1
|
Sunitha Kumary VUN, Venters BJ, Raman K, Sen S, Estève PO, Cowles MW, Keogh MC, Pradhan S. Emerging Approaches to Profile Accessible Chromatin from Formalin-Fixed Paraffin-Embedded Sections. EPIGENOMES 2024; 8:20. [PMID: 38804369 PMCID: PMC11130958 DOI: 10.3390/epigenomes8020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Nucleosomes are non-uniformly distributed across eukaryotic genomes, with stretches of 'open' chromatin strongly associated with transcriptionally active promoters and enhancers. Understanding chromatin accessibility patterns in normal tissue and how they are altered in pathologies can provide critical insights to development and disease. With the advent of high-throughput sequencing, a variety of strategies have been devised to identify open regions across the genome, including DNase-seq, MNase-seq, FAIRE-seq, ATAC-seq, and NicE-seq. However, the broad application of such methods to FFPE (formalin-fixed paraffin-embedded) tissues has been curtailed by the major technical challenges imposed by highly fixed and often damaged genomic material. Here, we review the most common approaches for mapping open chromatin regions, recent optimizations to overcome the challenges of working with FFPE tissue, and a brief overview of a typical data pipeline with analysis considerations.
Collapse
Affiliation(s)
| | - Bryan J. Venters
- EpiCypher Inc., Durham, NC 27709, USA; (V.U.N.S.K.); (B.J.V.); (M.W.C.)
| | - Karthikeyan Raman
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| | - Sagnik Sen
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| | - Pierre-Olivier Estève
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| | - Martis W. Cowles
- EpiCypher Inc., Durham, NC 27709, USA; (V.U.N.S.K.); (B.J.V.); (M.W.C.)
| | | | - Sriharsa Pradhan
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| |
Collapse
|
2
|
Truchon AR, Chase EE, Gann ER, Moniruzzaman M, Creasey BA, Aylward FO, Xiao C, Gobler CJ, Wilhelm SW. Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research. Front Microbiol 2023; 14:1284617. [PMID: 38098665 PMCID: PMC10720644 DOI: 10.3389/fmicb.2023.1284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
3
|
Cao S, Tang X, Chen T, Chen G. Types and Applications of Nicking Enzyme-Combined Isothermal Amplification. Int J Mol Sci 2022; 23:ijms23094620. [PMID: 35563012 PMCID: PMC9100243 DOI: 10.3390/ijms23094620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the sudden outbreak of COVID-19 at the end of 2019, rapid detection has become an urgent need for community clinics and hospitals. The rapid development of isothermal amplification detection technology for nucleic acids in the field of molecular diagnostic point-of-care testing (POCT) has gained a great deal of attention in recent years. Thanks to intensive research on nicking enzymes, nicking enzyme-combined isothermal amplification has become a promising platform for rapid detection. This is a novel technique that uses nicking enzymes to improve ordinary isothermal amplification. It has garnered significant interest as it overcomes the complexity of traditional molecular diagnostics and is not subject to temperature limitations, relying on cleavage enzymes to efficiently amplify targets in a very short time to provide a high level of amplification efficiency. In recent years, several types of nicking enzyme-combined isothermal amplification have been developed and they have shown great potential in molecular diagnosis, immunodiagnosis, biochemical identification, and other fields. However, this kind of amplification has some disadvantages. In this review, the principles, advantages and disadvantages, and applications of several nicking enzyme-combined isothermal amplification techniques are reviewed and the prospects for the development of these techniques are also considered.
Collapse
Affiliation(s)
- Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Correspondence: (T.C.); (G.C.)
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.C.); (G.C.)
