1
|
Bhat N, Nutho B, Hanpaibool C, Hadsadee S, Vangnai A, Rungrotmongkol T. Molecular binding of different classes of organophosphates to methyl parathion hydrolase from Ochrobactrum species. Proteins 2024; 92:96-105. [PMID: 37646471 DOI: 10.1002/prot.26579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Methyl parathion hydrolase (MPH) is an enzyme of the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphates (OPs). Recently, MPH has attracted attention as a promising enzymatic bioremediator. The crystal structure of MPH enzyme shows a dimeric form, with each subunit containing a binuclear metal ion center. MPH also demonstrates metal ion-dependent selectivity patterns. The origins of these patterns remain unclear but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. We aimed to investigate and compare the binding of different OP pesticides to MPH with cobalt(II) metal ions. In this study, MPH was modeled from Ochrobactrum sp. with different OP pesticides bound, including methyl paraoxon and dichlorvos and profenofos. The docked structures for each substrate optimized by DFT calculation were selected and subjected to atomistic molecular dynamics simulations for 500 ns. It was found that alpha metal ions did not coordinate with all the pesticides. Rather, the pesticides coordinated with less buried beta metal ions. It was also observed that the coordination of beta metal ions was perturbed to accommodate the pesticides. The binding free energy calculations and structure-based pharmacophore model revealed that all the three substrates could bind well at the active site. However, profenofos exhibit a stronger binding affinity to MPH in comparison to the other two substrates. Therefore, our findings provide molecular insight on the binding of different OP pesticides which could help us design the enzyme for OP pesticides degradation.
Collapse
Affiliation(s)
- Nayana Bhat
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chonnikan Hanpaibool
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarinya Hadsadee
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Alisa Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Ma Z, Li Y, Lu C, Li M. On-site screening method for bioavailability assessment of the organophosphorus pesticide, methyl parathion, and its primary metabolite in soils by paper strip biosensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131725. [PMID: 37295330 DOI: 10.1016/j.jhazmat.2023.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
An important public concern worldwide is soil pollution caused by organophosphorus pesticides and their primary metabolites. To protect the public's health, screening these pollutants on-site and determining their soil bioavailability is important, but doing so is still challenging. This work improved the already-existing organophosphorus pesticide hydrolase (mpd) and transcriptional activator (pobR), and it first designed and constructed a novel biosensor (Escherichia coli BL21/pNP-LacZ) that can precisely detect methyl parathion (MP) and its primary metabolite p-nitrophenol with low background value. To create a paper strip biosensor, E. coli BL21/pNP-LacZ was fixed to filter paper using bio-gel alginate and sensitizer polymyxin B. According to the calibrations of the paper strip biosensor for soil extracts and standard curve, the color intensity of the paper strip biosensor collected by the mobile app may be used to compute the concentration of MP and p-nitrophenol. This method's detection limits were 5.41 µg/kg for p-nitrophenol and 9.57 µg/kg for MP. The detection of p-nitrophenol and MP in laboratory and field soil samples confirmed this procedure. Paper strip biosensor on-site allows for the semi-quantitative measurement of p-nitrophenol and MP levels in soils in a simple, inexpensive, and portable method.
Collapse
Affiliation(s)
- Zhao Ma
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Chao Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Dash DM, Osborne WJ. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. CHEMOSPHERE 2023; 313:137506. [PMID: 36526134 DOI: 10.1016/j.chemosphere.2022.137506] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ever since the concept of bioremediation was introduced, microorganisms, microbial enzymes and plants have been used as principal elements for Organophosphate pesticide (OPP) bioremediation. The enzyme systems and genetic profile of these microbes have been studied deeply in past years. Plant growth promoting rhizobacteria (PGPR) are considered as one of the potential candidates for OPP bioremediation and has been widely used to stimulate the phytoremediation potential of plants. Constructed wetlands (CWs) in OPP biodegradation have brought new prospects to microcosm and mesocosm based remediation strategies. Application of synthetic biology has provided a new dimension to the field of OPP bioremediation by introducing concepts like, gene manipulation andediting, expression and regulation of catabolic enzymes, implementation of whole-cell based and enzyme based biosensor systems for the detection and monitoring of OPP pollution in both terrestrial and aquatic environment. System biology and bioinformatics tools have rendered significant knowledge regarding the genetic, enzymatic and biochemical aspects of microbes and plants thereby, helping researchers to analyze the mechanism of OPP biodegradation. Structural biology has provided significant conceptual information regarding OPP biodegradation pathways, structural and functional characterization of metabolites and enzymes, enzyme-pollutant interactions, etc. Therefore, this review discussed the prospects and challenges of most advanced and high throughput strategies implemented for OPP biodegradation. The review also established a comparative analysis of various bioremediation techniques and highlighted the interdependency among them. The review highly suggested the simultaneous implementation of more than one remediation strategy or a combinational approach creating an advantageous hybrid technique for OPP bioremediation.
