1
|
Biswas A, Raran-Kurussi S, Narayan A, Kar A, Chandra Mashurabad P, Bhattacharyya MK, Mandal K. Efficient refolding and functional characterization of PfAMA1(DI+DII) expressed in E. coli. Biochem Biophys Rep 2021; 26:100950. [PMID: 33665380 PMCID: PMC7907217 DOI: 10.1016/j.bbrep.2021.100950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a surface protein of Plasmodium sp. that plays a crucial role in forming moving junction (MJ) during the invasion of human red blood cells. The obligatory presence of AMA1 in the parasite lifecycle designates this protein as a potential vaccine candidate and an essential target for the development of novel peptide or protein therapeutics. However, due to multiple cysteine residues in the protein sequence, attaining the native fold with correct disulfide linkages during the refolding process after expression in bacteria has remained challenging for years. Although several approaches to obtain the refolded protein from bacterial expression have been reported previously, achieving high yield during refolding and proper functional validation of the expressed protein was lacking. We report here an improved method of refolding to obtain higher quantity of refolded protein. We have also validated the refolded protein's functional activity by evaluating the expressed AMA1 protein binding with a known inhibitory peptide, rhoptry neck protein 2 (RON2), using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). A simple yet effective protocol for P. falciparum AMA1 protein expression from E. coli. Highly reproducible and scalable refolding protocol. The modified refolding method uses a step-wise dialysis technique. Functional validation of the refolded protein shown by binding with PfRON2 ectodomain using SPR and ITC.
Collapse
Affiliation(s)
- Anamika Biswas
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Akash Narayan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Abhisek Kar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Purna Chandra Mashurabad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Mrinal Kanti Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
- Corresponding author.
| |
Collapse
|
2
|
Chew CH, Lim YAL, Chua KH. Heterologous expression of Plasmodium vivax apical membrane antigen 1 (PvAMA1) for binding peptide selection. PeerJ 2017; 5:e3794. [PMID: 28929019 PMCID: PMC5600724 DOI: 10.7717/peerj.3794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/19/2017] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium is an obligate intracellular parasite. Apical membrane antigen 1 (AMA1) is the most prominent and well characterized malarial surface antigen that is essential for parasite-host cell invasion, i.e., for sporozoite to invade and replicate within hepatocytes in the liver stage and merozoite to penetrate and replicate within erythrocytes in the blood stage. AMA1 has long served as a potent antimalarial drug target and is a pivotal vaccine candidate. A good understanding of the structure and molecular function of this Plasmodium protein, particularly its involvement in host-cell adhesion and invasion, is of great interest and hence it offers an attractive target for the development of novel therapeutics. The present study aims to heterologous express recombinant Plasmodium AMA1 ectodomain of P. vivax (rPvAMA1) for the selection of binding peptides. Methods The rPvAMA1 protein was heterologous expressed using a tag-free Profinity eXactTM system and codon optimized BL21-Codon Plus (DE3)-RIL Escherichia coli strain and further refolded by dialysis for renaturation. Binding peptides toward refolded rPvAMA1 were panned using a Ph.D.-12 random phage display library. Results The rPvAMA1 was successfully expressed and refolded with three phage-displayed dodecapeptides designated as PdV1 (DLTFTVNPLSKA), PdV2 (WHWSWWNPNQLT), and PdV3 (TSVSYINNRHNL) with affinity towards rPvAMA1 identified. All of them exhibited positive binding signal to rPvAMA1 in both direct phage assays, i.e., phage ELISA binding assay and Western blot binding assay. Discussion Phage display technology enables the mapping of protein-protein interactions based on a simple principle that a library of phage particles displaying peptides is used and the phage clones that bind to the target protein are selected and identified. The binding sites of each selected peptides toward PvAMA1 (Protein Data Bank, PDB ID: 1W8K) were in silico predicted using CABS-dock web server. In this case, the binding peptides provide a valuable starting point for the development of peptidomimetic as antimalarial antagonists directed at PvAMA1.
