1
|
Borrelia burgdorferi DnaA and the Nucleoid-Associated Protein EbfC Coordinate Expression of the dnaX-ebfC Operon. J Bacteriol 2023; 205:e0039622. [PMID: 36533911 PMCID: PMC9879097 DOI: 10.1128/jb.00396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borrelia burgdorferi, the spirochete agent of Lyme disease, has evolved within a consistent infectious cycle between tick and vertebrate hosts. The transmission of the pathogen from tick to vertebrate is characterized by rapid replication and a change in the outer surface protein profile. EbfC, a highly conserved nucleoid-associated protein, binds throughout the borrelial genome, affecting expression of many genes, including the Erp outer surface proteins. In B. burgdorferi, like many other bacterial species, ebfC is cotranscribed with dnaX, an essential component of the DNA polymerase III holoenzyme, which facilitates chromosomal replication. The expression of the dnaX-ebfC operon is tied to the spirochete's replication rate, but the underlying mechanism for this connection was unknown. In this work, we provide evidence that the expression of dnaX-ebfC is controlled by direct interactions of DnaA, the chromosomal replication initiator, and EbfC at the unusually long dnaX-ebfC 5' untranslated region (UTR). Both proteins bind to the 5' UTR DNA, with EbfC also binding to the RNA. The DNA binding of DnaA to this region was similarly impacted by ATP and ADP. In vitro studies characterized DnaA as an activator of dnaX-ebfC and EbfC as an antiactivator. We further found evidence that DnaA may regulate other genes essential for replication. IMPORTANCE The dual life cycle of Borrelia burgdorferi, the causative agent of Lyme disease, is characterized by periods of rapid and slowed replication. The expression patterns of many of the spirochete's virulence factors are impacted by these changes in replication rates. The connection between replication and virulence can be understood at the dnaX-ebfC operon. DnaX is an essential component of the DNA polymerase III holoenzyme, which replicates the chromosome. EbfC is a nucleoid-associated protein that regulates the infection-associated outer surface Erp proteins, as well as other transcripts. The expression of dnaX-ebfC is tied to replication rate, which we demonstrate is mediated by DnaA, the master chromosomal initiator protein and transcription factor, and EbfC.
Collapse
|
2
|
AfsK-Mediated Site-Specific Phosphorylation Regulates DnaA Initiator Protein Activity in Streptomyces coelicolor. J Bacteriol 2020; 202:JB.00597-19. [PMID: 31712280 DOI: 10.1128/jb.00597-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
In all organisms, chromosome replication is regulated mainly at the initiation step. Most of the knowledge about the mechanisms that regulate replication initiation in bacteria has come from studies on rod-shaped bacteria, such as Escherichia coli and Bacillus subtilis Streptomyces is a bacterial genus that is characterized by distinctive features and a complex life cycle that shares some properties with the developmental cycle of filamentous fungi. The unusual lifestyle of streptomycetes suggests that these bacteria use various mechanisms to control key cellular processes. Here, we provide the first insights into the phosphorylation of the bacterial replication initiator protein, DnaA, from Streptomyces coelicolor We suggest that phosphorylation of DnaA triggers a conformational change that increases its ATPase activity and decreases its affinity for the replication origin, thereby blocking the formation of a functional orisome. We suggest that the phosphorylation of DnaA is catalyzed by Ser/Thr kinase AfsK, which was shown to regulate the polar growth of S. coelicolor Together, our results reveal that phosphorylation of the DnaA initiator protein functions as a negative regulatory mechanism to control the initiation of chromosome replication in a manner that presumably depends on the cellular localization of the protein.IMPORTANCE This work provides insights into the phosphorylation of the DnaA initiator protein in Streptomyces coelicolor and suggests a novel bacterial regulatory mechanism for initiation of chromosome replication. Although phosphorylation of DnaA has been reported earlier, its biological role was unknown. This work shows that upon phosphorylation, the cooperative binding of the replication origin by DnaA may be disturbed. We found that AfsK kinase is responsible for phosphorylation of DnaA. Upon upregulation of AfsK, chromosome replication occurred further from the hyphal tip. Orthologs of AfsK are exclusively found in mycelial actinomycetes that are related to Streptomyces and exhibit a complex life cycle. We propose that the AfsK-mediated regulatory pathway serves as a nonessential, energy-saving mechanism in S. coelicolor.
