1
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
2
|
Yang CF, Tsai WC. Calmodulin: The switch button of calcium signaling. Tzu Chi Med J 2022; 34:15-22. [PMID: 35233351 PMCID: PMC8830543 DOI: 10.4103/tcmj.tcmj_285_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Calmodulin (CaM), a calcium sensor, decodes the critical calcium-dependent signals and converts them into the driving force to control various important cellular functions, such as ion transport. This small protein has a short central linker to connect two globular lobes and each unit is composed of a pair of homologous domains (HD) which are responsible for calcium binding. The conformation of each HD is sensitive to the levels of the intracellular Ca2+ concentrations while the flexible structure of the central domain enables its interactions with hundreds of cellular proteins. Apart from calcium binding, posttranslational modifications (PTMs) also contribute to the modulations of CaM functions by affecting its protein-protein interaction networks and hence drawing out the various downstream signaling cascades. In this mini-review, we first aim to elucidate the structural features of CaM and then overview the recent studies on the engagements of calcium binding and PTMs in Ca2+/CaM-mediated conformational alterations and signaling events. The mechanistic understanding of CaM working models is expected to be a key to decipher the precise role of CaM in cardiac physiology and disease pathology.
Collapse
|
3
|
Benaim G, Paniz-Mondolfi AE, Sordillo EM, Martinez-Sotillo N. Disruption of Intracellular Calcium Homeostasis as a Therapeutic Target Against Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:46. [PMID: 32133302 PMCID: PMC7040492 DOI: 10.3389/fcimb.2020.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
There is no effective cure for Chagas disease, which is caused by infection with the arthropod-borne parasite, Trypanosoma cruzi. In the search for new drugs to treat Chagas disease, potential therapeutic targets have been identified by exploiting the differences between the mechanisms involved in intracellular Ca2+ homeostasis, both in humans and in trypanosomatids. In the trypanosomatid, intracellular Ca2+ regulation requires the concerted action of three intracellular organelles, the endoplasmic reticulum, the single unique mitochondrion, and the acidocalcisomes. The single unique mitochondrion and the acidocalcisomes also play central roles in parasite bioenergetics. At the parasite plasma membrane, a Ca2+-−ATPase (PMCA) with significant differences from its human counterpart is responsible for Ca2+ extrusion; a distinctive sphingosine-activated Ca2+ channel controls Ca2+ entrance to the parasite interior. Several potential anti-trypansosomatid drugs have been demonstrated to modulate one or more of these mechanisms for Ca2+ regulation. The antiarrhythmic agent amiodarone and its derivatives have been shown to exert trypanocidal effects through the disruption of parasite Ca2+ homeostasis. Similarly, the amiodarone-derivative dronedarone disrupts Ca2+ homeostasis in T. cruzi epimastigotes, collapsing the mitochondrial membrane potential (ΔΨm), and inducing a large increase in the intracellular Ca2+ concentration ([Ca2+]i) from this organelle and from the acidocalcisomes in the parasite cytoplasm. The same general mechanism has been demonstrated for SQ109, a new anti-tuberculosis drug with potent trypanocidal effect. Miltefosine similarly induces a large increase in the [Ca2+]i acting on the sphingosine-activated Ca2+ channel, the mitochondrion and acidocalcisomes. These examples, in conjunction with other evidence we review herein, strongly support targeting Ca2+ homeostasis as a strategy against Chagas disease.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Estudios Avanzados, Caracas, Venezuela.,Facultad de Ciencias, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Alberto E Paniz-Mondolfi
- Instituto de Estudios Avanzados, Caracas, Venezuela.,Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Institute for Health Sciences, Mount Sinai St. Luke's & Mount Sinai West, New York, NY, United States
| | | |
Collapse
|
4
|
The multifunctional role of phospho-calmodulin in pathophysiological processes. Biochem J 2018; 475:4011-4023. [PMID: 30578290 PMCID: PMC6305829 DOI: 10.1042/bcj20180755] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
Calmodulin (CaM) is a versatile Ca2+-sensor/transducer protein that modulates hundreds of enzymes, channels, transport systems, transcription factors, adaptors and other structural proteins, controlling in this manner multiple cellular functions. In addition to its capacity to regulate target proteins in a Ca2+-dependent and Ca2+-independent manner, the posttranslational phosphorylation of CaM by diverse Ser/Thr- and Tyr-protein kinases has been recognized as an important additional manner to regulate this protein by fine-tuning its functionality. In this review, we shall cover developments done in recent years in which phospho-CaM has been implicated in signalling pathways that are relevant for the onset and progression of diverse pathophysiological processes. These include diverse systems playing a major role in carcinogenesis and tumour development, prion-induced encephalopathies and brain hypoxia, melatonin-regulated neuroendocrine disorders, hypertension, and heavy metal-induced cell toxicity.