Collapse
Affiliation(s)
- Ching Hoong Chew
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLoS One 2016; 11:e0144764. [PMID: 26731670 PMCID: PMC4701444 DOI: 10.1371/journal.pone.0144764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum is an obligate intracellular protozoan parasite that employs a highly sophisticated mechanism to access the protective environment of the host cells. Key to this mechanism is the formation of an electron dense ring at the parasite-host cell interface called the Moving Junction (MJ) through which the parasite invades. The MJ incorporates two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, the latter one being targeted to the host cell membrane during invasion. Crystal structures of AMA1 have shown that a partially mobile loop, termed the DII loop, forms part of a deep groove in domain I and overlaps with the RON2 binding site. To investigate the mechanism by which the DII loop influences RON2 binding, we measured the kinetics of association and dissociation and binding equilibria of a PfRON2sp1 peptide with both PfAMA1 and an engineered form of PfAMA1 where the flexible region of the DII loop was replaced by a short Gly-Ser linker (ΔDII-PfAMA1). The reactions were tracked by fluorescence anisotropy as a function of temperature and concentration and globally fitted to acquire the rate constants and corresponding thermodynamic profiles. Our results indicate that both PfAMA1 constructs bound to the PfRON2sp1 peptide with the formation of one intermediate in a sequential reversible reaction: A↔B↔C. Consistent with Isothermal Titration Calorimetry measurements, final complex formation was enthalpically driven and slightly entropically unfavorable. Importantly, our experimental data shows that the DII loop lengthened the complex half-life time by 18-fold (900 s and 48 s at 25°C for Pf and ΔDII-Pf complex, respectively). The longer half-life of the Pf complex appeared to be driven by a slower dissociation process. These data highlight a new influential role for the DII loop in kinetically locking the functional binary complex to enable host cell invasion.
Collapse
Affiliation(s)
- Roberto F. Delgadillo
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | - Michelle L. Parker
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Martin J. Boulanger
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Dominique Douguet
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
- * E-mail:
| |
Collapse
|
4
|
Pihan E, Delgadillo RF, Tonkin ML, Pugnière M, Lebrun M, Boulanger MJ, Douguet D. Computational and biophysical approaches to protein-protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex. J Comput Aided Mol Des 2015; 29:525-39. [PMID: 25822046 DOI: 10.1007/s10822-015-9842-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Abstract
Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 (PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the 'druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.
Collapse
Affiliation(s)
- Emilie Pihan
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, Route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Tonkin ML, Crawford J, Lebrun ML, Boulanger MJ. Babesia divergens and Neospora caninum apical membrane antigen 1 structures reveal selectivity and plasticity in apicomplexan parasite host cell invasion. Protein Sci 2014; 22:114-27. [PMID: 23169033 DOI: 10.1002/pro.2193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/09/2022]
Abstract
Host cell invasion by the obligate intracellular apicomplexan parasites, including Plasmodium (malaria) and Toxoplasma (toxoplasmosis), requires a step-wise mechanism unique among known host-pathogen interactions. A key step is the formation of the moving junction (MJ) complex, a circumferential constriction between the apical tip of the parasite and the host cell membrane that traverses in a posterior direction to enclose the parasite in a protective vacuole essential for intracellular survival. The leading model of MJ assembly proposes that Rhoptry Neck Protein 2 (RON2) is secreted into the host cell and integrated into the membrane where it serves as the receptor for apical membrane antigen 1 (AMA1) on the parasite surface. We have previously demonstrated that the AMA1-RON2 interaction is an effective target for inhibiting apicomplexan invasion. To better understand the AMA1-dependant molecular recognition events that promote invasion, including the significant AMA1-RON2 interaction, we present the structural characterization of AMA1 from the apicomplexan parasites Babesia divergens (BdAMA1) and Neospora caninum (NcAMA1) by X-ray crystallography. These studies offer intriguing structural insight into the RON2-binding surface groove in the AMA1 apical domain, which shows clear evidence for receptor-ligand co-evolution, and the hyper variability of the membrane proximal domain, which in Plasmodium is responsible for direct binding to erythrocytes. By incorporating the structural analysis of BdAMA1 and NcAMA1 with existing AMA1 structures and complexes we were able to define conserved pockets in the AMA1 apical groove that could be targeted for the design of broadly reactive therapeutics.