Collapse
Affiliation(s)
- Dipti Mayee Dash
- Department of Bioscience School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - W Jabez Osborne
- Department of Bioscience School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives. Appl Biochem Biotechnol 2022; 194:2301-2335. [DOI: 10.1007/s12010-021-03713-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
|
5
|
Bhatt P, Zhou X, Huang Y, Zhang W, Chen S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125026. [PMID: 33461010 DOI: 10.1016/j.jhazmat.2020.125026] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Ester-containing organophosphate, carbamate, and pyrethroid (OCP) pesticides are used worldwide to minimize the impact of pests and increase agricultural production. The toxicity of these chemicals to humans and other organisms has been widely reported. Chemically, these pesticides share an ester bond in their parent structures. A particular group of hydrolases, known as esterases, can catalyze the first step in ester-bond hydrolysis, and this initial regulatory metabolic reaction accelerates the degradation of OCP pesticides. Esterases can be naturally found in plants, animals, and microorganisms. Previous research on the esterase enzyme mechanisms revealed that the active sites of esterases contain serine residues that catalyze reactions via a nucleophilic attack on the substrates. In this review, we have compiled the previous research on esterases from different sources to determine and summarize the current knowledge of their properties, classifications, structures, mechanisms, and their applications in the removal of pesticides from the environment. This review will enhance the understanding of the scientific community when studying esterases and their applications for the degradation of broad-spectrum ester-containing pesticides.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
6
|
Ying W, YaPing W, Can H, Lixin M, Hong Y, Yong M, Xiaoyan L, Ben R. High-level extracellular production and immobilisation of methyl parathion hydrolase from Plesiomonas sp. M6 expressed in Pichia pastoris. Protein Expr Purif 2021; 183:105859. [PMID: 33647399 DOI: 10.1016/j.pep.2021.105859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Methyl parathion hydrolase (MPH) hydrolyses methyl parathion efficiently and specifically. Herein, we produced MPH from Plesiomonas sp. M6 using a Pichia pastoris multi-copy expression system. The original signal peptide sequence of the target gene was removed, and a modified coding sequence was synthesised. Multi-copy expression plasmids containing MPH were constructed using pHBM905BDM, and used to generate recombinant strains containing 1, 2, 3 or 4 copies of the MPH gene. The results showed that a higher target gene copy number increased the production of recombinant MPH (MPH-R), as anticipated. The expression level of the recombinant strain containing four copies of the MPH gene was increased to 1.9 U/ml using 500 ml shake flasks, and the specific activity was 15.8 U/mg. High-density fermentation further increased the target protein yield to 18.4 U/ml. Several metal ions were tested as additives, and Ni2+, Co2+ and Mg2+ at a concentration of 1 mM enhanced MPH-R activity by 196%, 201% and 154%, respectively. Enzyme immobilisation was then applied to overcome the difficulties in recovery, recycling and long-term stability associated with the free enzyme. Immobilised MPH-R exhibited significantly enhanced thermal and long-term stability, as well as broad pH adaptability. In the presence of inhibitors and chelating agents such as sodium dodecyl sulphate (SDS), immobilised MPH-R displayed 2-fold higher activity than free MPH-R, demonstrating its potential for industrial application.
Collapse
Affiliation(s)
- Wang Ying
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China; State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Wang YaPing
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Huang Can
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Ma Lixin
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Yan Hong
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Min Yong
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China
| | - Liu Xiaoyan
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China
| | - Rao Ben
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
7
|
MPH-GST sensing microplate for easy detection of organophosphate insecticides. Biotechnol Lett 2021; 43:933-944. [PMID: 33512614 DOI: 10.1007/s10529-021-03078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To develop a convenient and efficient means for organophosphate (OP) insecticide detection, a simple, cost-effective, and easy-to-use absorbance-based sensing device was generated using methyl parathion hydrolase fused with glutathione-S-transferase (MPH-GST) covalently immobilized onto a chitosan film-coated microplate. RESULTS With methyl parathion (MP) as a representative substrate, this MPH-GST sensing microplate had the detection limit of 0.1 µM and the linear range of 0.1-50 µM. Despite its highest stability at 4 °C, it was considerably stable at 25 °C with high activity for 30 days. It was also most stable at pH 8.0 and could be efficiently reused up to 100 rounds. The device revealed a high percentage of recovery for tap water spiked with a known concentration of MP, which was also comparable to the result obtained from gas chromatography-mass spectrometry. It also showed a high recovery of 82-100% with MP spiked agricultural products and satisfactory results with non-spiked samples. This immobilized enzyme sensing system was more sensitive and efficient than the whole cell system from our previous work. CONCLUSIONS All of the advantages of the MPH-GST sensing microplate developed have rendered it suitable for rapid and convenient OP screening, and for being a bio-element for fabricating a potential optical biosensor in the future.