| |
Collapse
|
4
|
Xu SY. Engineering Infrequent DNA Nicking Endonuclease by Fusion of a BamHI Cleavage-Deficient Mutant and a DNA Nicking Domain. Front Microbiol 2022; 12:787073. [PMID: 35178039 PMCID: PMC8845596 DOI: 10.3389/fmicb.2021.787073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Strand-specific DNA nicking endonucleases (NEases) typically nick 3–7 bp sites. Our goal is to engineer infrequent NEase with a >8 bp recognition sequence. A BamHI catalytic-deficient mutant D94N/E113K was constructed, purified, and shown to bind and protect the GGATCC site from BamHI restriction. The mutant was fused to a 76-amino acid (aa) DNA nicking domain of phage Gamma HNH (gHNH) NEase. The chimeric enzyme was purified, and it was shown to nick downstream of a composite site 5′ GGATCC-N(4-6)-AC↑CGR 3′ (R, A, or G) or to nick both sides of BamHI site at the composite site 5′ CCG↓GT-N5-GGATCC-N5-AC↑CGG 3′ (the down arrow ↓ indicates the strand shown is nicked; the up arrow↑indicates the bottom strand is nicked). Due to the attenuated activity of the small nicking domain, the fusion nickase is active in the presence of Mn2+ or Ni2+, and it has low activity in Mg2+ buffer. This work provided a proof-of-concept experiment in which a chimeric NEase could be engineered utilizing the binding specificity of a Type II restriction endonucleases (REases) in fusion with a nicking domain to generate infrequent nickase, which bridges the gap between natural REases and homing endonucleases. The engineered chimeric NEase provided a framework for further optimization in molecular diagnostic applications.
Collapse
|
5
|
Functional genomic analyses reveal an open pan-genome for the chloroviruses and a potential for genetic innovation in new isolates. J Virol 2021; 96:e0136721. [PMID: 34669449 DOI: 10.1128/jvi.01367-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroviruses (family Phycodnaviridae) are large dsDNA viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. 368, 268 and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the "dark pan-genome" of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportion of functionally characterized COGs composing the pan- and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core-genome. Bipartite network construction evidencing the COG-sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core-genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. Importance Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae, referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates.
Collapse
|
6
|
Structure-Based Deep Mining Reveals First-Time Annotations for 46 Percent of the Dark Annotation Space of the 9,671-Member Superproteome of the Nucleocytoplasmic Large DNA Viruses. J Virol 2020; 94:JVI.00854-20. [PMID: 32999026 DOI: 10.1128/jvi.00854-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
We conducted an exhaustive search for three-dimensional structural homologs to the proteins of 20 key phylogenetically distinct nucleocytoplasmic DNA viruses (NCLDV). Structural matches covered 429 known protein domain superfamilies, with the most highly represented being ankyrin repeat, P-loop NTPase, F-box, protein kinase, and membrane occupation and recognition nexus (MORN) repeat. Domain superfamily diversity correlated with genome size, but a diversity of around 200 superfamilies appeared to correlate with an abrupt switch to paralogization. Extensive structural homology was found across the range of eukaryotic RNA polymerase II subunits and their associated basal transcription factors, with the coordinated gain and loss of clusters of subunits on a virus-by-virus basis. The total number of predicted endonucleases across the 20 NCLDV was nearly quadrupled from 36 to 132, covering much of the structural and functional diversity of endonucleases throughout the biosphere in DNA restriction, repair, and homing. Unexpected findings included capsid protein-transcription factor chimeras; endonuclease chimeras; enzymes for detoxification; antimicrobial peptides and toxin-antitoxin systems associated with symbiosis, immunity, and addiction; and novel proteins for membrane abscission and protein turnover.IMPORTANCE We extended the known annotation space for the NCLDV by 46%, revealing high-probability structural matches for fully 45% of the 9,671 query proteins and confirming up to 98% of existing annotations per virus. The most prevalent protein families included ankyrin repeat- and MORN repeat-containing proteins, many of which included an F-box, suggesting extensive host cell modulation among the NCLDV. Regression suggested a minimum requirement for around 36 protein structural superfamilies for a viable NCLDV, and beyond around 200 superfamilies, genome expansion by the acquisition of new functions was abruptly replaced by paralogization. We found homologs to herpesvirus surface glycoprotein gB in cytoplasmic viruses. This study provided the first prediction of an endonuclease in 10 of the 20 viruses examined; the first report in a virus of a phenolic acid decarboxylase, proteasomal subunit, or cysteine knot (defensin) protein; and the first report of a prokaryotic-type ribosomal protein in a eukaryotic virus.