Collapse
Affiliation(s)
- Michelle L Tonkin
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | | | | | | |
Collapse
|
6
|
Ge X, MacRaild CA, Devine SM, Debono CO, Wang G, Scammells PJ, Scanlon MJ, Anders RF, Foley M, Norton RS. Ligand-Induced Conformational Change of Plasmodium falciparum AMA1 Detected Using 19F NMR. J Med Chem 2014; 57:6419-27. [DOI: 10.1021/jm500390g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaopeng Ge
- Department
of Biochemistry, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Christopher A. MacRaild
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Shane M. Devine
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Cael O. Debono
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Geqing Wang
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Peter J. Scammells
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Robin F. Anders
- Department
of Biochemistry, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Michael Foley
- Department
of Biochemistry, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| |
Collapse
|
7
|
Shark Variable New Antigen Receptor (VNAR) Single Domain Antibody Fragments: Stability and Diagnostic Applications. Antibodies (Basel) 2013. [DOI: 10.3390/antib2010066] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, Saul FA, Faber BW, Bentley GA, Boulanger MJ, Lebrun M. Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 2012; 8:e1002755. [PMID: 22737069 PMCID: PMC3380929 DOI: 10.1371/journal.ppat.1002755] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/01/2012] [Indexed: 12/03/2022] Open
Abstract
Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics. Malaria arises from infection of erythrocytes by single-cell parasites belonging to the genus Plasmodium, the species P. falciparum causing the most severe forms of the disease. The formation of a moving junction (MJ) between the membranes of the parasite and its host cell is essential for invasion. Two important components of the MJ are Apical Membrane Antigen 1 (AMA1) on the parasite surface and the Plasmodium rhoptry neck (RON) protein complex that is translocated to the erythrocyte membrane during invasion. The extra-cellular region of RON2, a component of this complex, interacts with AMA1, providing a bridge between the parasite and its host cell that is crucial for successful invasion. The parasite thus provides its own receptor for AMA1 and accordingly this critical interaction is not subject to evasive adaptations by the host. We present atomic details of the interaction of PfAMA1 with the carboxy-terminal region of RON2 and shed light on structural adaptations by each apicomplexan parasite to maintain an interaction so crucial for invasion. The structure of the RON2 ligand bound to AMA1 thus provides an ideal basis for drug design as such molecules may be refractory to the development of drug resistance in P. falciparum.
Collapse
Affiliation(s)
| | - Michelle L. Tonkin
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Susann Langer
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Sylviane Hoos
- Plate-Forme de Biophysique des Macromolécules et de leurs Interactions, Institut Pasteur, Paris, France
| | - Magali Roques
- UMR 5235 CNRS, Université de Montpellier 2, Montpellier, France
| | - Frederick A. Saul
- Unité d'Immunologie Structurale, Institut Pasteur, Paris, France
- URA 2185 CNRS, Paris, France
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Graham A. Bentley
- Unité d'Immunologie Structurale, Institut Pasteur, Paris, France
- URA 2185 CNRS, Paris, France
- * E-mail: (GAB); (MJB); (ML)
| | - Martin J. Boulanger
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (GAB); (MJB); (ML)
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier 2, Montpellier, France
- * E-mail: (GAB); (MJB); (ML)
| |
Collapse
|
9
|
Good MF. A whole parasite vaccine to control the blood stages of Plasmodium: the case for lateral thinking. Trends Parasitol 2011; 27:335-40. [PMID: 21514227 DOI: 10.1016/j.pt.2011.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Now, 27 years following the cloning of malaria antigens with the promise of the rapid development of a malaria vaccine, we face significant obstacles that are belatedly being addressed. Poor immunogenicity of subunit vaccine antigens and significant antigenic diversity of target epitopes represent major hurdles for which there are no clear strategies for a way forward within the current paradigm. Thus, a different paradigm - a vaccine that uses the whole organism - is now being examined. Although most advances in this approach relate to a vaccine for the pre-erythrocytic stages (sporozoites, liver stages), this opinion paper will outline the possibilities of developing a whole parasite vaccine for the blood stage and address some of the challenges for this strategy, which are entirely different to the challenges for a subunit vaccine. It is the view of the author that both vaccine paradigms should be pursued, but that success will come more quickly using the paranormal approach of exposing individuals to ultra-low doses of whole attenuated or killed parasites.
Collapse
Affiliation(s)
- Michael F Good
- Glycomics Institute, Griffith University, Gold Coast, Australia.
| |
Collapse
|
10
|
Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J, Ralph SA, Norton RS, Cowman AF. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 2010; 285:14815-22. [PMID: 20228060 PMCID: PMC2863225 DOI: 10.1074/jbc.m109.080770] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.
