1
|
Zilberleyb I, Kugel C, Patel P, Tam C, Hsu PL, Franke Y, Pahuja KB. End-to-End Semi-automated Mid-scale Protein Screening Platform for Drug Discovery Research. Curr Protoc 2023; 3:e872. [PMID: 37671955 DOI: 10.1002/cpz1.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The drug discovery landscape is ever-evolving and constantly demands revolutionary technology advancements in protein expression and production laboratories. We have built a higher-throughput mid-scale semi-automated protein expression and screening platform to accelerate drug discovery research. The workflow described here enables comprehensive expression and purification screening assessment of challenging or difficult-to-express recombinant proteins in a fast and efficient manner by delivering small but sufficient amounts of high-quality proteins. The platform has been implemented for a wide range of applications that include identification of optimal constructs and chaperones for poorly expressing proteins, assessment of co-expression partners for expressing stable multiprotein complexes, and suitable buffer/additive screening for insoluble or aggregation-prone proteins. The approach allows parallel expression, purification, and characterization of 24 different samples using co-infection or a polycistronic approach in insect cells and enables parallel testing of multiple parameters to improve protein yields. The strategy has been successfully adopted for screening intracellular and secreted proteins in Escherichia coli, mammalian transient expression, and baculovirus expression vector systems. Proteins purified from this platform are used for several structural and functional screens, such as negative staining, biochemical activity assays, mass spectrometry, surface plasmon resonance, and DNA-encoded chemical library screens. In this article, for simplicity, we have focused on detailed expression and purification screening of intracellular protein complexes from insect cells. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Baculovirus generation via homologous recombination Support Protocol 1: Anti-glycoprotein 64 antibody assay Basic Protocol 2: Generation of insect cell biomass expressing target protein(s) Basic Protocol 3: Mid-scale affinity purification Support Protocol 2: Automated method for affinity purification on Hamilton STAR Basic Protocol 4: Size exclusion chromatography Support Protocol 3: Chromeleon 7 operation on Vanquish Duo.
Collapse
Affiliation(s)
- Inna Zilberleyb
- Biomolecular Research, Genentech, South San Francisco, California
| | - Christine Kugel
- Biomolecular Research, Genentech, South San Francisco, California
| | - Purvit Patel
- Biomolecular Research, Genentech, South San Francisco, California
| | - Christine Tam
- Biomolecular Research, Genentech, South San Francisco, California
| | - Peter L Hsu
- Structural Biology, Genentech, South San Francisco, California
| | - Yvonne Franke
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | | |
Collapse
|
2
|
Yuan Y, Zhang ZP, He YN, Fan WS, Dong ZH, Zhang LH, Sun XK, Song LL, Wei TC, Mo ML, Wei P. Protection against Virulent Infectious Bronchitis Virus Challenge Conferred by a Recombinant Baculovirus Co-Expressing S1 and N Proteins. Viruses 2018; 10:v10070347. [PMID: 29954092 PMCID: PMC6071288 DOI: 10.3390/v10070347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/06/2018] [Accepted: 06/22/2018] [Indexed: 01/31/2023] Open
Abstract
Avian infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis, which results in considerable economic losses. It is imperative to develop safe and efficient candidate vaccines to control IBV infection. In the current study, recombinant baculoviruses co-expressing the S1 and N proteins and mono-expressing S1 or N proteins of the GX-YL5 strain of IBV were constructed and prepared into subunit vaccines rHBM-S1-N, rHBM-S1 and rHBM-N. The levels of immune protection of these subunit vaccines were evaluated by inoculating specific pathogen-free (SPF) chickens at 14 days of age, giving them a booster with the same dose 14 days later and challenging them with a virulent GX-YL5 strain of IBV 14 days post-booster (dpb). The commercial vaccine strain H120 was used as a control. The IBV-specific antibody levels, as well as the percentages of CD4+ and CD8+ T lymphocytes, were detected within 28 days post-vaccination (dpv). The morbidity, mortality and re-isolation of the virus from the tracheas and kidneys of challenged birds were evaluated at five days post-challenge (dpc). The results showed that the IBV-specific antibody levels and the percentages of CD4+ and CD8+ T lymphocytes were higher in the rHBM-S1-N vaccinated