1
|
Suzuki MF, Almeida LA, Pomin SA, Silva FD, Freire RP, Oliveira JE, Affonso R, Soares CRJ, Bartolini P. Periplasmic synthesis and purification of the human prolactin antagonist Δ 1-11-G129R-hPRL. AMB Express 2021; 11:62. [PMID: 33905023 PMCID: PMC8079533 DOI: 10.1186/s13568-021-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
The human prolactin antagonist Δ1-11-G129R-hPRL is a 21.9 kDa recombinant protein with 188 amino acids that downregulates the proliferation of a variety of cells expressing prolactin receptors. Periplasmic expression of recombinant proteins in E. coli has been considered an option for obtaining a soluble and correctly folded protein, as an alternative to cytoplasmic production. The aim of this work was, therefore, to synthesize for the first time, the Δ1-11-G129R-hPRL antagonist, testing different activation temperatures and purifying it by classical chromatographic techniques. E. coli BL21(DE3) strain was transformed with a plasmid based on the pET25b( +) vector, DsbA signal sequence and the antagonist cDNA sequence. Different doses of IPTG were added, activating under different temperatures, and extracting the periplasmic fluid via osmotic shock. The best conditions were achieved by activating at 35 °C for 5 h using 0.4 mM IPTG, which gave a specific expression of 0.157 ± 0.015 μg/mL/A600 at a final optical density of 3.43 ± 0.13 A600. Purification was carried out by nickel-affinity chromatography followed by size-exclusion chromatography, quantification being performed via high-performance size-exclusion chromatography (HPSEC). The prolactin antagonist was characterized by SDS-PAGE, Western blotting, reversed-phase high-performance liquid chromatography (RP-HPLC) and MALDI-TOF–MS. The final product presented > 95% purity and its antagonistic effects were evaluated in vitro in view of potential clinical applications, including inhibition of the proliferation of cancer cells overexpressing the prolactin receptor and specific antidiabetic properties, taking also advantage of the fact that this antagonist was obtained in a soluble and correctly folded form and without an initial methionine.
Collapse
|
2
|
Silva FD, Oliveira JE, Freire RP, Suzuki MF, Soares CR, Bartolini P. Expression of glycosylated human prolactin in HEK293 cells and related N-glycan composition analysis. AMB Express 2019; 9:135. [PMID: 31468229 PMCID: PMC6715758 DOI: 10.1186/s13568-019-0856-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/12/2019] [Indexed: 11/11/2022] Open
Abstract
Prolactin (PRL) is a hormone produced by the pituitary gland with innumerable functions, such as lactation, reproduction, osmotic and immune regulation. The present work describes the synthesis of hPRL in human embryonic kidney (HEK293) cells, transiently transfected with the pcDNA-3.4-TOPO® vector carrying the hPRL cDNA. A concentration of ~ 20 mg/L, including glycosylated (G-hPRL) and non-glycosylated (NG-hPRL) human prolactin, was obtained, with ~ 19% of G-hPRL, which is higher than that observed in CHO-derived hPRL (~ 10%) and falling within the wide range of 5–30% reported for pituitary-derived hPRL. N-Glycoprofiling analysis of G-hPRL provided: (i) identification of each N-glycan structure and relative intensity; (ii) average N-glycan mass; (iii) molecular mass of the whole glycoprotein and relative carbohydrate mass fraction; (iv) mass fraction of each monosaccharide. The data obtained were compared to pituitary- and CHO-derived G-hPRL. The whole MM of HEK-derived G-hPRL, determined via MALDI–TOF-MS, was 25,123 Da, which is 0.88% higher than pit- and 0.61% higher than CHO-derived G-hPRL. The main difference with the latter was due to sialylation, which was ~ sevenfold lower, but slightly higher than that observed in native G-hPRL. The “in vitro” bioactivity of HEK-G-hPRL was ~ fourfold lower than that of native G-hPRL, with which it had in common also the number of N-glycan structures.
