialization in 9- to 10-Year-Old Children During Auditory Word Processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:297-317. [PMID: 37229511 PMCID: PMC10205156 DOI: 10.1162/nol_a_00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/29/2022] [Indexed: 05/27/2023]
Abstract
One of the core features of brain maturation is functional specialization. Previous research has found that 7- to 8-year-old children start to specialize in both the temporal and frontal lobes. However, as children continue to develop their phonological and semantic skills rapidly until approximately 10 years old, it remained unclear whether any changes in specialization later in childhood would be detected. Thus, the goal of the current study was to examine phonological and semantic specialization in 9- to 10-year-old children during auditory word processing. Sixty-one children were included in the analysis. They were asked to perform a sound judgment task and a meaning judgment task, each with both hard and easy conditions to examine parametric effects. Consistent with previous results from 7- to 8-year-old children, direct task comparisons revealed language specialization in both the temporal and frontal lobes in 9- to 10-year-old children. Specifically, the left dorsal inferior frontal gyrus showed greater activation for the sound than the meaning task whereas the left middle temporal gyrus showed greater activation for the meaning than the sound task. Interestingly, in contrast to the previously reported finding that 7- to 8-year-old children primarily engage a general control region during the harder condition for both tasks, we showed that 9- to 10-year-old children recruited language-specific regions to process the more difficult task conditions. Specifically, the left superior temporal gyrus showed greater activation for the phonological parametric manipulation whereas the left ventral inferior frontal gyrus showed greater activation for the semantic parametric manipulation.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN
- Harvard Graduate School of Education, Harvard University, Cambridge, MA
| | - Brianna L. Yamasaki
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN
- Department of Psychology, Emory University, Atlanta, GA
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN
| |
Collapse
|
4
|
Kuo HC, Zewdie E, Giuffre A, Gan LS, Carlson HL, Wrightson J, Kirton A. Robotic mapping of motor cortex in children with perinatal stroke and hemiparesis. Hum Brain Mapp 2022; 43:3745-3758. [PMID: 35451540 PMCID: PMC9294290 DOI: 10.1002/hbm.25881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation combined with intensive therapy may improve hand function in children with perinatal stroke‐induced unilateral cerebral palsy (UCP). However, response to therapy varies and underlying neuroplasticity mechanisms remain unclear. Here, we aimed to characterize robotic motor mapping outcomes in children with UCP. Twenty‐nine children with perinatal stroke and UCP (median age 11 ± 2 years) were compared to 24 typically developing controls (TDC). Robotic, neuronavigated transcranial magnetic stimulation was employed to define bilateral motor maps including area, volume, and peak motor evoked potential (MEP). Map outcomes were compared to the primary clinical outcome of the Jebsen–Taylor Test of Hand Function (JTT). Maps were reliably obtained in the contralesional motor cortex (24/29) but challenging in the lesioned hemisphere (5/29). Within the contralesional M1 of participants with UCP, area and peak MEP amplitude of the unaffected map were larger than the affected map. When comparing bilateral maps within the contralesional M1 in children with UCP to that of TDC, only peak MEP amplitudes were different, being smaller for the affected hand as compared to TDC. We observed correlations between the unaffected map when stimulating the contralesional M1 and function of the unaffected hand. Robotic motor mapping can characterize motor cortex neurophysiology in children with perinatal stroke. Map area and peak MEP amplitude may represent discrete biomarkers of developmental plasticity in the contralesional M1. Correlations between map metrics and hand function suggest clinical relevance and utility in studies of interventional plasticity.
