1
|
Hazebrouck S, Patil SU, Guillon B, Lahood N, Dreskin SC, Adel-Patient K, Bernard H. Immunodominant conformational and linear IgE epitopes lie in a single segment of Ara h 2. J Allergy Clin Immunol 2022; 150:131-139. [PMID: 35150723 PMCID: PMC10440805 DOI: 10.1016/j.jaci.2021.12.796] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Contribution of conformational epitopes to the IgE reactivity of peanut allergens Ara h 2 and Ara h 6 is at least as important as that of the linear epitopes. However, little is known about these conformational IgE-binding epitopes. OBJECTIVE We investigated the distribution of conformational epitopes on chimeric 2S-albumins. METHODS Recombinant chimeras were generated by exchanging structural segments between Ara h 2 and Ara h 6. Well-refolded chimeras, as verified by circular dichroism analysis, were then used to determine the epitope specificity of mAbs by performing competitive inhibition of IgG binding. Furthermore, we delineated the contribution of each segment to the overall IgE reactivity of both 2S-albumins by measuring the chimeras' IgE-binding capacity with sera from 21 patients allergic to peanut. We finally assessed chimeras' capacity to trigger mast cell degranulation. RESULTS Configuration of the conformational epitopes was preserved in the chimeras. Mouse IgG mAbs, raised against natural Ara h 6, and polyclonal human IgE antibodies recognized different conformational epitopes distributed all along Ara h 6. In contrast, we identified human IgG mAbs specific to different Ara h 2 linear or conformational epitopes located in all segments except the C-terminal one. The major conformational IgE-binding epitope of Ara h 2 was located in a segment located between residues 33 and 81 that also contains the major linear hydroxyproline-containing epitope. Accordingly, this segment is critical for the capacity of Ara h 2 to induce mast cell degranulation. CONCLUSIONS Chimeric 2S-albumins provide new insights on the conformational IgE-binding epitopes of Ara h 2 and Ara h 6. Proximity of the immunodominant linear and conformational IgE-binding epitopes probably contributes to the high allergenic potency of Ara h 2.
Collapse
Affiliation(s)
- Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France.
| | - Sarita U Patil
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, the Food Allergy Center, Massachusetts General Hospital for Children, and Harvard Medical School, Boston, Mass
| | - Blanche Guillon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Nicole Lahood
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, the Food Allergy Center, Massachusetts General Hospital for Children, and Harvard Medical School, Boston, Mass
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado-Denver, Aurora, Colo
| | - Karine Adel-Patient
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Hervé Bernard
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Bernard H, Turner PJ, Ah-Leung S, Ruiz-Garcia M, Clare Mills EN, Adel-Patient K. Circulating Ara h 6 as a marker of peanut protein absorption in tolerant and allergic humans following ingestion of peanut-containing foods. Clin Exp Allergy 2020; 50:1093-1102. [PMID: 32648641 DOI: 10.1111/cea.13706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/30/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bioaccessibility of food allergens may be a key determinant of allergic reactions. OBJECTIVE To develop a protocol allowing the detection of the major peanut allergen, Ara h 6, in the bloodstream following ingestion of low amounts of peanut and to compare Ara h 6 bioaccessibility by food matrix. We further assessed for differences in absorption in healthy versus peanut-allergic volunteers. METHODS A blood pretreatment combining acidic shock and thermal treatment was developed. This protocol was then applied to blood samples collected from human volunteers (n = 6, healthy controls; n = 14, peanut-allergic patients) at various time-points following ingestion of increasing levels of peanut incurred in different food matrices (cookies, peanut butter and chocolate dessert). Immunodetection was performed using an in-house immunoassay. RESULTS An original pretreatment protocol was optimized, resulting in irreversible dissociation of human antibodies-Ara h 6 immune complex, thus rendering Ara h 6 accessible for its immunodetection. Ara h 6 was detected in samples from all volunteers following ingestion of 300-1000 mg peanut protein, although variations in the kinetics of passage were observed between individuals and matrices. Interestingly, in peanut-allergic subjects, Ara h 6 could be detected following ingestion of lower doses and at higher concentrations than in non-allergic volunteers. CONCLUSIONS AND CLINICAL RELEVANCE The kinetics and intensity of Ara h 6 passage in bloodstream depend on both individual and food matrix. Peanut-allergic patients appear to demonstrate higher absorption rate, the clinical significance of which warrants further evaluation.