Collapse
|
3
|
Furigo IC, Suzuki MF, Oliveira JE, Ramos-Lobo AM, Teixeira PDS, Pedroso JA, de Alencar A, Zampieri TT, Buonfiglio DC, Quaresma PGF, Prada PO, Bartolini P, Soares CRJ, Donato J. Suppression of Prolactin Secretion Partially Explains the Antidiabetic Effect of Bromocriptine in ob/ob Mice. Endocrinology 2019; 160:193-204. [PMID: 30462197 DOI: 10.1210/en.2018-00629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that bromocriptine mesylate (Bromo) lowers blood glucose levels in adults with type 2 diabetes mellitus; however, the mechanism of action of the antidiabetic effects of Bromo is unclear. As a dopamine receptor agonist, Bromo can alter brain dopamine activity affecting glucose control, but it also suppresses prolactin (Prl) secretion, and Prl levels modulate glucose homeostasis. Thus, the objective of the current study was to investigate whether Bromo improves insulin sensitivity via inhibition of Prl secretion. Male and female ob/ob animals (a mouse model of obesity and insulin resistance) were treated with Bromo and/or Prl. Bromo-treated ob/ob mice exhibited lower serum Prl concentration, improved glucose and insulin tolerance, and increased insulin sensitivity in the liver and skeletal muscle compared with vehicle-treated mice. Prl replacement in Bromo-treated mice normalized serum Prl concentration without inducing hyperprolactinemia. Importantly, Prl replacement partially reversed the improvements in glucose homeostasis caused by Bromo treatment. The effects of the Prl receptor antagonist G129R-hPrl on glucose homeostasis were also investigated. We found that central G129R-hPrl infusion increased insulin tolerance of male ob/ob mice. In summary, our findings indicate that part of Bromo effects on glucose homeostasis are associated with decrease in serum Prl levels. Because G129R-hPrl treatment also improved the insulin sensitivity of ob/ob mice, pharmacological compounds that inhibit Prl signaling may represent a promising therapeutic approach to control blood glucose levels in individuals with insulin resistance.
Collapse
Affiliation(s)
- Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Miriam F Suzuki
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João A Pedroso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda de Alencar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais T Zampieri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniella C Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula G F Quaresma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, SP, Brazil
| | - Patricia O Prada
- School of Applied Sciences, State University of Campinas, Limeira, São Paulo, SP, Brazil
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Menezes ACSC, Suzuki MF, Oliveira JE, Ribela MTCP, Furigo IC, Donato J, Bartolini P, Soares CRJ. Expression, purification and characterization of the authentic form of human growth hormone receptor antagonist G120R-hGH obtained in Escherichia coli periplasmic space. Protein Expr Purif 2016; 131:91-100. [PMID: 28013084 DOI: 10.1016/j.pep.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022]
Abstract
The human growth hormone receptor antagonist G120R-hGH precludes dimerization of GH and prolactin receptors and consequently JAK/STAT signaling. Some modifications in this antagonist resulted in a drug specific for the GH receptor, called Pegvisomant (Somavert®). However, the original G120R-hGH is usually synthesized in bacterial cytoplasm as inclusion bodies, not being a commercial product. The present work describes the synthesis and characterization of G120R-hGH secreted into bacterial periplasm and obtained with a vector based on a constitutive lambda-PL promoter. This antagonist can be useful for studies aiming at investigating the effects of a simultaneous inhibition of GH and prolactin signaling, as a potential anti-tumoral or anti-diabetic compound. G120R-hGH, synthesized using the W3110 E. coli strain, showed a yield of 1.34 ± 0.24 μg/ml/A600 (∼0.79 mg G120R-hGH/g of wet weight cells) after cultivation at 30 °C up to 3 A600 units and induction at 37 °C, for 6 h, with final 4.3 ± 0.3 A600. A laboratory scale purification was carried out using three chromatographic steps with a total yield of 32%, reaching 98% purity. The obtained protein was characterized by SDS-PAGE, Western Blotting, Mass spectrometry, RP-HPLC, HPSEC and in vitro proliferation bioassay. The proliferation assay, based on Ba/F3-LLP cells, shows that G120R-hGH (100 ng/ml) significantly inhibited (64%) the proliferative action of hGH (1 ng/ml). This is the first time that G120R-hGH is synthesized in bacterial periplasmic space and therefore correctly folded, without the initial methionine. The reasons for a divergent efficacy for antagonizing hGH versus hPRL is currently unknown and deserves further investigation.