Collapse
Affiliation(s)
- Hsing-Ching Kuo
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada.,Hotchkiss Brain Institute (HBI), Calgary, Alberta, Canada.,Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physical Medicine & Rehabilitation, University of California Davis, Sacramento, California, USA
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada.,Hotchkiss Brain Institute (HBI), Calgary, Alberta, Canada.,Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adrianna Giuffre
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada.,Hotchkiss Brain Institute (HBI), Calgary, Alberta, Canada.,Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Liu Shi Gan
- Hotchkiss Brain Institute (HBI), Calgary, Alberta, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada.,Hotchkiss Brain Institute (HBI), Calgary, Alberta, Canada.,Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James Wrightson
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada.,Hotchkiss Brain Institute (HBI), Calgary, Alberta, Canada.,Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada.,Hotchkiss Brain Institute (HBI), Calgary, Alberta, Canada.,Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Craig BT, Kinney-Lang E, Hilderley AJ, Carlson HL, Kirton A. Structural connectivity of the sensorimotor network within the non-lesioned hemisphere of children with perinatal stroke. Sci Rep 2022; 12:3866. [PMID: 35264665 PMCID: PMC8907195 DOI: 10.1038/s41598-022-07863-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Perinatal stroke occurs early in life and often leads to a permanent, disabling weakness to one side of the body. To test the hypothesis that non-lesioned hemisphere sensorimotor network structural connectivity in children with perinatal stroke is different from controls, we used diffusion imaging and graph theory to explore structural topology between these populations. Children underwent diffusion and anatomical 3T MRI. Whole-brain tractography was constrained using a brain atlas creating an adjacency matrix containing connectivity values. Graph theory metrics including betweenness centrality, clustering coefficient, and both neighbourhood and hierarchical complexity of sensorimotor nodes were compared to controls. Relationships between these connectivity metrics and validated sensorimotor assessments were explored. Eighty-five participants included 27 with venous stroke (mean age = 11.5 ± 3.7 years), 26 with arterial stroke (mean age = 12.7 ± 4.0 years), and 32 controls (mean age = 13.3 ± 3.6 years). Non-lesioned primary motor (M1), somatosensory (S1) and supplementary motor (SMA) areas demonstrated lower betweenness centrality and higher clustering coefficient in stroke groups. Clustering coefficient of M1, S1, and SMA were inversely associated with clinical motor function. Hemispheric betweenness centrality and clustering coefficient were higher in stroke groups compared to controls. Hierarchical and average neighbourhood complexity across the hemisphere were lower in stroke groups. Developmental plasticity alters the connectivity of key nodes within the sensorimotor network of the non-lesioned hemisphere following perinatal stroke and contributes to clinical disability.
Collapse
Affiliation(s)
- Brandon T Craig
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eli Kinney-Lang
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alicia J Hilderley
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
6
|
Sporns PB, Fullerton HJ, Lee S, Kim H, Lo WD, Mackay MT, Wildgruber M. Childhood stroke. Nat Rev Dis Primers 2022; 8:12. [PMID: 35210461 DOI: 10.1038/s41572-022-00337-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 01/09/2023]
Abstract
Stroke is an important cause of neurological morbidity in children; most survivors have permanent neurological deficits that affect the remainder of their life. Stroke in childhood, the focus of this Primer, is distinguished from perinatal stroke, defined as stroke before 29 days of age, because of its unique pathogenesis reflecting the maternal-fetal unit. Although approximately 15% of strokes in adults are haemorrhagic, half of incident strokes in children are haemorrhagic and half are ischaemic. The causes of childhood stroke are distinct from those in adults. Urgent brain imaging is essential to confirm the stroke diagnosis and guide decisions about hyperacute therapies. Secondary stroke prevention strongly depends on the underlying aetiology. While the past decade has seen substantial advances in paediatric stroke research, the quality of evidence for interventions, such as the rapid reperfusion therapies that have revolutionized arterial ischaemic stroke care in adults, remains low. Substantial time delays in diagnosis and treatment continue to challenge best possible care. Effective primary stroke prevention strategies in children with sickle cell disease represent a major success, yet barriers to implementation persist. The multidisciplinary members of the International Pediatric Stroke Organization are coordinating global efforts to tackle these challenges and improve the outcomes in children with cerebrovascular disease.