Collapse
|
5
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
6
|
The activating role of phospho-(Tyr)-calmodulin on the epidermal growth factor receptor. Biochem J 2015; 472:195-204. [DOI: 10.1042/bj20150851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The existence of a calmodulin (CaM)/phospho-(Tyr)-CaM cycle involved in the regulation of the epidermal growth factor receptor could have important consequences for the control of cell proliferation, as its alteration could potentially result in uncontrolled tumour growth.
Collapse
|
7
|
Stateva SR, Salas V, Anguita E, Benaim G, Villalobo A. Ca2+/Calmodulin and Apo-Calmodulin Both Bind to and Enhance the Tyrosine Kinase Activity of c-Src. PLoS One 2015; 10:e0128783. [PMID: 26058065 PMCID: PMC4461253 DOI: 10.1371/journal.pone.0128783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM) plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR), in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM) exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred.
Collapse
Affiliation(s)
- Silviya R. Stateva
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029, Madrid, Spain
| | - Valentina Salas
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029, Madrid, Spain
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029, Madrid, Spain
| | - Gustavo Benaim
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Stateva SR, Salas V, Benaim G, Menéndez M, Solís D, Villalobo A. Characterization of phospho-(tyrosine)-mimetic calmodulin mutants. PLoS One 2015; 10:e0120798. [PMID: 25830911 PMCID: PMC4382182 DOI: 10.1371/journal.pone.0120798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Calmodulin (CaM) phosphorylated at different serine/threonine and tyrosine residues is known to exert differential regulatory effects on a variety of CaM-binding enzymes as compared to non-phosphorylated CaM. In this report we describe the preparation and characterization of a series of phospho-(Y)-mimetic CaM mutants in which either one or the two tyrosine residues present in CaM (Y99 and Y138) were substituted to aspartic acid or glutamic acid. It was expected that the negative charge of the respective carboxyl group of these amino acids mimics the negative charge of phosphate and reproduce the effects that distinct phospho-(Y)-CaM species may have on target proteins. We describe some physicochemical properties of these CaM mutants as compared to wild type CaM, after their expression in Escherichia coli and purification to homogeneity, including: i) changes in their electrophoretic mobility in the absence and presence of Ca2+; ii) ultraviolet (UV) light absorption spectra, far- and near-UV circular dichroism data; iii) thermal stability in the absence and presence of Ca2+; and iv) Tb3+-emitted fluorescence upon tyrosine excitation. We also describe some biochemical properties of these CaM mutants, such as their differential phosphorylation by the tyrosine kinase c-Src, and their action as compared to wild type CaM, on the activity of two CaM-dependent enzymes: cyclic nucleotide phosphodiesterase 1 (PDE1) and endothelial nitric oxide synthase (eNOS) assayed in vitro.
Collapse
Affiliation(s)
- Silviya R. Stateva
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Valentina Salas
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Universidad Central de Venezuela, Facultad de Ciencias, Instituto de Biología Experimental, Caracas, Venezuela
| | - Gustavo Benaim
- Universidad Central de Venezuela, Facultad de Ciencias, Instituto de Biología Experimental, Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
9
|
Panina S, Stephan A, la Cour JM, Jacobsen K, Kallerup LK, Bumbuleviciute R, Knudsen KVK, Sánchez-González P, Villalobo A, Olesen UH, Berchtold MW. Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system. J Biol Chem 2012; 287:18173-81. [PMID: 22493455 DOI: 10.1074/jbc.m112.339382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model system to study the effect of CaM gene deletion. Here, we present a novel genetic system based on the chicken DT40 cell line, in which the two functional CaM genes were deleted and one allele replaced with a CaM transgene that can be artificially regulated. We show that CaM is essential for survival of vertebrate cells as they die in the absence of CaM expression. Reversal of CaM repression or ectopic expression of HA-tagged CaM rescued the cells. Cells exclusively expressing HA-CaM with impaired individual calcium binding domains as well as HA-CaM lacking the ability to be phosphorylated at residues Tyr(99)/Tyr(138) or trimethylated at Lys(115) survived and grew well. CaM mutated at both Ca(2+) binding sites 3 and 4 as well as at both sites 1 and 2, but to a lesser degree, showed decreased ability to support cell growth. Cells expressing CaM with all calcium binding sites impaired died with kinetics similar to that of cells expressing no CaM. This system offers a unique opportunity to analyze CaM structure-function relationships in vivo without the use of pharmacological inhibitors and to analyze the function of wild type and mutated CaM in modulating the activity of different target systems without interference of endogenous CaM.