Collapse
|
3
|
Płachetka M, Żyła-Uklejewicz D, Weigel C, Donczew R, Donczew M, Jakimowicz D, Zawilak-Pawlik A, Zakrzewska-Czerwinska J. Streptomycete origin of chromosomal replication with two putative unwinding elements. MICROBIOLOGY-SGM 2019; 165:1365-1375. [PMID: 31592764 DOI: 10.1099/mic.0.000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is controlled mostly at the initiation step. In bacteria, replication of the chromosome starts at a single origin of replication called oriC. The initiator protein, DnaA, binds to specific sequences (DnaA boxes) within oriC and assembles into a filament that promotes DNA double helix opening within the DNA unwinding element (DUE). This process has been thoroughly examined in model bacteria, including Escherichia coli and Bacillus subtilis, but we have a relatively limited understanding of chromosomal replication initiation in other species. Here, we reveal new details of DNA replication initiation in Streptomyces, a group of Gram-positive soil bacteria that possesses a long linear (8-10 Mbps) and GC-rich chromosome with a centrally positioned oriC. We used comprehensive in silico, in vitro and in vivo analyses to better characterize the structure of Streptomyces oriC. We identified 14 DnaA-binding motifs and determined the consensus sequence of the DnaA box. Unexpectedly, our in silico analysis using the WebSIDD algorithm revealed the presence of two putative Streptomyces DUEs (DUE1 and DUE2) located very near one another toward the 5' end of the oriC region. In vitro P1 nuclease assay revealed that DNA unwinding occurs at both of the proposed sites, but using an in vivo replication initiation point mapping, we were able to confirm only one of them (DUE2). The previously observed transcriptional activity of the Streptomyces oriC region may help explain the current results. We speculate that transcription itself could modulate oriC activity in Streptomyces by determining whether DNA unwinding occurs at DUE1 or DUE2.
Collapse
Affiliation(s)
- Małgorzata Płachetka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Dorota Żyła-Uklejewicz
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Christoph Weigel
- Institute of Biotechnology, Faculty III, Technical University Berlin (TUB), Berlin, Germany
| | - Rafał Donczew
- Present address: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Magdalena Donczew
- Present address: Center for Infectious Disease, Seattle, WA, USA.,Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
4
|
Li X, Zhang Y, Zhou X, Hu X, Zhou Y, Liu D, Maxwell A, Mi K. The plasmid-borne quinolone resistance protein QnrB, a novel DnaA-binding protein, increases the bacterial mutation rate by triggering DNA replication stress. Mol Microbiol 2019; 111:1529-1543. [PMID: 30838726 PMCID: PMC6617969 DOI: 10.1111/mmi.14235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 02/02/2023]
Abstract
Bacterial antibiotic resistance, a global health threat, is caused by plasmid transfer or genetic mutations. Quinolones are important antibiotics, partially because they are fully synthetic and resistance genes are unlikely to exist in nature; nonetheless, quinolone resistance proteins have been identified. The mechanism by which plasmid-borne quinolone resistance proteins promotes the selection of quinolone-resistant mutants is unclear. Here, we show that QnrB increases the bacterial mutation rate. Transcriptomic and genome sequencing analyses showed that QnrB promoted gene abundance near the origin of replication (oriC). In addition, the QnrB expression level correlated with the replication origin to terminus (oriC/ter) ratio, indicating QnrB-induced DNA replication stress. Our results also show that QnrB is a DnaA-binding protein that may act as an activator of DNA replication initiation. Interaction of QnrB with DnaA promoted the formation of the DnaA-oriC open complex, which leads to DNA replication over-initiation. Our data indicate that plasmid-borne QnrB increases bacterial mutation rates and that genetic changes can alleviate the fitness cost imposed by transmitted plasmids. Derivative mutations may impair antibiotic efficacy and threaten the value of antibiotic treatments. Enhanced understanding of how bacteria adapt to the antibiotic environment will lead to new therapeutic strategies for antibiotic-resistant infections.
Collapse
Affiliation(s)
- Xiaojing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujiao Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xintong Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinling Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yixuan Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
5
|
Jaworski P, Donczew R, Mielke T, Weigel C, Stingl K, Zawilak-Pawlik A. Structure and Function of the Campylobacter jejuni Chromosome Replication Origin. Front Microbiol 2018; 9:1533. [PMID: 30050516 PMCID: PMC6052347 DOI: 10.3389/fmicb.2018.01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 01/23/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of foodborne infections worldwide. However, our understanding of its cell cycle is poor. We identified the probable C. jejuni origin of replication (oriC) - a key element for initiation of chromosome replication, which is also important for chromosome structure, maintenance and dynamics. The herein characterized C. jejuni oriC is monopartite and contains (i) the DnaA box cluster, (ii) the DnaA-dependent DNA unwinding element (DUE) and (iii) binding sites for regulatory proteins. The cluster of five DnaA boxes and the DUE were found in the dnaA-dnaN intergenic region. Binding of DnaA to this cluster of DnaA-boxes enabled unwinding of the DUE in vitro. However, it was not sufficient to sustain replication of minichromosomes, unless the cluster was extended by additional DnaA boxes located in the 3' end of dnaA. This suggests, that C. jejuni oriC requires these boxes to initiate or to regulate replication of its chromosome. However, further detailed mutagenesis is required to confirm the role of these two boxes in initiation of C. jejuni chromosome replication and thus to confirm partial localization of C. jejuni oriC within a coding region, which has not been reported thus far for any bacterial oriC. In vitro DUE unwinding by DnaA was inhibited by Cj1509, an orphan response regulator and a homolog of HP1021, that has been previously shown to inhibit replication in Helicobacter pylori. Thus, Cj1509 might play a similar role as a regulator of C. jejuni chromosome replication. This is the first systematic analysis of chromosome replication initiation in C. jejuni, and we expect that these studies will provide a basis for future research examining the structure and dynamics of the C. jejuni chromosome, which will be crucial for understanding the pathogens' life cycle and virulence.