Collapse
Affiliation(s)
- Peter B Sporns
- Department of Neuroradiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, Basel, Switzerland.,Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heather J Fullerton
- Departments of Neurology and Pediatrics, Benioff Children's Hospital, University of California at San Francisco, San Francisco, CA, USA
| | - Sarah Lee
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Helen Kim
- Departments of Anesthesia and Perioperative Care, and Epidemiology and Biostatistics, Center for Cerebrovascular Research, University of California at San Francisco, San Francisco, CA, USA
| | - Warren D Lo
- Departments of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Mark T Mackay
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Yu S, Lam C, Shinde S, Kuczynski AM, Carlson HL, Dukelow SP, Brooks BL, Kirton A. Perilesional Gliosis Is Associated with Outcome after Perinatal Stroke. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractPerinatal ischemic stroke results in focal brain injury and life-long disability. Hemiplegic cerebral palsy and additional sequelae are common. With no prevention strategies, improving outcomes depends on understanding brain development. Reactive astrogliosis is a hallmark of brain injury that has been associated with outcomes but is unstudied in perinatal stroke. In this article, we hypothesized that gliosis was quantifiable and its extent would inversely correlate with clinical motor function. This was a population-based, retrospective, and cross-sectional study. Children with perinatal arterial ischemic stroke (AIS) or periventricular venous infarction (PVI) with magnetic resonance (MR) imaging were included. An image thresholding technique based on image intensity was utilized to quantify the degree of chronic gliosis on T2-weighted sequences. Gliosis scores were corrected for infarct volume and compared with the Assisting Hand and Melbourne Assessments (AHA and MA), neuropsychological profiles, and robotic measures. In total, 42 children were included: 25 with AIS and 17 with PVI (median = 14.0 years, range: 6.3–19 years, 63% males). Gliosis was quantifiable in all scans and scores were highly reliable. Gliosis scores as percentage of brain volume ranged from 0.3 to 3.2% and were comparable between stroke types. Higher gliosis scores were associated with better motor function for all three outcomes in the AIS group, but no association was observed for PVI. Gliosis can be objectively quantified in children with perinatal stroke. Associations with motor outcome in arterial but not venous strokes suggest differing glial responses may play a role in tissue remodeling and developmental plasticity following early focal brain injury.
Collapse
Affiliation(s)
- Sabrina Yu
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Charissa Lam
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Siddharth Shinde
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | | | - Helen L. Carlson
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sean P. Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Brian L. Brooks
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Psychology, University of Calgary, Calgary, Canada
| | - Adam Kirton
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Affiliation(s)
- E Steve Roach
- Department of Neurology, University of Texas Dell Medical School, Austin, Texas.
| |
Collapse
|
9
|
Carlson HL, Craig BT, Hilderley AJ, Hodge J, Rajashekar D, Mouches P, Forkert ND, Kirton A. Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study. Neuroimage Clin 2020; 28:102508. [PMID: 33395997 PMCID: PMC7704459 DOI: 10.1016/j.nicl.2020.102508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 11/15/2022]
Abstract
Developmental neuroplasticity allows young brains to adapt via experiences early in life and also to compensate after injury. Why certain individuals are more adaptable remains underexplored. Perinatal stroke is an ideal human model of neuroplasticity with focal lesions acquired near birth in a healthy brain. Machine learning can identify complex patterns in multi-dimensional datasets. We used machine learning to identify structural and functional connectivity biomarkers most predictive of motor function. Forty-nine children with perinatal stroke and 27 controls were studied. Functional connectivity was quantified by fluctuations in blood oxygen-level dependent (BOLD) signal between regions. White matter tractography of corticospinal tracts quantified structural connectivity. Motor function was assessed using validated bimanual and unimanual tests. RELIEFF feature selection and random forest regression models identified predictors of each motor outcome using neuroimaging and demographic features. Unilateral motor outcomes were predicted with highest accuracy (8/54 features r = 0.58, 11/54 features, r = 0.34) but bimanual function required more features (51/54 features, r = 0.38). Connectivity of both hemispheres had important roles as did cortical and subcortical regions. Lesion size, age at scan, and type of stroke were predictive but not highly ranked. Machine learning regression models may represent a powerful tool in identifying neuroimaging biomarkers associated with clinical motor function in perinatal stroke and may inform personalized targets for neuromodulation.
Collapse
Affiliation(s)
- Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Brandon T Craig
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alicia J Hilderley
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jacquie Hodge
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Deepthi Rajashekar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Pauline Mouches
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|