Collapse
Affiliation(s)
- Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yuan K, Jing G, Chen J, Liu H, Zhang K, Li Y, Wu H, McDonald JM, Chen Y. Calmodulin mediates Fas-induced FADD-independent survival signaling in pancreatic cancer cells via activation of Src-extracellular signal-regulated kinase (ERK). J Biol Chem 2011; 286:24776-84. [PMID: 21613217 DOI: 10.1074/jbc.m110.202804] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer remains a devastating malignancy with a poor prognosis and is largely resistant to current therapies. To understand the resistance of pancreatic tumors to Fas death receptor-induced apoptosis, we investigated the molecular mechanisms of Fas-activated survival signaling in pancreatic cancer cells. We found that knockdown of the Fas-associated protein with death domain (FADD), the adaptor that mediates downstream signaling upon Fas activation, rendered Fas-sensitive MiaPaCa-2 and BxPC-3 pancreatic cells resistant to Fas-induced apoptosis. By contrast, Fas activation promoted the survival of the FADD knockdown MiaPaCa-2 and BxPC-3 cells in a concentration-dependent manner. The pharmacological inhibitor of ERK, PD98059, abrogated Fas-promoted cell survival in FADD knockdown MiaPaCa-2 and BxPC-3 cells. Furthermore, increased phosphorylation of Src was demonstrated to mediate Fas-induced ERK activation and cell survival. Immunoprecipitation of Fas in the FADD knockdown cells identified the presence of increased calmodulin, Src, and phosphorylated Src in the Fas-associated protein complex upon Fas activation. Trifluoperazine, a calmodulin antagonist, inhibited Fas-induced recruitment of calmodulin, Src, and phosphorylated Src. Consistently, trifluoperazine blocked Fas-promoted cell survival. A direct interaction of calmodulin and Src and their binding site were identified with recombinant proteins. These results support an essential role of calmodulin in mediating Fas-induced FADD-independent activation of Src-ERK signaling pathways, which promote survival signaling in pancreatic cancer cells. Understanding the molecular mechanisms responsible for the resistance of pancreatic cells to apoptosis induced by Fas-death receptor signaling may provide molecular insights into designing novel therapies to treat pancreatic tumors.
Collapse
Affiliation(s)
- Kaiyu Yuan
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sánchez-González P, Jellali K, Villalobo A. Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 2009; 277:327-42. [PMID: 19951361 DOI: 10.1111/j.1742-4658.2009.07469.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we first describe the mechanisms by which the epidermal growth factor receptor generates a Ca(2+) signal and, subsequently, we compile the available experimental evidence regarding the role that the Ca(2+)/calmodulin complex, formed after the rise in cytosolic free Ca(2+) concentration, exerts on the receptor. We focus not only on the indirect action that Ca(2+)/calmodulin exerts on the epidermal growth factor receptor, as a result of the activation of distinct calmodulin-dependent kinases, but also, and more extensively, on the direct interaction of Ca(2+)/calmodulin with the receptor. We also describe several mechanistic models that could account for the Ca(2+)/calmodulin-mediated regulation of epidermal growth factor receptor activity. The control exerted by calmodulin on distinct epidermal growth factor receptor-mediated cellular functions is also discussed. Finally, the phosphorylation of this Ca(2+) sensor by the epidermal growth factor receptor is highlighted.
Collapse
Affiliation(s)
- Pablo Sánchez-González
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
12
|
Garcia-Marchan Y, Sojo F, Rodriguez E, Zerpa N, Malave C, Galindo-Castro I, Salerno M, Benaim G. Trypanosoma cruzi calmodulin: cloning, expression and characterization. Exp Parasitol 2009; 123:326-33. [PMID: 19703447 DOI: 10.1016/j.exppara.2009.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/27/2009] [Accepted: 08/18/2009] [Indexed: 11/17/2022]
Abstract
We have cloned and expressed calmodulin (CaM) from Trypanosoma cruzi, for the first time, to obtain large amounts of protein. CaM is a very well conserved protein throughout evolution, sharing 100% amino acid sequence identity between different vertebrates and 99% between trypanosomatids. However, there is 89% amino acid sequence identity between T. cruzi and vertebrate CaMs. The results demonstrate significant differences between calmodulin from T. cruzi and mammals. First, a polyclonal antibody developed in an egg-yolk system to the T. cruzi CaM recognizes the autologous CaM but not the CaM from rat. Second, it undergoes a larger increase in the alpha-helix content upon binding with Ca(2+), when compared to CaM from vertebrates. Finally, two classic CaM antagonists, calmidazolium and trifluoperazine, capable of inhibiting the action of CaM in mammals when assayed on the plasma membrane Ca(2+) pump, showed a significant loss of activity when assayed upon stimulation with the T. cruzi CaM.
Collapse
Affiliation(s)
- Yael Garcia-Marchan
- Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados (IDEA), Universidad Central de Venezuela, Caracas 1080, Bolivarian Republic of Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Spratt DE, Taiakina V, Guillemette JG. Calcium-deficient calmodulin binding and activation of neuronal and inducible nitric oxide synthases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1351-8. [PMID: 17890165 DOI: 10.1016/j.bbapap.2007.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/25/2007] [Accepted: 07/23/2007] [Indexed: 11/17/2022]
Abstract
The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|