birds compared to birds vaccinated with the rHBM-S1 and rHBM-N vaccines. At 5 dpc, the mortality, morbidity and virus re-isolation rate of the birds vaccinated with the rHBM-S1-N vaccine were slightly higher than those vaccinated with the H120 control vaccine but were lower than those vaccinated with the rHBM-S1 and rHBM-N vaccines. The present study demonstrated that the protection of the recombinant baculovirus co-expressing S1 and N proteins was better than that of recombinant baculoviruses mono-expressing the S1 or N protein. Thus, the recombinant baculovirus co-expressing S1 and N proteins could serve as a potential IBV vaccine and this demonstrates that the bivalent subunit vaccine including the S1 and N proteins might be a strategy for the development of an IBV subunit vaccine.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Zhi-Peng Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Yi-Ning He
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Wen-Sheng Fan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Zhi-Hua Dong
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Li-Hua Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Xin-Kuan Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Li-Li Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Tian-Chao Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Mei-Lan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Ping Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Abdel-Moneim AS, Giesow K, Keil GM. High-level protein expression following single and dual gene cloning of infectious bronchitis virus N and S genes using baculovirus systems. Viral Immunol 2014; 27:75-81. [PMID: 24605790 DOI: 10.1089/vim.2013.0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Baculovirus is an efficient system for the gene expression that can be used for gene transfer to both insect and different vertebrate hosts. The nucleocapsid gene (N) of the infectious bronchitis virus was cloned in a baculovirus expression system for insect cell expression. Dual expression vectors containing IBV N and spike (S) proteins of the avian infectious bronchitis virus were engineered under the control of human and murine cytomegalovirus immediate-early enhancer/promoter elements in combination with the baculoviral polyhedrin and p10 promoters for simultaneous expression in both vertebrate and insect cells. Transduction of the N gene in the insect Sf9 cells revealed a high level of protein expression. The expressed protein, used in ELISA, effectively detected chicken anti-IBV antibodies with high specificity. Transduction of mammalian and avian cells with BacMam viruses revealed that dual expression cassettes yielded high levels of protein from both transcription units.
Collapse
|
4
|
Cremer H, Bechtold I, Mahnke M, Assenberg R. Efficient processes for protein expression using recombinant baculovirus particles. Methods Mol Biol 2014; 1104:395-417. [PMID: 24297428 DOI: 10.1007/978-1-62703-733-4_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The use of baculoviruses has become a standard approach in many labs for recombinant protein production. In addition to giving a broad and practical overview of the technology, this chapter focuses in particular on two recent developments in the field and how these can be efficiently exploited for protein production: the use of baculovirus-infected insect cells and in vivo recombination-mediated production of recombinant viruses.
Collapse
Affiliation(s)
- Heike Cremer
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | |
Collapse
|
5
|
Abstract
Historically, it has been proved difficult to adapt the traditional baculovirus expression systems to an automated platform because of the complexity of the processes involved. One of the major bottlenecks is the selection of recombinant from parental viruses. We have developed a bacmid vector (flashBAC™) that does not require any form of selection pressure to separate recombinant virus from nonrecombinant parental virus. The method relies on homologous recombination in insect cells between a transfer plasmid containing the gene of interest and a replication-deficient bacmid. The gene of interest replaces the bacterial replicon at the polyhedrin locus, simultaneously restoring a virus gene essential for replication, and as only recombinant virus can replicate, no further separation techniques are required. This chapter describes methods for producing and expression testing multiple recombinant baculoviruses on automated platforms using the flashBAC system.
Collapse
Affiliation(s)
- Richard B Hitchman
- Oxford Expression Technologies Ltd, Oxford Brookes University, Oxford, UK.