Collapse
|
7
|
Coy SR, Gann ER, Papoulis SE, Holder ME, Ajami NJ, Petrosino JF, Zinser ER, Van Etten JL, Wilhelm SW. SMRT Sequencing of Paramecium Bursaria Chlorella Virus-1 Reveals Diverse Methylation Stability in Adenines Targeted by Restriction Modification Systems. Front Microbiol 2020; 11:887. [PMID: 32508769 PMCID: PMC7248222 DOI: 10.3389/fmicb.2020.00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Chloroviruses (family Phycodnaviridae) infect eukaryotic, freshwater, unicellular green algae. A unique feature of these viruses is an abundance of DNA methyltransferases, with isolates dedicating up to 4.5% of their protein coding potential to these genes. This diversity highlights just one of the long-standing values of the chlorovirus model system; where group-wide epigenomic characterization might begin to elucidate the function(s) of DNA methylation in large dsDNA viruses. We characterized DNA modifications in the prototype chlorovirus, PBCV-1, using single-molecule real time (SMRT) sequencing (aka PacBio). Results were compared to total available sites predicted in silico based on DNA sequence alone. SMRT-software detected N6-methyl-adenine (m6A) at GATC and CATG recognition sites, motifs previously shown to be targeted by PBCV-1 DNA methyltransferases M.CviAI and M. CviAII, respectively. At the same time, PacBio analyses indicated that 10.9% of the PBCV-1 genome had large interpulse duration ratio (ipdRatio) values, the primary metric for DNA modification identification. These events represent 20.6x more sites than can be accounted for by all available adenines in GATC and CATG motifs, suggesting base or backbone modifications other than methylation might be present. To define methylation stability, we cross-compared methylation status of each GATC and CATG sequence in three biological replicates and found ∼81% of sites were stably methylated, while ∼2% consistently lack methylation. The remaining 17% of sites were stochastically methylated. When methylation status was analyzed for both strands of each target, we show that palindromes existed in completely non-methylated states, fully-methylated states, or hemi-methylated states, though GATC sites more often lack methylation than CATG sequences. Given that both sequences are targeted by not just methyltransferases, but by restriction endonucleases that are together encoded by PBCV-1 as virus-originating restriction modification (RM) systems, there is strong selective pressure to modify all target sites. The finding that most instances of non-methylation are associated with hemi-methylation is congruent with observations that hemi-methylated palindromes are resistant to cleavage by restriction endonucleases. However, sites where hemi-methylation is conserved might represent a unique regulatory function for PBCV-1. This study serves as a baseline for future investigation into the epigenomics of chloroviruses and their giant virus relatives.
Collapse
Affiliation(s)
- Samantha R. Coy
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- BioSciences at Rice, Rice University, Houston, TX, United States
| | - Eric R. Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Spiridon E. Papoulis
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Michael E. Holder
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
| | - Erik R. Zinser
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - James L. Van Etten
- Department of Plant Pathology and the Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
8
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
9
|
Abrosimova LA, Kisil OV, Romanova EA, Oretskaya TS, Kubareva EA. Nicking Endonucleases as Unique Tools for Biotechnology and Gene Engineering. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Gupta R, Capalash N, Sharma P. Restriction endonucleases: natural and directed evolution. Appl Microbiol Biotechnol 2012; 94:583-99. [PMID: 22398859 DOI: 10.1007/s00253-012-3961-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Type II restriction endonucleases (REs) are highly sequence-specific compared with other classes of nucleases. PD-(D/E)XK nucleases, initially represented by only type II REs, now comprise a large and extremely diverse superfamily of proteins and, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. Sequence similarity can only be observed in methylases and few isoschizomers. As a consequence, REs are classified according to combinations of functional properties rather than on the basis of genetic relatedness. New alignment matrices and classification systems based on structural core connectivity and cleavage mechanisms have been developed to characterize new REs and related proteins. REs recognizing more than 300 distinct specificities have been identified in RE database (REBASE: http://rebase.neb.com/cgi-bin/statlist ) but still the need for newer specificities is increasing due to the advancement in molecular biology and applications. The enzymes have undergone constant evolution through structural changes in protein scaffolds which include random mutations, homologous recombinations, insertions, and deletions of coding DNA sequences but rational mutagenesis or directed evolution delivers protein variants with new functions in accordance with defined biochemical or environmental pressures. Redesigning through random mutation, addition or deletion of amino acids, methylation-based selection, synthetic molecules, combining recognition and cleavage domains from different enzymes, or combination with domains of additional functions change the cleavage specificity or substrate preference and stability. There is a growing number of patents awarded for the creation of engineered REs with new and enhanced properties.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Biotechnology, Panjab University, Chandigarh, India 160014