Collapse
|
8
|
Easy-to-use and reliable absorbance-based MPH-GST biosensor for the detection of methyl parathion pesticide. ACTA ACUST UNITED AC 2020; 27:e00495. [PMID: 32642456 PMCID: PMC7334298 DOI: 10.1016/j.btre.2020.e00495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Simple, inexpensive, high-efficiency absorbance-based OP biosensor was fabricated. Covalently immobilized methyl parathion hydrolase was used as a biomolecule. The biosensor can be used at room temperature for 100 rounds repetitively. The biosensor could detect MP with the detection limit of 0.1 μM. The biosensor showed high reliability for detecting MP in real samples.
Due to high contamination of organophosphate (OP) insecticides in agricultural products and the environment, efficient and convenient devices for their monitoring are necessary. Here, a simple, inexpensive, efficient, and easy-to-use absorbance-based biosensor was fabricated utilizing recombinant methyl parathion hydrolase fused with glutathione-S-transferase (MPH-GST), covalently immobilized onto a chitosan film-coated polystyrene microplate, for the detection of methyl parathion (MP) as a representative of OPs. Having been connected to the transducer system designed to work through an Arduino microcontroller, the biosensor could detect MP as efficiently as the conventional methods, with the detection limit of 0.1 μM, the lowest value ever reported for this method. It was stable at 25 °C for 30 days, could function 100 rounds repetitively, and yielded high recovery with real samples. Hence, this simply designed MPH-GST biosensor could be an easy and inexpensive alternative for efficient OP screening at site to help control its contamination.
Collapse
|
9
|
Bian L, Zhang Z, Tang RX, Shen W, Ma LX. Flavin-Based Fluorescent Protein EcFbFP Auto-Guided Surface Display of Methyl Parathion Hydrolase in Escherichia coli. Mol Biotechnol 2020; 61:816-825. [PMID: 31486973 DOI: 10.1007/s12033-019-00204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyl parathion hydrolase (MPH) plays an important role in degrading a range of organophosphorus compounds. In order to display MPH on the cell surface of Escherichia coli strain RosettaBlue™, the Flavin-based fluorescent protein EcFbFP was severed as an auto-anchoring matrix. With net negative charges of EcFbFP supplying the driving forces, fusion protein MPH-EcFbFP through a two-step auto-surface display process was finally verified by (a) inner membrane translocation and (b) anchoring at outer membrane. Cells with surface-displayed MPH obtained activity of 0.12 U/OD600 against substrate methyl parathion. MPH when fused with engineered EcFbFP containing 20 net negative charges exhibited fivefold higher anchoring efficiency and tenfold higher enzymatic catalytic activity of 1.10 U/OD600. The above result showed that MPH was successfully displayed on cell surface and can be used for biodegradation of methyl parathion.
Collapse
Affiliation(s)
- Lu Bian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Rong-Xing Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Li-Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
10
|
Li Y, Yang H, Xu F. Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase. Appl Microbiol Biotechnol 2018; 102:6537-6545. [PMID: 29948121 DOI: 10.1007/s00253-018-9108-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022]
Abstract
Methyl parathion hydrolase (MPH) that hydrolyzes a wide range of organophosphorus pesticides can be used to remediate land polluted by the pesticides. Here, the catalytic efficiency of methyl parathion hydrolase from Pseudomonas sp. (WBC-3) was enhanced by searching and engineering a critical site far away from the binding pocket. In the first round, a four-site mutant with a modest increased catalytic efficiency (3.2-fold kcat/Km value of the wild type) was obtained with random mutagenesis. By splitting and re-combining the four substitutions in the mutant, the critical site S277, was identified to show the most significant effects of improving binding affinity and catalytic efficiency. With further site-saturation mutagenesis focused on the residue S277, another two substitutions were discovered to have even more significant decrease in Km (40.2 and 47.6 μM) and increased in kcat/Km values (9.5- and 10.3-fold of the wild type) compared to the original four-site mutant (3.0- and 3.2-fold). In the three-dimensional structure, residue S277 is located at a hinge region of a loop, which could act as a "lid" at the substrate entering to the binding pocket. This suggests that substitutions of residue S277 could affect substrate binding via conformational change in substrate entrance region. This work provides a valuable protocol combining random mutagenesis, site-saturation mutagenesis, structural and bioinformatics analyses to obtain mutants with high catalytic efficiency from a screening library of a modest size (3200 strains).