Collapse
Affiliation(s)
- Dave Richard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The development and implementation of a malaria vaccine would constitute a major breakthrough for global health. Recently, numerous new candidates have entered clinical testing, following strategies that are as diverse as the malaria cycle is complex. While promising results have been obtained, some candidate vaccines have not fulfilled expectations. The challenges are not merely scientific; further progresses will require the development of competent investigator networks, partnerships between academics, industry and funding agencies, and continuous political commitment. In this review, we present the developmental status of all malaria vaccine candidates that are currently in human clinical testing against Plasmodium falciparum, as well as selected malaria vaccine candidates at preclinical development stage, and discuss the main challenges facing the field of malaria vaccine development.
Collapse
Affiliation(s)
- Johan Vekemans
- GlaxoSmithKline Biologicals, Emerging Diseases, Global Clinical Research and Development Vaccines, Rixensart, Belgium.
| | | |
Collapse
|
12
|
Henderson KA, Streltsov VA, Coley AM, Dolezal O, Hudson PJ, Batchelor AH, Gupta A, Bai T, Murphy VJ, Anders RF, Foley M, Nuttall SD. Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 2008; 15:1452-66. [PMID: 17997971 DOI: 10.1016/j.str.2007.09.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 08/13/2007] [Accepted: 09/10/2007] [Indexed: 11/18/2022]
Abstract
Apical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P. falciparum strains. We present cocrystal structures of two antibody-AMA1 complexes which reveal extended IgNAR CDR3 loops penetrating deep into a hydrophobic cleft on the antigen surface and contacting residues conserved across parasite species. Comparison of a series of affinity-enhancing mutations allowed dissection of their relative contributions to binding kinetics and correlation with inhibition of erythrocyte invasion. These findings provide insights into mechanisms of single-domain antibody binding, and may enable design of reagents targeting otherwise cryptic epitopes in pathogen antigens.
Collapse
Affiliation(s)
- Kylie A Henderson
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infect Immun 2008; 76:1702-8. [PMID: 18268027 DOI: 10.1128/iai.01539-07] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the major bottlenecks in malaria research has been the difficulty in recombinant protein expression. Here, we report the application of the wheat germ cell-free system for the successful production of malaria proteins. For proof of principle, the Pfs25, PfCSP, and PfAMA1 proteins were chosen. These genes contain very high A/T sequences and are also difficult to express as recombinant proteins. In our wheat germ cell-free system, native and codon-optimized versions of the Pfs25 genes produced equal amounts of proteins. PfCSP and PfAMA1 genes without any codon optimization were also expressed. The products were soluble, with yields between 50 and 200 mug/ml of the translation mixture, indicating that the cell-free system can be used to produce malaria proteins without any prior optimization of their biased codon usage. Biochemical and immunocytochemical analyses of antibodies raised in mice against each protein revealed that every antibody retained its high specificity to the parasite protein in question. The development of parasites in mosquitoes fed patient blood carrying Plasmodium falciparum gametocytes and supplemented with our mouse anti-Pfs25 sera was strongly inhibited, indicating that both Pfs25-3D7/WG and Pfs25-TBV/WG retained their immunogenicity. Lastly, we carried out a parallel expression assay of proteins of blood-stage P. falciparum. The PCR products of 124 P. falciparum genes chosen from the available database were used directly in a small-scale format of transcription and translation reactions. Autoradiogram testing revealed the production of 93 proteins. The application of this new cell-free system-based protocol for the discovery of malaria vaccine candidates will be discussed.