Collapse
Affiliation(s)
- Ana C S C Menezes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Miriam F Suzuki
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Maria T C P Ribela
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil.
| |
Collapse
|
5
|
Capone MVN, Suzuki MF, Oliveira JE, Damiani R, Soares CRJ, Bartolini P. N-glycoprofiling analysis in a simple glycoprotein model: a comparison between recombinant and pituitary glycosylated human prolactin. J Biotechnol 2014; 202:78-87. [PMID: 25499076 DOI: 10.1016/j.jbiotec.2014.11.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022]
Abstract
Human prolactin (hPRL) is a polypeptide hormone occurring in the non-glycosylated (NG-hPRL) and glycosylated (G-hPRL) forms, with MM of approximately 23 and 25kDa, respectively. It has a single, partially occupied N-glycosylation site located at Asn-31, which makes it a particularly simple and interesting model for glycosylation studies. The bioactivity of G-hPRL is lower than that of NG-hPRL (by ca. 4-fold) and its physiological function is not clear. However, carbohydrate moieties generally play important roles in the biosynthesis, secretion, biological activity, and plasma survival of glycohormones and can vary depending on the host cell. The main objective of this study was to determine the N-glycan structures present in native, pituitary G-hPRL and compare them with those present in the recombinant hormone. To obtain recombinant G-hPRL, genetically modified Chinese hamster ovary cells (CHO), adapted to growth in suspension, were treated with cycloheximide, thus increasing the glycosylation site occupancy from 5.5% to 38.3%, thereby facilitating G-hPRL purification. CHO cell-derived G-hPRL (CHO-G-hPRL) was compared to pituitary G-hPRL (pit-G-hPRL) especially with regard to N-glycoprofiling. Among the main differences found in the pituitary sample were an extremely low presence of sialylated (1.7%) and a high percentage of sulfated (74.0%) and of fucosylated (90.5%) glycans. A ∼6-fold lower in vitro bioactivity and a higher clearance rate in mice were also found for pit-G-hPRL versus CHO-G-hPRL. N-Glycan profiling proved to be a useful and accurate methodology also for MM and carbohydrate content determination for the two G-hPRL preparations, in good agreement with the values obtained directly via MALDI-TOF-MS.
Collapse
Affiliation(s)
- Marcos V N Capone
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, 05508-000 São Paulo, Brazil
| | - Miriam F Suzuki
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, 05508-000 São Paulo, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, 05508-000 São Paulo, Brazil
| | - Renata Damiani
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, 05508-000 São Paulo, Brazil
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, 05508-000 São Paulo, Brazil.
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, 05508-000 São Paulo, Brazil
| |
Collapse
|
6
|
Arthuso FS, Bartolini P, Soares CRJ. Laboratory production of human prolactin from CHO cells adapted to serum-free suspension culture. Appl Biochem Biotechnol 2012; 167:2212-24. [PMID: 22692846 DOI: 10.1007/s12010-012-9745-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/14/2012] [Indexed: 12/28/2022]
Abstract
Human prolactin (hPRL) is a polypeptide with 199 amino acids and a molecular mass of 23 kDa. Previously, a eukaryotic hPRL expression vector was used to transfect Chinese hamster ovary (CHO) cells: this work describes a fast and practical laboratory adaptation of these transfected cells, in ~40 days, to grow in suspension in serum-free medium. High cell densities of up to 4.0 × 10(6) cell/ml were obtained from spinner flask cultures and a stable and continuous production process was developed for at least 30 days. Two harvesting strategies were set up, 50 or 100 % of the total conditioned medium being collected daily and replaced by fresh culture medium. The volumetric productivity was 5-7 μg hPRL/ml, as determined directly in the collected medium via reversed-phase HPLC (RP-HPLC). A two-step process based on a cationic exchanger followed by size exclusion chromatography was applied to obtain purified hPRL from conditioned medium. Two hPRL isoforms, non-glycosylated and glycosylated, could also be separated by high-performance size-exclusion chromatography (HPSEC) and, when analyzed by RP-HPLC, HPSEC, Western blotting, and bioassay, were found to be comparable to the World Health Organization International Reference Reagent of hPRL. These results are useful for the practical scale-up to the pilot and industrial scale of a bioprocess based on CHO cell culture.