Collapse
Affiliation(s)
- Yingnan Li
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Haiquan Yang
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Fei Xu
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
11
|
Islam SMA, Yeasmin S, Islam MS, Islam MS. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:85-92. [PMID: 28319863 DOI: 10.1016/j.ecoenv.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme.
Collapse
Affiliation(s)
- Shah Md Asraful Islam
- Department of Plant Pathology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh.
| | - Shabina Yeasmin
- Department of Forest Products, IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Shariful Islam
- Department of Agricultural Chemistry, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| |
Collapse
|
12
|
|
13
|
Jacquet P, Daudé D, Bzdrenga J, Masson P, Elias M, Chabrière E. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8200-18. [PMID: 26832878 DOI: 10.1007/s11356-016-6143-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties.
Collapse
Affiliation(s)
- Pauline Jacquet
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - David Daudé
- Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, Cedex 5, Marseille, 13385, France
| | - Janek Bzdrenga
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, 420008, Russia
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Eric Chabrière
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
| |
Collapse
|
14
|
Ng TK, Gahan LR, Schenk G, Ollis DL. Altering the substrate specificity of methyl parathion hydrolase with directed evolution. Arch Biochem Biophys 2015; 573:59-68. [DOI: 10.1016/j.abb.2015.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
|
15
|
Liu R, Zuo Z, Xu Y, Song C, Jiang H, Qiao C, Xu P, Zhou Q, Yang C. Twin-arginine signal peptide of Bacillus subtilis YwbN can direct Tat-dependent secretion of methyl parathion hydrolase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2913-2918. [PMID: 24620988 DOI: 10.1021/jf405694n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The twin-arginine translocation (Tat) pathway exports folded proteins across the cytoplasmic membranes of bacteria and archaea. Two parallel Tat pathways (TatAdCd and TatAyCy systems) with distinct substrate specificities have previously been discovered in Bacillus subtilis. In this study, to secrete methyl parathion hydrolase (MPH) into the growth medium, the twin-arginine signal peptide of B. subtilis YwbN was used to target MPH to the Tat pathway of B. subtilis. Western blot analysis and MPH assays demonstrated that active MPH was secreted into the culture supernatant of wild-type cells. No MPH secretion occurred in a total-tat2 mutant, indicating that the observed export in wild-type cells was mediated exclusively by the Tat pathway. Export was fully blocked in a tatAyCy mutant. In contrast, the tatAdCd mutant was still capable of secreting MPH. These results indicated that the MPH secretion directed by the YwbN signal peptide was specifically mediated by the TatAyCy system. The N-terminal sequence of secreted MPH was determined as AAPQVR, demonstrating that the YwbN signal peptide had been processed correctly. This is the first report of functional secretion of a heterologous protein via the B. subtilis TatAyCy system. This study highlights the potential of the TatAyCy system to be used for secretion of other heterologous proteins in B. subtilis.
Collapse
Affiliation(s)
- Ruihua Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, §Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, and ¶Key Laboratory of Pollution Processes and Environmental Criteria for Ministry of Education, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xie J, Zhang H, Li X, Shi Y. Entrapment of methyl parathion hydrolase in cross-linked poly(γ-glutamic acid)/gelatin hydrogel. Biomacromolecules 2014; 15:690-7. [PMID: 24422425 DOI: 10.1021/bm401784r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Methyl parathion hydrolase (MPH) is an important enzyme in hydrolyzing toxic organophosphorus (OP) compounds. However, MPH is easily deactivated when subjected to extreme environmental conditions and is difficult to recover from the reaction system for reuse, thereby limiting its practical application. To address these shortcomings, we examined the entrapment of MPH in an environment-friendly, biocompatible and biodegradable cross-linked poly(γ-glutamic acid)/gelatin hydrogel. The cross-linked poly(γ-glutamic acid)/gelatin hydrogels were prepared with different gelatin/poly(γ-glutamic acid) mass ratios using water-soluble carbodiimide as the cross-linking agent. The MPH-entrapped cross-linked poly(γ-glutamic acid)/gelatin hydrogel (CPE-MPH) not only possessed improved thermostability, pH stability, and reusability but also exhibited enhanced efficiency in hydrolyzing OP compounds. Furthermore, CPE-MPH possesses high water-absorbing and water-retaining capabilities. We believe that the cross-linked poly(γ-glutamic acid)/gelatin hydrogels are an attractive carrier for the entrapment of diverse enzymes, affording a new approach for enzyme entrapment.