Collapse
Affiliation(s)
- Hervé Bernard
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS)/ Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Paul J Turner
- Section of Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Sandrine Ah-Leung
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS)/ Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Monica Ruiz-Garcia
- Section of Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Elizabeth Naomi Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences and Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Karine Adel-Patient
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS)/ Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Hazebrouck S, Guillon B, Paty E, Dreskin SC, Adel-Patient K, Bernard H. Variable IgE cross-reactivity between peanut 2S-albumins: The case for measuring IgE to both Ara h 2 and Ara h 6. Clin Exp Allergy 2019; 49:1107-1115. [PMID: 31108010 DOI: 10.1111/cea.13432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND 2S-albumins Ara h 2 and Ara h 6 are the most potent peanut allergens and levels of specific immunoglobulin E (IgE) towards these proteins are good predictors of clinical reactivity. Because of structural homologies, Ara h 6 is generally considered to cross-react extensively with Ara h 2. OBJECTIVE We aimed to quantify the IgE cross-reactivity between Ara h 2 and Ara h 6. METHODS Peanut 2S-albumins were purified from raw peanuts. The IgE cross-reactivity between Ara h 2 and Ara h 6 was evaluated with 32 sera from French and US peanut-allergic patients by measuring the residual IgE-binding to one 2S-albumin after depletion of IgE antibodies recognizing the other 2S-albumin. The IgE cross-reactivity between Ara h 2 and Ara h 6 was further investigated by competitive inhibition of IgE-binding and by a model of mast cell degranulation. RESULTS A highly variable level of IgE cross-reactivity was revealed among the patients. The mean fraction of cross-reactive IgE antibodies represented only 17.1% of 2S-albumins-specific IgE antibodies and was lower than the mean fraction of IgE specific to Ara h 2 (57.4%) or to Ara h 6 (25.5%). The higher level of Ara h 2-specific IgE was principally due to the IgE-binding capacity of an insertion containing the repeated immunodominant linear epitope DPYSPOH S. The impact of IgE cross-reactivity on diagnostic testing was illustrated with a serum displaying an Ara h 6-specific IgE response of 26 UI/mL that was not associated with the capacity of Ara h 6 to trigger mast cell degranulation. CONCLUSIONS & CLINICAL RELEVANCE Immunoglobulin E antibodies specific to peanut 2S-albumins are mainly non-cross-reactive, but low-affinity cross-reactivity can affect diagnostic accuracy. Testing IgE-binding to a mixture of 2S-albumins rather than to each separately may enhance diagnostic performance.
Collapse
Affiliation(s)
- Stéphane Hazebrouck
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Blanche Guillon
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Paty
- Université Paris Descartes-Assistance Publique des Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, Denver School of Medicine, University of Colorado, Aurora, Colorado
| | - Karine Adel-Patient
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Bernard
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Guillon B, Bernard H, Drumare MF, Hazebrouck S, Adel-Patient K. Heat processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6. Mol Nutr Food Res 2016; 60:2722-2735. [PMID: 27374416 PMCID: PMC5213772 DOI: 10.1002/mnfr.201500923] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 11/11/2022]
Abstract
SCOPE Processing of food has been shown to impact IgE binding and functionality of food allergens. In the present study, we investigated the impact of heat processing on the sensitization capacity of Ara h 6, a major peanut allergen and one of the most potent elicitors of the allergic reaction. METHODS AND RESULTS Peanut extracts obtained from raw or heat-processed peanut and some fractions thereof were biochemically and immunochemically characterized. These extracts/fractions, purified Ara h 6, or recombinant Ara h 6 including Ara h 6 mutants lacking disulfide bridges were used in in vitro digestion tests and mouse models of experimental sensitization. Peanut roasting led to the formation of complexes of high molecular weight, notably between Ara h 6 and Ara h 1, which supported the induction of IgE specific to native Ara h 6. On the contrary, a fraction containing free monomeric 2S albumins or purified native Ara h 6 displayed no intrinsic allergenicity. In addition to complex formation, heat denaturation and/or partial destabilization enhanced Ara h 6 immunogenicity and increased its sensitivity to digestion. CONCLUSION These results suggest that sensitization potency and IgE binding capacity can be supported by different structures, modified and/or produced during food processing in interaction with other food constituents.