| | | | | |
Collapse
|
6
|
Brown WC, DelProposto J, Rubin JR, Lamiman K, Carless J, Smith JL. New ligation-independent cloning vectors compatible with a high-throughput platform for parallel construct expression evaluation using baculovirus-infected insect cells. Protein Expr Purif 2011; 77:34-45. [PMID: 21262364 DOI: 10.1016/j.pep.2011.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/16/2011] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
Abstract
Biomedical research has undergone a major shift in emphasis over the past decade from characterizing the genomes of organisms to characterizing their proteomes. The high-throughput approaches that were successfully applied to sequencing of genomes, such as miniaturization and automation, have been adapted for high-throughput cloning and protein production. High-throughput platforms allow for a multi-construct, multi-parallel approach to expression optimization and construct evaluation. We describe here a series of baculovirus transfer and expression vectors that contain ligation-independent cloning regions originally designed for use in high-throughput Escherichia coli expression evaluation. These new vectors allow for parallel cloning of the same gene construct into a variety of baculovirus or E. coli expression vectors. A high-throughput platform for construct expression evaluation in baculovirus-infected insect cells was developed to utilize these vectors. Data from baculovirus infection expression trials for multiple constructs of two target protein systems relevant to the study of human diseases are presented. The target proteins exhibit a wide variation in behavior and illustrate the benefit of investigating multiple cell types, fusion partners and secretion signals in optimization of constructs and conditions for eukaryotic protein production.
Collapse
Affiliation(s)
- William Clay Brown
- High-throughput Protein Lab, Center for Structural Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I. New baculovirus expression tools for recombinant protein complex production. J Struct Biol 2010; 172:45-54. [PMID: 20178849 DOI: 10.1016/j.jsb.2010.02.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 02/07/2023]
Abstract
Most eukaryotic proteins exist as large multicomponent assemblies with many subunits, which act in concert to catalyze specific cellular activities. Many of these molecular machines are only present in low amounts in their native hosts, which impede purification from source material. Unraveling their structure and function at high resolution will often depend on heterologous overproduction. Recombinant expression of multiprotein complexes for structural studies can entail considerable, sometimes inhibitory, investment in both labor and materials, in particular if altering and diversifying of the individual subunits are necessary for successful structure determination. Our laboratory has addressed this challenge by developing technologies that streamline the complex production and diversification process. Here, we review several of these developments for recombinant multiprotein complex production using the MultiBac baculovirus/insect cell expression system which we created. We also addressed parallelization and automation of gene assembly for multiprotein complex expression by developing robotic routines for multigene vector generation. In this contribution, we focus on several improvements of baculovirus expression system performance which we introduced: the modifications of the transfer plasmids, the methods for generation of composite multigene baculoviral DNA, and the simplified and standardized expression procedures which we delineated using our MultiBac system.
Collapse
Affiliation(s)
- Simon Trowitzsch
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, and Unit of Virus Host Cell Interactions UVHCI, UMI3265, 6 rue Jules Horowitz, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
8
|
Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 2010; 172:55-65. [PMID: 20153433 DOI: 10.1016/j.jsb.2010.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 11/22/2022]
Abstract
The production of proteins in sufficient quantity and of appropriate quality is an essential pre-requisite for structural studies. Escherichia coli remains the dominant expression system in structural biology with nearly 90% of the structures in the Protein Data Bank (PDB) derived from proteins produced in this bacterial host. However, many mammalian and eukaryotic viral proteins require post-translation modification for proper folding and/or are part of large multimeric complexes. Therefore expression in higher eukaryotic cell lines from both invertebrate and vertebrate is required to produce these proteins. Although these systems are generally more time-consuming and expensive to use than bacteria, there have been improvements in technology that have streamlined the processes involved. For example, the use of multi-host vectors, i.e., containing promoters for not only E. coli but also mammalian and baculovirus expression in insect cells, enables target genes to be evaluated in both bacterial and higher eukaryotic hosts from a single vector. Culturing cells in micro-plate format allows screening of large numbers of vectors in parallel and is amenable to automation. The development of large-scale transient expression in mammalian cells offers a way of rapidly producing proteins with relatively high throughput. Strategies for selenomethionine-labelling (important for obtaining phase information in crystallography) and controlling glycosylation (important for reducing the chemical heterogeneity of glycoproteins) have also been reported for higher eukaryotic cell expression systems.