Collapse
Affiliation(s)
- Jianfei Xie
- Institute of Applied Ecology, Chinese Academy of Sciences , No. 72, Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | | | | | | |
Collapse
|
17
|
Xie J, Zhao Y, Zhang H, Liu Z, Lu Z. Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency. Lett Appl Microbiol 2013; 58:53-9. [PMID: 24010722 DOI: 10.1111/lam.12155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/07/2022]
Abstract
UNLABELLED Methyl parathion hydrolase (MPH) can degrade a wide range of organophosphorus compounds, but its efficiency in hydrolysing chlorpyrifos, one of the most popular pesticides applied for crop protection, is much lower than that in hydrolysing the preferred substrate methyl parathion. In this study, random mutagenesis was adopted to improve MPH to enhance its efficiency in hydrolysing the poorly hydrolysed substrate chlorpyrifos. Rapid screening of the improved MPH variants was carried out using Bacillus subtilis WB800 secretory expression system to investigate the distribution of improved MPH variants based on the size of clear haloes as a result of chlorpyrifos hydrolysis. Four improved MPH variants were isolated, and one variant K3, in particular, showed a 5-fold increase in kcat value for chlorpyrifos hydrolysis. Furthermore, most of the MPH variants obtained in this study possessed enhanced thermostability and pH stability. The approaches adopted in this study could be extended to create other MPH variants with increased activity for hydrolysing other poorly hydrolysed substrates. SIGNIFICANCE AND IMPACT OF THE STUDY Chlorpyrifos is one of the toxic organophosphorus compounds (OP compounds) widely used for insecticides control. Water, soil and foodstuff have been contaminated seriously by chlorpyrifos in some areas. It is urgent to find effective methods to remove its contamination. This work contributes to improve methyl parathion hydrolase (MPH) to enhance its efficiency in hydrolysing the poorly hydrolysed substrate chlorpyrifos. Our study brings new insights for enzymatic strategy for the decontamination of toxic OP compounds.
Collapse
Affiliation(s)
- J Xie
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Kim CH, Choi JS, Jang IS, Cho KM. Biodegradation of Chlorpyrifos (CP) by a Newly Isolated Naxibacter sp. Strain CY6 and Its Ability to Degrade CP in Soil. ACTA ACUST UNITED AC 2013. [DOI: 10.7845/kjm.2013.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Wang XX, Chi Z, Ru SG, Chi ZM. Genetic surface-display of methyl parathion hydrolase on Yarrowia lipolytica for removal of methyl parathion in water. Biodegradation 2012; 23:763-74. [PMID: 22534797 DOI: 10.1007/s10532-012-9551-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
In this study, the mph gene encoding methyl parathion hydrolase from Pseudomonas sp. WBC-3 was expressed in Yarrowia lipolytica and the expressed methyl parathion hydrolase was displayed on cell surface of Y. lipolytica. The activity of methyl parathion hydrolase displayed on the yeast cells of the transformant Z51 was 59.5 U mg⁻¹ of cell dry cells (450.6 U per mL of the culture) in the presence of 5.0 mM of Co²⁺. The displayed methyl parathion hydrolase had the optimal pH of 9.5 and the optimal temperature of 40 °C, respectively and was stable in the pH range of 4.5-11 and up to 40 °C. The displayed methyl parathion hydrolase was also stimulated by Co²⁺, Cu²⁺, Ni²⁺ and Mn²⁺, and was not affected by Fe²⁺, Fe³⁺, Na⁺, K⁺, Ca²⁺ and Zn²⁺, but was inhibited by other cations tested. Under the optimal conditions (OD(600 nm) = 2.6, the substrate concentration = 100 mg L⁻¹ and 40 °C), 90.8 % of methyl parathion was hydrolyzed within 30 min. Under the similar conditions, 98.7, 97.0, 96.5 and 94.4 % of methyl parathion in tap water (pH 9.5), tap water (pH 6.8), seawater (pH 9.5) and natural seawater (pH 8.2) were hydrolyzed, respectively, suggesting that the methyl parathion hydrolase displayed on the yeast cells can effectively remove methyl parathion in water.