Collapse
Affiliation(s)
- Blanche Guillon
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Bernard
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Françoise Drumare
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Adel-Patient
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Bernard H, Guillon B, Drumare MF, Paty E, Dreskin SC, Wal JM, Adel-Patient K, Hazebrouck S. Allergenicity of peanut component Ara h 2: Contribution of conformational versus linear hydroxyproline-containing epitopes. J Allergy Clin Immunol 2014; 135:1267-74.e1-8. [PMID: 25483599 DOI: 10.1016/j.jaci.2014.10.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The 2S-albumin Ara h 2 is the most potent peanut allergen and a good predictor of clinical reactivity in allergic children. Posttranslational hydroxylation of proline residues occurs in DPYSP(OH)S motifs, which are repeated 2 or 3 times in different isoforms. OBJECTIVES We investigated the effect of proline hydroxylation on IgE binding and the relative contributions of linear and conformational epitopes to Ara h 2 allergenicity. METHODS Peptides containing DPYSP(OH)S motifs were synthesized. A recombinant variant of Ara h 2 without DPYSP(OH)S motifs was generated by means of deletion mutagenesis. IgE reactivity of 18 French and 5 American patients with peanut allergy toward synthetic peptides and recombinant allergens was assessed by using IgE-binding inhibition assays and degranulation tests of humanized rat basophilic leukemia cells. RESULTS Hydroxyproline-containing peptides exhibited an IgE-binding activity equivalent to that of the unfolded Ara h 2. In contrast, corresponding peptides without hydroxyprolines displayed a very weak IgE-binding capacity. Despite removal of the DPYSP(OH)S motifs, the deletion variant still displayed Ara h 2 conformational epitopes. The IgE-binding capacity of Ara h 2 was then recapitulated with an equimolar mixture of a hydroxylated peptide and the deletion variant. Hydroxylated peptides of 15 and 27 amino acid residues were also able to trigger cell degranulation. CONCLUSIONS Sensitization toward linear and conformational epitopes of Ara h 2 is variable among patients with peanut allergy. Optimal IgE binding to linear epitopes of Ara h 2 requires posttranslational hydroxylation of proline residues. The absence of hydroxyprolines could then affect the accuracy of component-resolved diagnostics by using rAra h 2.