| | | | | |
Collapse
|
11
|
Van Etten JL, Dunigan DD. Chloroviruses: not your everyday plant virus. TRENDS IN PLANT SCIENCE 2012; 17:1-8. [PMID: 22100667 PMCID: PMC3259250 DOI: 10.1016/j.tplants.2011.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/20/2011] [Accepted: 10/25/2011] [Indexed: 05/29/2023]
Abstract
Viruses infecting higher plants are among the smallest viruses known and typically have four to ten protein-encoding genes. By contrast, many viruses that infect algae (classified in the virus family Phycodnaviridae) are among the largest viruses found to date and have up to 600 protein-encoding genes. This brief review focuses on one group of plaque-forming phycodnaviruses that infect unicellular chlorella-like green algae. The prototype chlorovirus PBCV-1 has more than 400 protein-encoding genes and 11 tRNA genes. About 40% of the PBCV-1 encoded proteins resemble proteins of known function including many that are completely unexpected for a virus. In many respects, chlorovirus infection resembles bacterial infection by tailed bacteriophages.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| | | |
Collapse
|
12
|
Drozdz M, Piekarowicz A, Bujnicki JM, Radlinska M. Novel non-specific DNA adenine methyltransferases. Nucleic Acids Res 2011; 40:2119-30. [PMID: 22102579 PMCID: PMC3299994 DOI: 10.1093/nar/gkr1039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.
Collapse
Affiliation(s)
- Marek Drozdz
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | |
Collapse
|
13
|
Joneja A, Huang X. Linear nicking endonuclease-mediated strand-displacement DNA amplification. Anal Biochem 2011; 414:58-69. [PMID: 21342654 DOI: 10.1016/j.ab.2011.02.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/30/2022]
Abstract
We describe a method for linear isothermal DNA amplification using nicking endonuclease-mediated strand displacement by a DNA polymerase. The nicking of one strand of a DNA target by the endonuclease produces a primer for the polymerase to initiate synthesis. As the polymerization proceeds, the downstream strand is displaced into a single-stranded form while the nicking site is also regenerated. The combined continuous repetitive action of nicking by the endonuclease and strand-displacement synthesis by the polymerase results in linear amplification of one strand of the DNA molecule. We demonstrate that DNA templates up to 5000 nucleotides can be linearly amplified using a nicking endonuclease with 7-bp recognition sequence and Sequenase version 2.0 in the presence of single-stranded DNA binding proteins. We also show that a mixture of three templates of 500, 1000, and 5000 nucleotides in length is linearly amplified with the original molar ratios of the templates preserved. Moreover, we demonstrate that a complex library of hydrodynamically sheared genomic DNA from bacteriophage lambda can be amplified linearly.
Collapse
Affiliation(s)
- Aric Joneja
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
14
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
15
|
Wilson WH, Van Etten JL, Allen MJ. The Phycodnaviridae: the story of how tiny giants rule the world. Curr Top Microbiol Immunol 2009; 328:1-42. [PMID: 19216434 DOI: 10.1007/978-3-540-68618-7_1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- W H Wilson
- Bigelow Laboratory for Ocean Sciences, 180 McKown Point, P.O. Box 475, West Boothbay Harbor, ME 04575-0475, USA.
| | | | | |
Collapse
|
16
|
Xu SY, Zhu Z, Zhang P, Chan SH, Samuelson JC, Xiao J, Ingalls D, Wilson GG. Discovery of natural nicking endonucleases Nb.BsrDI and Nb.BtsI and engineering of top-strand nicking variants from BsrDI and BtsI. Nucleic Acids Res 2007; 35:4608-18. [PMID: 17586812 PMCID: PMC1950550 DOI: 10.1093/nar/gkm481] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 05/30/2007] [Accepted: 06/01/2007] [Indexed: 11/13/2022] Open
Abstract
BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit) and one small subunit (A subunit); and, in the absence of their small subunits, the large subunits behave as sequence-specific DNA nicking enzymes and only nick the bottom strand of the sequences at these respective positions: GCAATG (-/0) and GCAGTG (-/0). We refer to the single subunit, the bottom-strand nicking forms as 'hemidimers'. Amino acid sequence comparisons reveal that BsrDI and BtsI belong to a family of restriction enzymes that possess two catalytic sites: a canonical PD-X(n)-EXK and a second non-canonical PD-X(n)-E-X12-QR. Interestingly, the other family members, which include BsrI (ACTGG 1/-1) and BsmI/Mva1269I (GAATGC 1/-1) are single polypeptide chains, i.e. monomers, rather than heterodimers. In BsrDI and BtsI, the two catalytic sites are found in two separate subunits. Site-directed mutagenesis confirmed that the canonical catalytic site located at the N-terminus of the large subunit is responsible for the bottom-strand cleavage, whereas the non-canonical catalytic site located in the small subunit is responsible for hydrolysis of the top strand. Top-strand specific nicking variants, Nt.BsrDI and Nt.BtsI, were successfully engineered by combining the catalytic-deficient B subunit with wild-type A subunit.