Collapse
Affiliation(s)
- Xing-Xing Wang
- School of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | | | | | | |
Collapse
|
20
|
Improvement of the homogeneity of protein-imprinted polymer films by orientated immobilization of the template. Anal Chim Acta 2012; 726:85-92. [PMID: 22541018 DOI: 10.1016/j.aca.2012.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
Abstract
A method for preparing homogeneous protein-imprinted polymer films with orientated immobilization of template is described. The template methyl parathion hydrolase (MPH) was modified with a peptide linker (Gly-Ser)(5)-Cys and was immobilized on a cover glass with a fixed orientation via the linker. The activity of the fusion enzyme (MPH-L) was evaluated by determining the product's absorbance at 405 nm (A(405)). Both the free and the immobilized MPH-L showed higher retention of the bioactivity than the wide type enzyme (MPH-W) as revealed by the A(405) values for MPH-L(free)/MPH-W(free) (1.159/1.111) and for MPH-L(immobilized)/MPH-W(immobilized) (0.348/0.118). The immobilized MPH-L also formed a more homogeneous template stamp compared to the immobilized MPH-W. The molecularly imprinted polymer films prepared with the immobilized MPH-L exhibited high homogeneity with low Std. Deviations of 80 and 200 from the CL intensity mean volumes which were observed for batch-prepared films and an individual film, respectively. MPH-L-imprinted polymer film also had a larger template binding capacity indicated by higher CL intensity mean volume of 3900 INT over 2500 INT for MPH-W-imprinted films. The imprinted film prepared with the orientated immobilization of template showed an imprinting factor of 1.7, while the controls did not show an imprinting effect.
Collapse
|
21
|
Selection of a whole-cell biocatalyst for methyl parathion biodegradation. Appl Microbiol Biotechnol 2011; 95:1625-32. [DOI: 10.1007/s00253-011-3792-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/20/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022]
|
22
|
Hou Y, Tao J, Shen W, Liu J, Li J, Li Y, Cao H, Cui Z. Isolation of the fenoxaprop-ethyl (FE)-degrading bacterium Rhodococcus sp. T1, and cloning of FE hydrolase gene feh. FEMS Microbiol Lett 2011; 323:196-203. [DOI: 10.1111/j.1574-6968.2011.02376.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Jian Tao
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Wenjing Shen
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Juan Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Jingquan Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Yongfeng Li
- Institute of Plant Protection; Jiangsu Agricultural Academy; Nanjing; China
| | - Hui Cao
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Zhongli Cui
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| |
Collapse
|
23
|
Ali M, Naqvi TA, Kanwal M, Rasheed F, Hameed A, Ahmed S. Detection of the organophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0251-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Anh DH, Cheunrungsikul K, Wichitwechkarn J, Surareungchai W. A colorimetric assay for determination of methyl parathion using recombinant methyl parathion hydrolase. Biotechnol J 2011; 6:565-71. [PMID: 21381204 DOI: 10.1002/biot.201000348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 01/24/2011] [Indexed: 11/10/2022]
Abstract
A simple, rapid and sensitive colorimetric dipstick assay for the detection of the organophosphorous insecticide methyl parathion (MPT) residue in vegetables was developed. The assay was based on the hydrolysis of MPT by a recombinant methyl parathion hydrolase (recMPH), the encoding gene of which was isolated from Burkholderia cepacia, a soil bacterium indigenous to Thailand. This reaction generates protons leading to a change in pH that correlates with the amount of MPH present. Hence, the pH indicator bromothymol blue was used to monitor the MPH hydrolysis as the associated color changes can be observed by the naked eye. The recMPH was immobilized on a PVDF membrane to establish a dipstick assay format. The assays could detect MPT residues in spiked vegetable samples at the concentration of 1 mg/L without using analytical instrumentation. The test is reusable and stable for up to 3 months in the absence of any preservatives.