Collapse
Affiliation(s)
- Pawel Jaworski
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafal Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christoph Weigel
- Department of Life Science Engineering, Fachbereich 2, HTW Berlin, Berlin, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Makowski Ł, Donczew R, Weigel C, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Initiation of Chromosomal Replication in Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2016; 7:1898. [PMID: 27965633 PMCID: PMC5124646 DOI: 10.3389/fmicb.2016.01898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase) and replicating cells (the intracellular-growth phase). The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although, we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication - DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC) is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box [5'-NN(A/T)TCCACA-3']. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus). We compared the architecture of the DnaA-oriC complexes (orisomes) in homologous (oriC and DnaA from B. bacteriovorus) and heterologous (BdoriC and DnaA from prey, Escherichia coli or Pseudomonas aeruginosa) systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.
Collapse
Affiliation(s)
- Łukasz Makowski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | | | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of WrocławWrocław, Poland
| |
Collapse
|
7
|
Jaworski P, Donczew R, Mielke T, Thiel M, Oldziej S, Weigel C, Zawilak-Pawlik A. Unique and Universal Features of Epsilonproteobacterial Origins of Chromosome Replication and DnaA-DnaA Box Interactions. Front Microbiol 2016; 7:1555. [PMID: 27746772 PMCID: PMC5043019 DOI: 10.3389/fmicb.2016.01555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
In bacteria, chromosome replication is initiated by the interaction of the initiator protein DnaA with a defined region of a chromosome at which DNA replication starts (oriC). While DnaA proteins share significant homology regardless of phylogeny, oriC regions exhibit more variable structures. The general architecture of oriCs is universal, i.e., they are composed of a cluster of DnaA binding sites, a DNA-unwinding element, and sequences that bind regulatory proteins. However, detailed structures of oriCs are shared by related species while being significantly different in unrelated bacteria. In this work, we characterized Epsilonproteobacterial oriC regions. Helicobacter pylori was the only species of the class for which oriC was characterized. A few unique features were found such as bipartite oriC structure, not encountered in any other Gram-negative species, and topology-sensitive DnaA-DNA interactions, which have not been found in any other bacterium. These unusual H. pylori oriC features raised questions of whether oriC structure and DnaA-DNA interactions are unique to this bacterium or whether they are common to related species. By in silico and in vitro analyses we identified putative oriCs in three Epsilonproteobacterial species: pathogenic Arcobacter butzleri, symbiotic Wolinella succinogenes, and free-living Sulfurimonas denitrificans. We propose that oriCs typically co-localize with ruvC-dnaA-dnaN in Epsilonproteobacteria, with the exception of Helicobacteriaceae species. The clusters of DnaA boxes localize upstream (oriC1) and downstream (oriC2) of dnaA, and they likely constitute bipartite origins. In all cases, DNA unwinding was shown to occur in oriC2. Unlike the DnaA box pattern, which is not conserved in Epsilonproteobacterial oriCs, the consensus DnaA box sequences and the mode of DnaA-DnaA box interactions are common to the class. We propose that the typical Epsilonproteobacterial DnaA box consists of the core nucleotide sequence 5′-TTCAC-3′ (4–8 nt), which, together with the significant changes in the DNA-binding motif of corresponding DnaAs, determines the unique molecular mechanism of DnaA-DNA interaction. Our results will facilitate identification of oriCs and subsequent identification of factors which regulate chromosome replication in other Epsilonproteobacteria. Since replication is controlled at the initiation step, it will help to better characterize life cycles of these species, many of which are considered as emerging pathogens.