Collapse
Affiliation(s)
- Hervé Bernard
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Blanche Guillon
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Marie-Françoise Drumare
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Evelyne Paty
- Université Paris Descartes-Assistance Publique des Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Jean-Michel Wal
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Karine Adel-Patient
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Wavrin S, Bernard H, Wal JM, Adel-Patient K. Cutaneous or respiratory exposures to peanut allergens in mice and their impacts on subsequent oral exposure. Int Arch Allergy Immunol 2014; 164:189-99. [PMID: 25034179 DOI: 10.1159/000363444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent data suggested that non-gastrointestinal exposure can lead to sensitisation to food allergens. We thus assessed the immune impact of respiratory or cutaneous exposure to peanut proteins on non-altered epithelium and investigated the effect of such pre-exposure on subsequent oral administration of peanut. METHODS BALB/cJ mice were exposed to purified Ara h 1 or to a non-defatted roasted peanut extract (PE) by simple deposit of allergens solutions on non-altered skin or in the nostrils. Exposures were performed 6 times at weekly intervals. Pre-exposed mice then received intra-gastric administrations of PE alone or in the presence of the Th2 mucosal adjuvant cholera toxin (CT). The specific humoral and cellular immune response was assessed throughout the protocol. RESULTS Both cutaneous and respiratory exposures led to the production of specific IgG1. Local and systemic IL-5 and IL-13 production were also evidenced, demonstrating activation of specific Th2 cells. This effect was dose-dependent and most efficient via the respiratory route. Moreover, these pre-exposures led to the production of specific IgE antibodies after gavage with PE, whatever the presence of CT. CONCLUSIONS Cutaneous or respiratory exposures to peanut induce Th2 priming in mice. Moreover, pre-exposures promote further sensitisation via the oral route without the use of CT; this proposes a new adjuvant-free experimental model of sensitisation to food that may reflect a realistic exposure pattern in infants. These results also suggest that non-gastrointestinal peanut exposure should be minimised in high-risk infants, even those with non-altered skin, to potentially reduce allergic sensitisation to this major food allergen.
Collapse
Affiliation(s)
- Sophie Wavrin
- INRA, UR496 Immuno-Allergie Alimentaire, CEA/IBiTeC-S/SPI, CEA de Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
7
|
Bernard H, Ah-Leung S, Drumare MF, Feraudet-Tarisse C, Verhasselt V, Wal JM, Créminon C, Adel-Patient K. Peanut allergens are rapidly transferred in human breast milk and can prevent sensitization in mice. Allergy 2014; 69:888-97. [PMID: 24773443 DOI: 10.1111/all.12411] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Food allergens have been evidenced in breast milk under physiological conditions, but the kinetic and the role of this passage in food allergies are still unclear. We then aimed to analyze the passage of peanut allergens in human breast milk and their allergenicity/immunomodulatory properties. METHODS Human breast milk was collected from two non-atopic peanut-tolerant mothers before and at different time points after ingestion of 30 g of commercial roasted peanut. Ara h 6, Ara h 6 immune complexes, and the IgE binding capacity of breast milk samples were measured using specific immunoassays. Their allergenic functionality was then assessed using cell-based assay. Finally, human breast milk obtained before or after peanut ingestion was administered intragastrically to BALB/c mice at different ages, and mice were further experimentally sensitized to peanut using cholera toxin. RESULTS Ara h 6 is detected as soon as 10 min after peanut ingestion, with peak values observed within the first hour after ingestion. The transfer is long-lasting, small quantities of peanut allergens being detected over a 24-h period. IgG-Ara h 6 and IgA-Ara h 6 immune complexes are evidenced, following a different kinetic of excretion than free allergens. Peanut allergens transferred in milk are IgE reactive and can induce an allergic reaction in vitro. However, administration of human breast milk to young mice, notably before weaning, does not lead to sensitization, but instead to partial oral tolerance. CONCLUSION The low quantities of immunologically active allergens transferred through breast milk may prevent instead of priming allergic sensitization to peanut.