Collapse
Affiliation(s)
- Dau Hung Anh
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | | | | | | |
Collapse
|
25
|
Overexpression of protein disulfide isomerase DsbA enhanced detoxification of organophosphates and enhanced detectability in the environment following degradation of pesticide residues. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0517-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2. Appl Microbiol Biotechnol 2010; 88:125-31. [DOI: 10.1007/s00253-010-2738-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/13/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
|
27
|
Yuan Y, Yang X, Yang J, Zhang J, Xu S, Xu K, Zeng L, Liu D. Over-Expression and Purification of Recombinant Methylparathion Degrading Enzyme by Lactose Induction. ACTA ACUST UNITED AC 2010. [DOI: 10.1109/icbbe.2010.5515948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Wang G, Li R, Li S, Jiang J. A novel hydrolytic dehalogenase for the chlorinated aromatic compound chlorothalonil. J Bacteriol 2010; 192:2737-45. [PMID: 20363940 PMCID: PMC2876492 DOI: 10.1128/jb.01547-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 03/25/2010] [Indexed: 11/20/2022] Open
Abstract
Dehalogenases play key roles in the detoxification of halogenated aromatics. Interestingly, only one hydrolytic dehalogenase for halogenated aromatics, 4-chlorobenzoyl-coenzyme A (CoA) dehalogenase, has been reported. Here, we characterize another novel hydrolytic dehalogenase for a halogenated aromatic compound from the 2,4,5,6-tetrachloroisophthalonitrile (chlorothalonil)-degrading strain of Pseudomonas sp. CTN-3, which we have named Chd. Chd catalyzes a hydroxyl substitution at the 4-chlorine atom of chlorothalonil. The metabolite of the Chd dehalogenation, 4-hydroxy-trichloroisophthalonitrile, was identified by reverse-phase high-performance liquid chromatography (HPLC), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR). Chd dehalogenates chlorothalonil under anaerobic and aerobic conditions and does not require the presence of cofactors such as CoA and ATP. Chd contains a putative conserved domain of the metallo-beta-lactamase superfamily and shows the highest identity with several metallohydrolases (24 to 29%). Chd is a monomer (36 kDa), and the isoelectric point (pI) of Chd is estimated to be 4.13. Chd has a dissociation constant (K(m)) of 0.112 mM and an overall catalytic rate (k(cat)) of 207 s(-1) for chlorothalonil. Chd is completely inhibited by 1,10-phenanthroline, diethyl pyrocarbonate, and N-bromosuccinic acid. Site-directed mutagenesis of Chd revealed that histidines 128 and 157, serine 126, aspartates 45, 130 and 184, and tryptophan 241 were essential for the dehalogenase activity. Chd differs from other reported hydrolytic dehalogenases based on the analysis of amino acid sequences and catalytic mechanisms. This study provides an excellent dehalogenase candidate for mechanistic study of hydrolytic dehalogenation of halogenated aromatic compound.
Collapse
Affiliation(s)
- Guangli Wang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, Jiangsu Province, People's Republic of China
| | - Rong Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, Jiangsu Province, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, Jiangsu Province, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
29
|
Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 2009; 21:565-73. [PMID: 20041341 DOI: 10.1007/s10532-009-9324-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
3,5,6-trichloro-2-pyridinol (TCP) is a major metabolite of the insecticide chlorpyrifos and is hazardous to human and animal health. A gene encoding a TCP degrading enzyme was cloned from a metagenomic library prepared from cow rumen. The gene (tcp3A) is 2.5 kb in length, encoding a protein (Tcp3A) of 599 amino acid residues. Tcp3A has a potential signal sequence, as well as a putative ATP/GTP binding site, and a likely amidation site. The molecular weight of the enzyme is 62 kDa by SDS-PAGE. Comparison of Tcp3A with the NCBI database using BLASTP revealed homology to amidohydrolase proteins. Recombinant Escherichia coli harboring the tcp3A gene could utilize TCP as the sole source of carbon. TLC and HPLC revealed that TCP was degraded by recombinant E. coli harboring tcp3A. This is the first report of a gene encoding a TCP degrading enzyme.
Collapse
|
30
|
Zhang H, Yang C, Li C, Li L, Zhao Q, Qiao C. Functional assembly of a microbial consortium with autofluorescent and mineralizing activity for the biodegradation of organophosphates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7897-7902. [PMID: 18693742 DOI: 10.1021/jf801684g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organophosphorus pesticides (OPs) cause serious environmental problems, and bioremediation using bacterial enzymes may provide an efficient and economical method for their detoxification. Green fluorescent protein (GFP) is a stable and easily detectable marker in monitoring genetically engineered microorganisms (GEMs) in the environment. In our research, the methyl parathion hydrolase gene (mpd) and enhanced green fluorescent protein gene (egfp) were successfully coexpressed using pETDuet vector in E. coli BL21 (DE3). The coexpression of methyl parathion hydrolase (MPH) and enhanced green fluorescent protein (EGFP) were confirmed by determining MPH activity and fluorescence intensity. The recombinant protein MPH showed high enzymatic degradative activity of several widely used OP residues on vegetables determined by GC analysis. Subsequently, a dual-species consortium comprising engineered E. coli and a natural p-nitrophenol (PNP) degrader Ochrobactrum sp. strain LL-1 for complete mineralization of dimethyl OPs was studied. It could completely mineralize methyl parathion (MP) via MP through PNP and hydroquinone and eventually through the TCA cycle as determined by HPLC analysis. The accumulation of PNP in suspended culture was prevented. The consortium could be further utilized for complete mineralization of PNP-substituted OPs in a laboratory-scale bioreactor and easily monitored by fluorescence of EGFP for its activity and fate.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
31
|
Yang J, Yang C, Jiang H, Qiao C. Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 2008; 19:831-9. [PMID: 18373236 DOI: 10.1007/s10532-008-9186-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/18/2008] [Indexed: 11/29/2022]
Abstract
The coding region of mpd gene corresponding to mature methyl parathion hydrolase (MPH) was heterologously overexpressed in Escherichia coli BL21 (DE3) by using pET expression system. The lactose-induced expression yield of MPH is increased 2-fold compared with IPTG as inducer. Furthermore, it was found that specific activity of MPH increased 48% by reducing the induction temperature to 22 degrees C. The addition of 25 mM lactose at 22 degrees C, the MPH activity of fermentation broth had a specific activity of 1.4 x 10(4) U/mg protein. Plasmid was no significant decrease in the modified medium. The optimal pH and temperature of MPH were 8.0 and 30 degrees C, respectively. Over a period of 5 months, the dried cells showed no significant decrease in the activity of the detoxifying enzymes. The crude enzymes in 50 mM citrate-phosphate buffer (pH 8.0) were able to degrade about 98% of the organophosphate pesticides sprayed on cabbage. The detoxification efficiency was superior to that of the treatments of water, detergent, and a commercially available enzyme product. Additionally, the products of pesticide hydrolysis generated by treatment with the enzyme extract were determined to be virtually nontoxic.