Collapse
|
9
|
Kärkkäinen HR, Lesch HP, Määttä AI, Toivanen PI, Mähönen AJ, Roschier MM, Airenne KJ, Laitinen OH, Ylä-Herttuala S. A 96-well format for a high-throughput baculovirus generation, fast titering and recombinant protein production in insect and mammalian cells. BMC Res Notes 2009; 2:63. [PMID: 19389242 PMCID: PMC2680411 DOI: 10.1186/1756-0500-2-63] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 04/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background Baculovirus expression vector system (BEVS) has become a standard in recombinant protein production and virus-like particle preparation for numerous applications. Findings We describe here protocols which adapt baculovirus generation into 96-well format. Conclusion The established methodology allows simple baculovirus generation, fast virus titering within 18 h and efficient recombinant protein production in a high-throughput format. Furthermore, the produced baculovirus vectors are compatible with gene expression in vertebrate cells in vitro and in vivo.
Collapse
Affiliation(s)
- Hanna-Riikka Kärkkäinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Buchs M, Kim E, Pouliquen Y, Sachs M, Geisse S, Mahnke M, Hunt I. High-throughput insect cell protein expression applications. Methods Mol Biol 2009; 498:199-227. [PMID: 18988028 DOI: 10.1007/978-1-59745-196-3_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Baculovirus Expression Vector System (BEVS) is one of the most efficient systems for production of recombinant proteins and consequently its application is wide-spread in industry as well as in academia. Since the early 1970s, when the first stable insect cell lines were established and the infectivity of bacu-lovirus in an in vitro culture system was demonstrated (1, 2), virtually thousands of reports have been published on the successful expression of proteins using this system as well as on method improvement. However, despite its popularity the system is labor intensive and time consuming. Moreover, adaptation of the system to multi-parallel (high-throughput) expression is much more difficult to achieve than with E. coli due to its far more complex nature. However, recent years have seen the development of strategies that have greatly enhanced the stream-lining and speed of baculovirus protein expression for increased throughput via use of automation and miniaturization. This chapter therefore tries to collate these developments in a series of protocols (which are modifications to standard procedure plus several new approaches) that will allow the user to expedite the speed and throughput of baculovirus-mediated protein expression and facilitate true multi-parallel, high-throughput protein expression profiling in insect cells. In addition we also provide a series of optimized protocols for small and large-scale transient insect cell expression that allow for both the rapid analysis of multiple constructs and the concomitant scale-up of those selected for on-going analysis. Since this approach is independent of viral propagation, the timelines for this approach are markedly shorter and offer a significant advantage over standard bacu-lovirus expression approach strategies in the context of HT applications.
Collapse
Affiliation(s)
- Mirjam Buchs
- Biologics Center, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Possee RD, Hitchman RB, Richards KS, Mann SG, Siaterli E, Nixon CP, Irving H, Assenberg R, Alderton D, Owens RJ, King LA. Generation of baculovirus vectors for the high-throughput production of proteins in insect cells. Biotechnol Bioeng 2008; 101:1115-22. [PMID: 18781697 DOI: 10.1002/bit.22002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The baculovirus expression system is one of the most popular methods used for the production of recombinant proteins but has several complex steps which have proved inherently difficult to adapt to a multi-parallel process. We have developed a bacmid vector that does not require any form of selection pressure to separate recombinant virus from non-recombinant parental virus. The method relies on homologous recombination in insect cells between a transfer vector containing a gene to be expressed and a replication-deficient bacmid. The target gene replaces a bacterial replicon at the polyhedrin loci, simultaneously restoring a virus gene essential for replication. Therefore, only recombinant virus can replicate facilitating the rapid production of multiple recombinant viruses on automated platforms in a one-step procedure. Using this vector allowed us to automate the generation of multiple recombinant viruses with a robotic liquid handler and then rapidly screen infected insect cell supernatant for the presence of secreted proteins.
Collapse
Affiliation(s)
- Robert D Possee
- National Environmental Research Council, Centre for Hydrology & Ecology, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Busso D, Thierry JC, Moras D. The structural biology and genomics platform in strasbourg: an overview. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 426:523-36. [PMID: 18542888 DOI: 10.1007/978-1-60327-058-8_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This chapter describes the modules and facilities of the Structural Biology and Genomics Platform (SBGP), Strasbourg, France. The platform consists of three modules (cloning, mini-expression screening; optimization-large scale protein production; characterization, crystallization) with dedicated scientists, and other facilities for purifying recombinant proteins and solving three-dimensional (3D) structures. Strong collaborations have been established with the Integrative Bioinformatics and Genomics group, located in the same institition, for target selection and domains definition. To handle large numbers of samples, classical and new protocols were adapted to automation, increasing reproducibility and reducing error risks as well. Using the platform and its facilities, over 2,000 expression vectors have been constructed and more than 40 novel structures, of mostly human proteins, have been solved.