Collapse
Affiliation(s)
- H. Bernard
- INRA; UR496 Unité d'Immuno-Allergie Alimentaire; Jouy-en-Josas France
- CEA; IBiTecS; Service de Pharmacologie et d'Immunoanalyse; Gif-sur-Yvette France
| | - S. Ah-Leung
- INRA; UR496 Unité d'Immuno-Allergie Alimentaire; Jouy-en-Josas France
- CEA; IBiTecS; Service de Pharmacologie et d'Immunoanalyse; Gif-sur-Yvette France
| | - M.-F. Drumare
- INRA; UR496 Unité d'Immuno-Allergie Alimentaire; Jouy-en-Josas France
- CEA; IBiTecS; Service de Pharmacologie et d'Immunoanalyse; Gif-sur-Yvette France
| | - C. Feraudet-Tarisse
- CEA; IBiTecS; Service de Pharmacologie et d'Immunoanalyse; Gif-sur-Yvette France
| | - V. Verhasselt
- EA 6302 Tolérance Immunitaire; Hôpital de l'Archet; Université de Nice Sophia-Antipolis; Nice France
| | - J.-M. Wal
- INRA; UR496 Unité d'Immuno-Allergie Alimentaire; Jouy-en-Josas France
- CEA; IBiTecS; Service de Pharmacologie et d'Immunoanalyse; Gif-sur-Yvette France
| | - C. Créminon
- CEA; IBiTecS; Service de Pharmacologie et d'Immunoanalyse; Gif-sur-Yvette France
| | - K. Adel-Patient
- INRA; UR496 Unité d'Immuno-Allergie Alimentaire; Jouy-en-Josas France
- CEA; IBiTecS; Service de Pharmacologie et d'Immunoanalyse; Gif-sur-Yvette France
| |
Collapse
|
8
|
High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging. J Immunol Methods 2013; 387:11-20. [DOI: 10.1016/j.jim.2012.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/30/2022]
|
9
|
Hazebrouck S, Guillon B, Drumare MF, Paty E, Wal JM, Bernard H. Trypsin resistance of the major peanut allergen Ara h 6 and allergenicity of the digestion products are abolished after selective disruption of disulfide bonds. Mol Nutr Food Res 2012; 56:548-57. [DOI: 10.1002/mnfr.201100614] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stéphane Hazebrouck
- INRA, UR 496, Unité d’Immuno-Allergie Alimentaire, CEA/iBiTeC-S/SPI, CEA de Saclay; Gif-sur-Yvette France
| | - Blanche Guillon
- INRA, UR 496, Unité d’Immuno-Allergie Alimentaire, CEA/iBiTeC-S/SPI, CEA de Saclay; Gif-sur-Yvette France
| | - Marie-Françoise Drumare
- INRA, UR 496, Unité d’Immuno-Allergie Alimentaire, CEA/iBiTeC-S/SPI, CEA de Saclay; Gif-sur-Yvette France
| | - Evelyne Paty
- Université Paris Descartes Assistance Publique des Hôpitaux de Paris; Hôpital Necker Enfants Malades; Paris France
| | - Jean-Michel Wal
- INRA, UR 496, Unité d’Immuno-Allergie Alimentaire, CEA/iBiTeC-S/SPI, CEA de Saclay; Gif-sur-Yvette France
| | - Hervé Bernard
- INRA, UR 496, Unité d’Immuno-Allergie Alimentaire, CEA/iBiTeC-S/SPI, CEA de Saclay; Gif-sur-Yvette France
| |
Collapse
|
10
|
Koppelman SJ, Hefle SL, Taylor SL, de Jong GAH. Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: a comparative in vitro study and partial characterization of digestion-resistant peptides. Mol Nutr Food Res 2011; 54:1711-21. [PMID: 20603832 DOI: 10.1002/mnfr.201000011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SCOPE There are differences in stability to pepsin between the major allergens in peanut; however, data are from different reports using different digestion models. This study provides a comprehensive comparison of the digestibility of the major peanut allergens. METHODS AND RESULTS Peanut allergens Ara h 1, Ara h 2, Ara h 3 and Ara h 6 were incubated with pepsin to mimic the effect of gastric digestion. Samples were analyzed using SDS-PAGE. To further investigate resistance to digestion, Ara h 2 was additionally subjected to digestion with trypsin and residual peptides were characterized. Ara h 1 and Ara h 3 were rapidly hydrolyzed by pepsin. On the contrary, Ara h 2 and Ara h 6 were resistant to pepsin digestion, even at very high concentrations of pepsin. In fact, limited proteolysis could only be demonstrated by SDS-PAGE performed under reducing conditions, indicating an important role for the disulfide bridges in maintaining the quaternary structure of Ara h 2 and Ara h 6. Trypsin digestion of Ara h 2 similarly resulted in large residual peptides and these were identified. CONCLUSION Ara h 2 and Ara h 6 are considerably more stable towards digestion than Ara h 1 and Ara h 3.