Collapse
Affiliation(s)
- Jijian Yang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Da Tun Lu, Beijing 100101, P.R. China
| | | | | | | |
Collapse
|
32
|
Liu FY, Hong MZ, Liu DM, Li YW, Shou PS, Yan H, Shi GQ. Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J Environ Sci (China) 2007; 19:1257-1260. [PMID: 18062427 DOI: 10.1016/s1001-0742(07)60205-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biodegradation of methyl parathion (MP), a widely used organophosphorus pesticide, was investigated using a newly isolated bacterium strain Acinetobacter radioresistens USTB-04. MP at an initial concentration of 1200 mg/L could be totally biodegraded by A. radioresistens USTB-04 as the sole carbon source less than 4 d in the presence of phosphate and urea as phosphorus and nitrogen sources, respectively. Biodegradation of MP was also achieved using cell-free extract of A. radioresistens USTB-04. MP at an initial concentration of 130 mg/L was completely biodegraded in 2 h in the presence of cell-free extract with a protein concentration of 148.0 mg/L, which was increased with the increase of pH from 5.0 to 8.0. Contrary to published reports, no intermediate or final degradation metabolites of MP could be observed. Thus we suggest that the cleavage of C-C bond on the benzene ring other than P-O bond may be the biodegradation pathway of MP by A. radioresistens USTB-04.
Collapse
Affiliation(s)
- Fang-yao Liu
- Department of Biological Science and Technology, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang R, Cui Z, Zhang X, Jiang J, Gu JD, Li S. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 2006; 17:465-72. [PMID: 16477356 DOI: 10.1007/s10532-005-9018-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Seven organophosphorus pesticide-degrading bacteria harboring the methyl parathion degrading (mpd) gene were isolated from a methyl parathion contaminated site. In this study, the 4.7 kb mpd gene cluster, conserved in all seven bacteria capable of degrading methyl parathion, was cloned and further analysis revealed that this cluster contained five ORFs and the mpd gene was associated with a mobile element, IS6100. In addition to mpd gene ORF and tnpA ORF, three other ORFs showed high homology to the permease component of ABC-type transport system, the general secretion pathway protein B, and the RNA polymerase sigma 70 factor, respectively. The mpd genes of these 7 strains were subcloned and expressed in E. coli, SDS-PAGE and zymogram analysis showed that two expression products of mpd genes in E. coli were found, but the one without signal peptide showed the hydrolytic activities. Our evidences collectively suggest that mpd gene cluster may be disseminated through horizontal gene transfer based on phylogenetic analysis of the cluster and their host bacterial strains, and comparisons of GC content of the cluster and respective host's chromosome.
Collapse
Affiliation(s)
- Ruifu Zhang
- Department of Microbiology, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, 210095, Nanjing, Jiangsu, P.R. China
| | | | | | | | | | | |
Collapse
|
34
|
Zhang XZ, Cui ZL, Hong Q, Li SP. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol 2005; 71:4101-3. [PMID: 16000826 PMCID: PMC1169017 DOI: 10.1128/aem.71.7.4101-4103.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methyl parathion hydrolase (MPH)-encoding gene mpd was placed under the control of the P43 promoter and Bacillus subtilis nprB signal peptide-encoding sequence. High-level expression and secretion of mature, authentic, and stable MPH were achieved using the protease-deficient strain B. subtilis WB800 as the host.
Collapse
Affiliation(s)
- Xiao-Zhou Zhang
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | |
Collapse
|