Collapse
|
14
|
Coley AM, Gupta A, Murphy VJ, Bai T, Kim H, Anders RF, Foley M, Batchelor AH. Structure of the malaria antigen AMA1 in complex with a growth-inhibitory antibody. PLoS Pathog 2007; 3:1308-19. [PMID: 17907804 PMCID: PMC2323298 DOI: 10.1371/journal.ppat.0030138] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/02/2007] [Indexed: 11/19/2022] Open
Abstract
Identifying functionally critical regions of the malaria antigen AMA1 (apical membrane antigen 1) is necessary to understand the significance of the polymorphisms within this antigen for vaccine development. The crystal structure of AMA1 in complex with the Fab fragment of inhibitory monoclonal antibody 1F9 reveals that 1F9 binds to the AMA1 solvent-exposed hydrophobic trough, confirming its importance. 1F9 uses the heavy and light chain complementarity-determining regions (CDRs) to wrap around the polymorphic loops adjacent to the trough, but uses a ridge of framework residues to bind to the hydrophobic trough. The resulting 1F9-AMA1–combined buried surface of 2,470 Å2 is considerably larger than previously reported Fab–antigen interfaces. Mutations of polymorphic AMA1 residues within the 1F9 epitope disrupt 1F9 binding and dramatically reduce the binding of affinity-purified human antibodies. Moreover, 1F9 binding to AMA1 is competed by naturally acquired human antibodies, confirming that the 1F9 epitope is a frequent target of immunological attack. Malaria caused by Plasmodium falciparum causes more than 1 million deaths annually, and the development of a vaccine against this parasite is a major public health priority. Development of a vaccine is considered feasible because infection with malaria parasites induces protective immune responses, which include antibodies to a range of proteins on the parasite surface. Antigenic diversity allows the parasite to evade protective responses, and this may make it difficult to develop a vaccine that is effective against most infections. To facilitate the design of an effective vaccine, a more detailed understanding of how antibodies interact with their target parasite antigens is required. Here, we provide a detailed structural picture of the interaction between a growth-inhibitory monoclonal antibody and the leading vaccine candidate, AMA1. The results provide important insights into why some antibodies are inhibitory and why antigenic diversity in AMA1 enables the parasite to evade protective antibody responses.
Collapse
Affiliation(s)
- Andrew M Coley
- Cooperative Research Center for Diagnostics, Department of Biochemistry, La Trobe University, Victoria, Australia
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Aditi Gupta
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Vince J Murphy
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Tao Bai
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Hanna Kim
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Robin F Anders
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Michael Foley
- Cooperative Research Center for Diagnostics, Department of Biochemistry, La Trobe University, Victoria, Australia
- Department of Biochemistry, La Trobe University, Victoria, Australia
- * To whom correspondence should be addressed. E-mail: (MF); (AHB)
| | - Adrian H Batchelor
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (MF); (AHB)
| |
Collapse
|
15
|
In immunization with Plasmodium falciparum apical membrane antigen 1, the specificity of antibodies depends on the species immunized. Infect Immun 2007; 75:5827-36. [PMID: 17923516 DOI: 10.1128/iai.00593-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At least a million people, mainly African children under 5 years old, still die yearly from malaria, and the burden of disease and death has increased. Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is one of the most promising blood-stage malarial vaccine candidates. However, the allelic polymorphism observed in this protein is a potential stumbling block for vaccine development. To overcome the polymorphism- and strain-specific growth inhibition in vitro, we previously showed in a rabbit model that vaccination with a mixture of two allelic forms of PfAMA1 induced parasite growth-inhibitory antisera against both strains of P. falciparum parasites in vitro. In the present study, we have established that, in contrast to a single-allele protein, the antigen mixture elicits primarily antibodies recognizing antigenic determinants common to the two antigens, as judged by an antigen reversal growth inhibition assay (GIA). We also show that a similar reactivity pattern occurs after immunization of mice. By contrast, sera from rhesus monkeys do not distinguish the two alleles when tested by an enzyme-linked immunosorbent assay or by GIA, regardless of whether the immunogen is a single AMA1 protein or the mixture. This is the first report that a malarial vaccine candidate induced different specificities of functional antibodies depending on the animal species immunized. These observations, as well as data available on human immune responses in areas of endemicity, suggest that polymorphism in the AMA1 protein may not be as formidable a problem for vaccine development as anticipated from studies with rabbits and mice.