Collapse
Affiliation(s)
- Didier Busso
- Structural Biology and Genomics Platform, IGBMC, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
| | | | | |
Collapse
|
14
|
Islam R, Tisi D, Levy M, Lye G. Scale-up ofEscherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matchedkLa. Biotechnol Bioeng 2008; 99:1128-39. [DOI: 10.1002/bit.21697] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Hanson MA, Brooun A, Baker KA, Jaakola VP, Roth C, Chien E, Alexandrov A, Velasquez J, Davis L, Griffith M, Moy K, Ganser-Pornillos B, Kuhn P, Ellis S, Yeager M, Stevens RC. Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr Purif 2007; 56:85-92. [PMID: 17723307 PMCID: PMC2274776 DOI: 10.1016/j.pep.2007.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 11/20/2022]
Abstract
Production of structure-grade mammalian membrane proteins in substantial quantities has been hindered by a lack of methods for effectively profiling multiple constructs expression in higher eukaryotic systems such as insect or mammalian cells. To address this problem, a specialized small-scale eukaryotic expression platform by Thomson Instrument Company (Vertiga-IM) was developed and used in tandem with a Guava EasyCyte microcapillary 96-well cytometer to monitor cell density and health and evaluate membrane protein expression. Two proof of concept experiments were conducted using the human beta(2)-adrenergic receptor (beta(2)AR) and the gap junction protein connexin26 (Cx26) in a baculovirus expression system. First, cell surface expression was used to assess the expression levels of 14 beta(2)AR truncation variants expressed using the Vertiga-IM shaker. Three of these variants were then compared to wild-type beta(2)AR using three metrics: cell surface expression, saturation ligand binding and protein immunoblot analysis of dodecylmaltoside extracted material. Second, a series of systematic Cx26 truncation variants were evaluated for expression by protein immunoblot analysis. The cumulative results for these two systems show that the Vertiga-IM instrument can be used effectively in the parallel insect cell microexpression of membrane protein variants, and that the expression of cell surface molecules as monitored with the Guava EasyCyte instrument can be used to rapidly assess the production of properly folded proteins in the baculovirus expression system. This approach expedites the in vitro evaluation of a large number of mammalian membrane protein variants.
Collapse
Affiliation(s)
- Michael A. Hanson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexei Brooun
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kent A. Baker
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Veli-Pekka Jaakola
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chris Roth
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ellen Chien
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexander Alexandrov
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Velasquez
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Leila Davis
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark Griffith
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kin Moy
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Barbie Ganser-Pornillos
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter Kuhn
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sam Ellis
- Thomson Instrument Company, 1121 South Cleveland Street, Oceanside, CA 92054, USA
| | - Mark Yeager
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Raymond C. Stevens
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- *corresponding author: Raymond C. Stevens, Ph.D., The Scripps Research Institute, 10550 North Torrey Pines Road; SR101, La Jolla, CA 92037, USA, , Tel: +1 (858) 784-9416, Fax: +1 (858) 784-9483
| |
Collapse
|
16
|
Forstner M, Leder L, Mayr LM. Optimization of protein expression systems for modern drug discovery. Expert Rev Proteomics 2007; 4:67-78. [PMID: 17288516 DOI: 10.1586/14789450.4.1.67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of high levels of stable and functional proteins remains a bottleneck in many scientific endeavors, including the determination of structures in a high-throughput fashion or the screening for novel active compounds in modern drug discovery. Recently, numerous developments have been made to improve the production of soluble and active proteins in heterologous expression systems. These include modifications to the expression constructs, the introduction of new and/or improved pro- and eukaryotic expression systems, and the development of improved cell-free protein synthesis systems. The introduction of robotics has enabled a massive parallelization of expression experiments, thereby vastly increasing the throughput and, hopefully, the output of such experiments. In addition, the big challenges of recombinant overexpression of membrane and secreted proteins are tackled, and some new methods are reviewed.