Collapse
Affiliation(s)
- Shuang-Yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Nierman WC, Van Etten JL. Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A. Virology 2006; 358:472-84. [PMID: 17027058 PMCID: PMC1904511 DOI: 10.1016/j.virol.2006.08.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/17/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Viruses NY-2A and AR158, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella NC64A. The 368,683-bp genome of NY-2A and the 344,690-bp genome of AR158 are the two largest chlorella virus genomes sequenced to date; NY-2A contains 404 putative protein-encoding and 7 tRNA-encoding genes and AR158 contains 360 putative protein-encoding and 6 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Two of the NY-2A genes encode inteins, the large subunit of ribonucleotide reductase and a superfamily II helicase. These are the first inteins to be detected in the chlorella viruses. Approximately 40% of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. These include GDP-d-mannose dehydratase, fucose synthase, aspartate transcarbamylase, Ca(++) transporting ATPase and ubiquitin. Comparison of NY-2A and AR158 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that 85% of the genes are present in all three viruses.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Deparment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Michael V. Graves
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Xiao Li
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
| | - William C. Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, Washington, DC 20037
| | - James L. Van Etten
- Deparment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722 and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588-0666
- *Corresponding author. Mailing address: Department of Plant Pathology, University of Nebraska-Lincoln, NE 68383-0722. Phone: (402) 472-3168. Fax: (402) 472-2853. E-mail:
| |
Collapse
|
18
|
Agarkova IV, Dunigan DD, Van Etten JL. Virion-associated restriction endonucleases of chloroviruses. J Virol 2006; 80:8114-23. [PMID: 16873267 PMCID: PMC1563800 DOI: 10.1128/jvi.00486-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/26/2006] [Indexed: 11/20/2022] Open
Abstract
Chloroviruses are large, double-stranded-DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae. The prototype of the genus is Paramecium bursaria chlorella virus 1 (PBCV-1). Chlorovirus genomes contain various amounts of methylated nucleotides due to virus-encoded DNA methyltransferases (MTases); about 25% of the MTases are associated with companion DNA site-specific (restriction) endonucleases (REases). These enzymes constitute virally encoded restriction-modification (R/M) systems. Although several of the chlorovirus R/M systems are characterized, their biological functions are unknown. The PBCV-1 proteome reveals that two virus-encoded REases, but not their companion MTases, are virion associated, suggesting that viral REases might help degrade the host DNA early in infection. To test this hypothesis, host chromosomal DNA from PBCV-1-infected cells was examined by pulsed-field gel electrophoresis. Initiation of host chromosomal DNA degradation occurred within 5 min postinfection (p.i.). The DNA degradation was insensitive to protein synthesis inhibitors or UV inactivation of virus particles, consistent with the agent being a small protein associated with the virion. Nuclease activities, including those of the two predicted REases and an uncharacterized general nuclease(s), were detected in disrupted PBCV-1 particles. The general nuclease(s) degraded both host and viral DNAs in vitro, although the viral DNA was not degraded in vivo, suggesting differential intracellular trafficking of the virion-associated nucleases. Infection with chloroviruses lacking an R/M system(s) resulted in either delayed host chromosomal DNA degradation or no detectable host chromatin changes. These immediate-early events associated with chlorovirus infections may facilitate rapid switching of the host transcriptional apparatus to viral transcription, which begins within 5 to 10 min p.i.
Collapse
Affiliation(s)
- Irina V Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0722, USA
| | | | | |
Collapse
|