Collapse
|
16
|
Narum DL, Ogun SA, Batchelor AH, Holder AA. Passive immunization with a multicomponent vaccine against conserved domains of apical membrane antigen 1 and 235-kilodalton rhoptry proteins protects mice against Plasmodium yoelii blood-stage challenge infection. Infect Immun 2006; 74:5529-36. [PMID: 16988228 PMCID: PMC1594904 DOI: 10.1128/iai.00573-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During malaria parasite invasion of red blood cells, merozoite proteins bind receptors on the surface of the erythrocyte. Two candidate Plasmodium yoelii adhesion proteins are apical membrane antigen 1 (AMA1) and the 235-kDa rhoptry proteins (P235). Previously, we have demonstrated that passive immunization with monoclonal antibodies (MAbs) 45B1 and 25.77 against AMA1 and P235, respectively, protects against a lethal challenge infection with P. yoelii YM. We show that MAb 45B1 recognizes an epitope located on a conserved surface of PyAMA1, as determined by phage display and analysis of the three-dimensional structure of AMA1, in a region similar to that bound by the P. falciparum AMA1-specific inhibitory antibody 4G2. The epitope recognized by 25.77 could not be assigned. We report here that MAbs 45B1 and 25.77 also protect against challenge with the nonlethal parasite line 17X, in which PyAMA1 has a significantly different amino acid sequence from that in YM. When administered together, the two MAbs acted at least additively in providing protection against challenge with the virulent YM parasite. These results support the concept of developing a multicomponent blood-stage vaccine and the inclusion of polymorphic targets such as AMA1, which these results suggest contain conserved domains recognized by inhibitory antibodies.
Collapse
Affiliation(s)
- David L Narum
- Malaria Vaccine Development Branch/NIH, 5640 Fishers Lane, Twinbrook I, Rockville, MD 20852, USA.
| | | | | | | |
Collapse
|
17
|
Zhou J, Yang J, Zhang G, Nishikawa Y, Fujisaki K, Xuan X. Babesia gibsoni: An apical membrane antigen-1 homologue and its antibody response in the infected dogs. Exp Parasitol 2006; 114:329-33. [PMID: 16777097 DOI: 10.1016/j.exppara.2006.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/27/2006] [Accepted: 04/29/2006] [Indexed: 11/17/2022]
Abstract
A cDNA encoding the apical membrane antigen-1 (AMA-1) homologue was obtained by immunoscreening a cDNA expression library prepared from Babesia gibsoni merozoite mRNA. The complete nucleotide sequence of the gene was 2062bp. Computer analysis suggested that the sequence contains an open reading frame of 1794bp with a coding capacity of approximately 66kDa. Based on the homology analysis, this putative protein was designated as B. gibsoni AMA-1 (BgAMA-1). The BgAMA-1 gene was expressed in the Escherichia coli BL21 strain and used as the antigen in Western blotting and the enzyme-linked immunosorbent assay (ELISA). The results indicated that BgAMA-1 was recognized as an immunodominant antigen by the host immune system and that it induced a strong antibody response only in chronic B. gibsoni infection in dogs; however, the antibody response could not be detected in the early infection stage (within 15 days). This phenomenon might be explained by the limited stimulation with the low-abundance protein in the early infection stage. This result shows that BgAMA-1 is a new member of the AMA-1 family and that its immune response is characteristic of canine B. gibsoni infection.
Collapse
Affiliation(s)
- Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, Batchelor AH. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci U S A 2005; 102:12736-41. [PMID: 16129835 PMCID: PMC1200259 DOI: 10.1073/pnas.0501808102] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Indexed: 12/14/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate that possesses polymorphisms that may pose a problem for a vaccine based on this antigen. Knowledge of the distribution of the polymorphic sites on the surface of AMA1 is necessary to obtain a detailed understanding of their significance for vaccine development. For this reason we have sought to determine the three-dimensional structure of AMA1 using x-ray crystallography. The central two-thirds of AMA1 is relatively conserved among Plasmodium species as well as more distantly related apicomplexan parasites, and contains two clusters of disulfide-bonded cysteines termed domains I and II. The crystal structure of this fragment of AMA1 reported here reveals that domains I+II consists of two intimately associated PAN domains. PAN domain I contains many long loops that extend from the domain core and form a scaffold for numerous polymorphic residues. This extreme adaptation of a PAN domain reveals how malaria parasites have introduced significant flexibility and variation into AMA1 to evade protective human antibody responses. The polymorphisms on the AMA1 surface are exclusively located on one side of the molecule, presumably because this region of AMA1 is most accessible to antibodies reacting with the parasite surface. Moreover, the most highly polymorphic residues surround a conserved hydrophobic trough that is ringed by domain I and domain II loops. Precedents set by viral receptor proteins would suggest that this is likely to be the AMA1 receptor binding pocket.
Collapse
Affiliation(s)
- Tao Bai
- University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|