Collapse
Affiliation(s)
- Michael Forstner
- Protein Expression & Purification Novartis Institutes of BioMedical Research, Discovery Technologies/Lead Discovery Center CH-4002 Basel, Switzerland.
| | | | | |
Collapse
|
17
|
Scale-down and parallel operation of the riboflavin production process with Bacillus subtilis. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2006.10.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells. BMC Cell Biol 2007; 8:6. [PMID: 17309805 PMCID: PMC1808450 DOI: 10.1186/1471-2121-8-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 02/19/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. RESULTS We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. CONCLUSION Widely-used adenovirus vectors for gene delivery cause a state of insulin unresponsiveness in human SHSY-5Y and C3A cells in culture due to the activation of central protein kinases of the insulin signalling pathway. This phenomenon can be avoided when studying insulin signalling by using recombinant baculovirus as a heterologous viral expression system. In addition, our data may contribute to an understanding of the molecular mechanisms underlying baculovirus infection of human cells.
Collapse
|
19
|
Multiplexed expression and screening for recombinant protein production in mammalian cells. BMC Biotechnol 2006; 6:49. [PMID: 17187663 PMCID: PMC1769369 DOI: 10.1186/1472-6750-6-49] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 12/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E) suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. RESULTS A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. CONCLUSION The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell culture will also be useful for applications such as the generation of receptor protein microarrays.
Collapse
|
20
|
Schlaeppi JM, Henke M, Mahnke M, Hartmann S, Schmitz R, Pouliquen Y, Kerins B, Weber E, Kolbinger F, Kocher HP. A semi-automated large-scale process for the production of recombinant tagged proteins in the Baculovirus expression system. Protein Expr Purif 2006; 50:185-95. [PMID: 16904904 DOI: 10.1016/j.pep.2006.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/09/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
The efficient preparation of recombinant proteins at the lab-scale level is essential for drug discovery, in particular for structural biology, protein interaction studies and drug screening. The Baculovirus insect-cell expression system is one of the most widely applied and highly successful systems for production of recombinant functional proteins. However, the use of eukaryotic cells as host organisms and the multi-step protocol required for the generation of sufficient virus and protein has limited its adaptation to industrialized high-throughput operation. We have developed an integrated large-scale process for continuous and partially automated protein production in the Baculovirus system. The instrumental platform includes parallel insect-cell fermentation in 10L BioWave reactors, cell harvesting and lysis by tangential flow filtration (TFF) using two custom-made filtration units and automated purification by multi-dimensional chromatography. The use of disposable materials (bags, filters and tubing), automated cleaning cycles and column regeneration, prevent any cross-contamination between runs. The preparation of the clear cell lysate by sequential TFF takes less than 2 h and represents considerable time saving compared to standard cell harvesting and lysis by sonication and ultra-centrifugation. The process has been validated with 41 His-tagged proteins with molecular weights ranging from 20 to 160 kDa. These proteins represented several families, and included 23 members of the deubiquitinating enzyme (DUB) family. Each down-stream unit can process four proteins in less than 24 h with final yields between 1 and 100 mg, and purities between 50 and 95%.
Collapse
Affiliation(s)
- Jean-Marc Schlaeppi
- Discovery Technologies, Biomolecules Production Unit, Novartis Institutes for BioMedical Research, Bdg. WSJ-508.2.21, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pengelley SC, Chapman DC, Mark Abbott W, Lin HH, Huang W, Dalton K, Jones IM. A suite of parallel vectors for baculovirus expression. Protein Expr Purif 2006; 48:173-81. [PMID: 16797185 DOI: 10.1016/j.pep.2006.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 02/03/2023]
Abstract
The expression of proteins using recombinant baculoviruses is a mature and widely used technology. However, some aspects of the technology continue to detract from high throughput use and the basis of the final observed expression level is poorly understood. Here, we describe the design and use of a set of vectors developed around a unified cloning strategy that allow parallel expression of target proteins in the baculovirus system as N-terminal or C-terminal fusions. Using several protein kinases as tests we found that amino-terminal fusion to maltose binding protein rescued expression of the poorly expressed human kinase Cot but had only a marginal effect on expression of a well-expressed kinase IKK-2. In addition, MBP fusion proteins were found to be secreted from the expressing cell. Use of a carboxyl-terminal GFP tagging vector showed that fluorescence measurement paralleled expression level and was a convenient readout in the context of insect cell expression, an observation that was further supported with additional non-kinase targets. The expression of the target proteins using the same vectors in vitro showed that differences in expression level were wholly dependent on the environment of the expressing cell and an investigation of the time course of expression showed it could affect substantially the observed expression level for poorly but not well-expressed proteins. Our vector suite approach shows that rapid expression survey can be achieved within the baculovirus system and in addition, goes some way to identifying the underlying basis of the expression level obtained.