Collapse
|
11
|
Garino C, Zuidmeer L, Marsh J, Lovegrove A, Morati M, Versteeg S, Schilte P, Shewry P, Arlorio M, van Ree R. Isolation, cloning, and characterization of the 2S albumin: a new allergen from hazelnut. Mol Nutr Food Res 2011; 54:1257-65. [PMID: 20373288 DOI: 10.1002/mnfr.200900456] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SCOPE 2S albumins are the major allergens involved in severe food allergy to nuts, seeds, and legumes. We aimed to isolate, clone, and express 2S albumin from hazelnut and determine its allergenicity. METHODS 2S albumin from hazelnut extract was purified using size exclusion chromatography and RP-HPLC. After N-terminal sequencing, degenerated and poly-d(T) primers were used to clone the 2S albumin sequence from hazelnut cDNA. After expression in Escherichia coli and affinity purification, IgE reactivity was evaluated by Immunoblot/ImmunoCAP (inhibition) analyses using sera of nut-allergic patients. RESULTS N-terminal sequencing of a approximately 10 kDa peak from size exclusion chromatography/RP-HPLC gave two sequences highly homologous to pecan 2S albumin, an 11 amino acid (aa) N-terminal and a 10 aa internal peptide. The obtained clone (441 bp) encoded a 147 aa hazelnut 2S albumin consisting of a putative signal peptide (22 aa), a linker peptide (20 aa), and the mature protein sequence (105 aa). The latter was successfully expressed in E. coli. Both recombinant and natural 2S albumin demonstrated similar IgE reactivity in Immunoblot/ImmunoCAP (inhibition) analyses. CONCLUSION We confirmed the postulated role of hazelnut 2S albumin as an allergen. The availability of recombinant molecules will allow establishing the importance of hazelnut 2S albumin for hazelnut allergy.
Collapse
Affiliation(s)
- Cristiano Garino
- Università del Piemonte Orientale "A. Avogadro", DiSCAFF & Drug and Food Biotechnological Center, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guimaraes V, Drumare MF, Lereclus D, Gohar M, Lamourette P, Nevers MC, Vaisanen-Tunkelrott ML, Bernard H, Guillon B, Créminon C, Wal JM, Adel-Patient K. In vitro digestion of Cry1Ab proteins and analysis of the impact on their immunoreactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3222-31. [PMID: 20136083 DOI: 10.1021/jf903189j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A pepsin resistance test performed at pH 1.2 and with high pepsin to protein ratio is one of the steps of the weight-of-evidence approach used for assessment of allergenicity of new proteins. However, the use of other in vitro digestibility tests, performed in more physiologically relevant conditions and in combination with immunological assays so as to increase the value of the information gained from the studies of stability of a novel protein to digestion for the overall allergenicity assessment, has been proposed. This study then aimed to investigate the stability to digestion of Cry1Ab protoxin and toxin, insecticidal proteins expressed in genetically modified crops, using simulated gastric fluid (SGF) at different pH values and pepsin-to-substrate ratios, in the presence or absence of physiological surfactant phosphatidylcholine (PC). Electrophoresis and immunoblot patterns and residual immunoreactivity of digesta were analyzed. Although Cry1Ab protoxin is extensively degraded at pH 1.2 with high pepsin-to-protein ratio, it is only slightly degraded at pH 2.0 and conserved its immunoreactivity. Furthermore, Cry1Ab proteins were demonstrated to be stable in a more physiologically relevant in vitro digestibility test (pH 2.5, pepsin-to-substrate ratio 1:20 (w/w) with PC). Factors such as pH, SGF composition, and pepsin-to-substrate ratio then greatly influence the digestion of Cry1Ab proteins, confirming that new and more physiologically relevant in vitro digestibility tests should be also considered to study the relationship between the resistance of a protein to digestion and its allergenicity.