Collapse
Affiliation(s)
- Pawel Jaworski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Rafal Donczew
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | | | - Marcel Thiel
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk Gdańsk, Poland
| | - Stanislaw Oldziej
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk Gdańsk, Poland
| | - Christoph Weigel
- Department of Life Science Engineering, Fachbereich 2, HTW Berlin Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
8
|
Grudniak AM, Markowska K, Wolska KI. Interactions of Escherichia coli molecular chaperone HtpG with DnaA replication initiator DNA. Cell Stress Chaperones 2015; 20:951-7. [PMID: 26246199 PMCID: PMC4595432 DOI: 10.1007/s12192-015-0623-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/24/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
The bacterial chaperone high-temperature protein G (HtpG), a member of the Hsp90 protein family, is involved in the protection of cells against a variety of environmental stresses. The ability of HtpG to form complexes with other bacterial proteins, especially those involved in fundamental functions, is indicative of its cellular role. An interaction between HtpG and DnaA, the main initiator of DNA replication, was studied both in vivo, using a bacterial two-hybrid system, and in vitro with a modified pull-down assay and by chemical cross-linking. In vivo, this interaction was demonstrated only when htpG was expressed from a high copy number plasmid. Both in vitro assays confirmed HtpG-DnaA interactions.
Collapse
Affiliation(s)
- Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Katarzyna Markowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Krystyna I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
9
|
Wang X, Li X, Deng X, Han H, Shi W, Li Y. A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis 2008; 28:3976-87. [PMID: 17960840 DOI: 10.1002/elps.200600805] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein extraction from plants like the halophyte Salicornia europaea has been problematic using standard protocols due to high concentrations of salt ions in their cells. We have developed an improved method for protein extraction from S. europaea, which allowed us to remove interfering compounds and salt ions by including the chemicals borax, polyvinylpolypyrrolidone, and phenol. The comparative study of this method with several other protocols using NaCl-treated S. europaea shoots demonstrated that this method gave the best distinction of proteins on 2-DE gels. This protocol had a wide range of applications as high yields and good distinction of 1-DE gels for proteins isolated from twelve other plants were rendered. In addition, we reported results of 2-DE using the recalcitrant tissue of the S. europaea roots. We also demonstrated that this protocol is compatible with proteomic analysis as eight specific proteins generated by this method have been identified by MS. In conclusion, our newly developed protein extraction protocol is expected to have excellent applications in proteomic studies of halophytes.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Natrajan G, Hall DR, Thompson AC, Gutsche I, Terradot L. Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli. Mol Microbiol 2007; 65:995-1005. [PMID: 17683397 DOI: 10.1111/j.1365-2958.2007.05843.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In prokaryotes, DNA replication is initiated by the binding of DnaA to the oriC region of the chromosome to load the primosome machinery and start a new replication round. Several proteins control these events in Escherichia coli to ensure that replication is precisely timed during the cell cycle. Here, we report the crystal structure of HobA (HP1230) at 1.7 A, a recently discovered protein that specifically interacts with DnaA protein from Helicobacter pylori (HpDnaA). We found that the closest structural homologue of HobA is a sugar isomerase (SIS) domain containing protein, the phosphoheptose isomerase from Pseudomonas aeruginosa. Remarkably, SIS proteins share strong sequence homology with DiaA from E. coli; yet, HobA and DiaA share no sequence homology. Thus, by solving the structure of HobA, we unexpectedly discovered that HobA is a H. pylori structural homologue of DiaA. By comparing the structure of HobA to a homology model of DiaA, we identified conserved, surface-accessible residues that could be involved in protein-protein interaction. Finally, we show that HobA specifically interacts with the N-terminal part of HpDnaA. The structural homology between DiaA and HobA strongly supports their involvement in the replication process and these proteins could define a new structural family of replication regulators in bacteria.
Collapse
Affiliation(s)
- Ganesh Natrajan
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, B.P. 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Zawilak-Pawlik A, Kois A, Stingl K, Boneca IG, Skrobuk P, Piotr J, Lurz R, Zakrzewska-Czerwińska J, Labigne A. HobA ? a novel protein involved in initiation of chromosomal replication in Helicobacter pylori. Mol Microbiol 2007; 65:979-94. [PMID: 17645450 DOI: 10.1111/j.1365-2958.2007.05853.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Replication of the bacterial chromosome is initiated by the binding of the DnaA protein to a unique DNA region, called oriC. Many regulatory factors in numerous species act by controlling the ability of DnaA to bind and unwind DNA, but the Helicobacter pylori genome does not contain homologues to any of these factors. Here, we describe HobA, a novel protein essential for initiation of H. pylori chromosome replication, which is conserved among, and unique to, epsilon proteobacteria. We demonstrate that HobA interacts specifically via DnaA with the oriC-DnaA complex. We postulate that HobA is essential for correct formation and stabilization of the orisome by facilitating the spatial positioning of DnaA at oriC. Consistent with its function, overexpression of hobA had no effect on growth of H. pylori, whereas depletion of HobA led to growth arrest and failure to initiate replication. In conclusion, HobA may be the first identified of a new group of initiation factors common to epsilon proteobacteria.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Institut Pasteur, Unité de Pathogénie Bactérienne des Muqueuses, 75724-Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|