Collapse
|
22
|
Lee GY, Jung WW, Kang CS, Bang IS. Expression and characterization of human vascular endothelial growth factor (VEGF165) in insect cells. Protein Expr Purif 2006; 46:503-9. [PMID: 16289914 DOI: 10.1016/j.pep.2005.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/23/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the best characterized multifunctional protein which plays a key role in normal and pathologic angiogenesis. The gene encoding the human VEGF165 was cloned from the ovarian carcinoma cell line (OVCAR3) and expressed in insect cells using the baculovirus expression vector system. The recombinant human VEGF165 (rhVEGF165) protein produced by Sf21 (Spodoptera frugiperda) cells underwent a similar processing compared with mammalian cells, including efficient glycosylation, formation of a disulfide-linked dimer and secretion into the media. The rhVEGF165 had a high affinity for heparin and this characteristic was used to purify this form to homogeneity by heparin affinity, Resource S and Resource RPC columns. The biological activity of the purified 42-kDa homodimer was shown by the induction of the proliferation of human umbilical vein derived endothelial cells. These results demonstrate that an angiogenic growth factor whose normal processing requires glycosylation and disulfide-bridge formation can be efficiently expressed in high concentration (up to 20mg/L) in Sf21 cells.
Collapse
Affiliation(s)
- Geum Young Lee
- MyGene Bioscience Institute, 202-16, Nonhyun-Dong, Kangnam-Gu, Seoul 135-010, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Gao M, Brufatto N, Chen T, Murley LL, Thalakada R, Domagala M, Beattie B, Mamelak D, Athanasopoulos V, Johnson D, McFadden G, Burks C, Frappier L. Expression Profiling of Herpesvirus and Vaccinia Virus Proteins Using a High-Throughput Baculovirus Screening System. J Proteome Res 2005; 4:2225-35. [PMID: 16335970 DOI: 10.1021/pr050137u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a high-throughput system for generating baculoviruses and testing the expression, solubility, and affinity column purification of encoded proteins. We have used this system to generate baculoviruses for and analyze the expression of 337 proteins from three different herpesviruses (HSV-1, EBV, and CMV) and vaccinia virus. Subsets of these proteins were also tested for expression and solubility in E. coli. Comparisons of the results in the two systems are presented for each virus.
Collapse
Affiliation(s)
- Mian Gao
- Affinium Pharmaceuticals, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 2005; 23:567-75. [PMID: 15877075 PMCID: PMC3610534 DOI: 10.1038/nbt1095] [Citation(s) in RCA: 694] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.
Collapse
|
25
|
Hunt I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 2005; 40:1-22. [PMID: 15721767 DOI: 10.1016/j.pep.2004.10.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/07/2004] [Indexed: 10/26/2022]
Abstract
In the post-genomic era, increasingly greater demands and expectations are being placed on protein production laboratories to produce more proteins and in faster timelines. This has been coupled with an exponential increase in the number of requests for the production of proteins which lack structural and functional information. No longer can groups use literature available in the public domain solely to drive their expression strategy, and moreover current expression and concomitant purification strategies clearly do not meet modern-day demands for protein production. This review will therefore attempt to provide a definitive review of current 'best in class' cloning, expression and purification systems, and the adaptations and developments that have been made by laboratories, both academic and industrial, to enhance protein production throughput.
Collapse
Affiliation(s)
- Ian Hunt
- Novartis Horsham Research Centre, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, UK.
| |
Collapse
|