Collapse
Affiliation(s)
- Valeria Guimaraes
- INRA, UR496, Laboratoire d'Immuno-Allergie Alimentaire, F-78352 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Harrer A, Egger M, Gadermaier G, Erler A, Hauser M, Ferreira F, Himly M. Characterization of plant food allergens: An overview on physicochemical and immunological techniques. Mol Nutr Food Res 2009; 54:93-112. [DOI: 10.1002/mnfr.200900096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Bernard H, Drumare MF, Guillon B, Paty E, Scheinmann P, Wal JM. Immunochemical characterisation of structure and allergenicity of peanut 2S albumins using different formats of immunoassays. Anal Bioanal Chem 2009; 395:139-46. [DOI: 10.1007/s00216-009-2842-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 11/25/2022]
|
15
|
Abe R, Kudou M, Tanaka Y, Arakawa T, Tsumoto K. Immobilized metal affinity chromatography in the presence of arginine. Biochem Biophys Res Commun 2009; 381:306-10. [DOI: 10.1016/j.bbrc.2009.01.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/13/2009] [Indexed: 11/28/2022]
|
16
|
Nakakido M, Tanaka Y, Mitsuhori M, Kudou M, Ejima D, Arakawa T, Tsumoto K. Structure-based analysis reveals hydration changes induced by arginine hydrochloride. Biophys Chem 2008; 137:105-9. [PMID: 18725174 DOI: 10.1016/j.bpc.2008.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 11/29/2022]
Abstract
Arginine hydrochloride has been used to suppress protein aggregation during refolding and in various other applications. We investigated the structure of hen egg-white lysozyme (HEL) and solvent molecules in arginine hydrochloride solution by X-ray crystallography. Neither the backbone nor side-chain structure of HEL was altered by the presence of arginine hydrochloride. In addition, no stably bound arginine molecules were observed. The number of hydration water molecules, however, changed with the arginine hydrochloride concentration. We suggest that arginine hydrochloride suppresses protein aggregation by altering the hydration structure and the transient binding of arginine molecules that could not be observed.
Collapse
Affiliation(s)
- Makoto Nakakido
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Bernard H, Mondoulet L, Drumare MF, Paty E, Scheinmann P, Thaï R, Wal JM. Identification of a new natural Ara h 6 isoform and of its proteolytic product as major allergens in peanut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9663-9669. [PMID: 17949050 DOI: 10.1021/jf071424g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Numerous food allergens of plant origin belong to the 2S albumin family, including peanut Ara h 2. In addition to Ara h 2, several other conglutins related to 2S albumins are present in peanut seeds. We evaluated the allergenicity of different peanut conglutins as compared with Ara h 2. Several conglutins were isolated from the kernel, i.e. Ara h 2, a new isoform of Ara h 6 and its derived product, which is likely to be naturally formed during seed processing. Enzyme allergosorbent tests performed on sera of peanut allergic patients showed that more than 94% of 47 analyzed patients had positive IgE responses to Ara h 6 isoform and to its degradation product. Skin prick tests with the new isoform of Ara h 6 led to a positive response in seven out of the eight tested patients. Both enzyme allergosorbent tests and skin prick tests showed that the reactivity of Ara h 6 was similar to, or even higher than, that of Ara h 2, suggesting that the present isoform of Ara h 6 is as allergenic as Ara h 2. In addition the IgE response to the plant processed (i.e., hydrolyzed) Ara h 6 new isoform is equivalent to the IgE response to the native isoform. The IgE immunoreactivity is mostly abrogated by chemical reduction and denaturation of Ara h 6 isoforms, which underlined the importance of tertiary structure in Ara h 6 immunoreactivity. These results, and particularly the high correlation between anti-Ara h 2 and anti-Ara h 6 IgE responses, emphasise the major role of 2S albumins in peanut allergenicity.
Collapse
Affiliation(s)
- H Bernard
- INRA-Laboratoire d'immuno-allergie alimentaire, CEA-Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|