Collapse
Affiliation(s)
- Fernanda Santos Arthuso
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitária, 05508-900 São Paulo, Brazil.
| | | | | |
Collapse
|
7
|
Suzuki MF, Arthuso FS, Oliveira JE, Oliveira NAJ, Goulart HR, Capone MVN, Ribela MTCP, Bartolini P, Soares CRJ. Expression, purification, and characterization of authentic mouse prolactin obtained in Escherichia coli periplasmic space. Biotechnol Appl Biochem 2012; 59:178-85. [DOI: 10.1002/bab.1008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/30/2012] [Indexed: 11/09/2022]
|
8
|
Enhancement of human prolactin synthesis by sodium butyrate addition to serum-free CHO cell culture. J Biomed Biotechnol 2010; 2010:405872. [PMID: 20625486 PMCID: PMC2896677 DOI: 10.1155/2010/405872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/09/2010] [Accepted: 04/01/2010] [Indexed: 11/17/2022] Open
Abstract
Sodium butyrate (NaBu) has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO) cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL) from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM). Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC) and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2) and mouse pro-B lymphoma (Ba/F3-LLP) cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714). Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.
Collapse
|
9
|
Heller SR, Rodrigues Goulart H, Arthuso FS, Oliveira TL, Bartolini P, Soares CRJ. Synthesis, purification and characterization of recombinant glycosylated human prolactin (G-hPRL) secreted by cycloheximide-treated CHO cells. J Biotechnol 2010; 145:334-40. [PMID: 20067810 DOI: 10.1016/j.jbiotec.2009.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/06/2009] [Accepted: 12/31/2009] [Indexed: 10/20/2022]
Abstract
Human prolactin (hPRL) is a 199 aminoacid protein hormone with a wide spectrum of biological activities which is best known for its stimulation of lactation and development of mammary gland. This protein contains only one potential asparagine-linked glycosylation site, which is partially (10-30%) occupied when the protein is synthesized in eukaryotic cells. Although the biological activity of glycosylated hPRL (G-hPRL) has been found to be approximately 4-fold lower than that of hPRL, its physiological function is not yet well defined. In order to better characterize and study this hormone variant, we carried out its laboratory scale purification from conditioned medium of genetically modified CHO cells that had been supplemented with cycloheximide. Addition of cycloheximide increased the absolute concentration of G-hPRL approximately 4-fold and the glycosylated versus non-glycosylated hPRL concentration ratio by approximately 7-fold. G-hPRL purification was carried out via a two-step process based on a cationic exchanger and a size-exclusion HPLC (HPSEC) column. Characterization was carried out by HPSEC, Western blotting, MALDI-TOF-MS and in vitro bioassay based on Nb2 and Ba/F3-LLP cells, the biological activity being of the same order (11-15 IU mg(-1)) in the two assays. Our results show that addition of cycloheximide can be an important strategy for increasing glycosylated protein production, facilitating the purification and characterization of these isoforms.
Collapse
Affiliation(s)
- S R Heller
- Biotechnology Department, IPEN-CNEN, Av. Lineu Prestes, 2242, Cidade Universitária, 05508-900 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Ueda EKM, Soares CRJ, Bartolini P, DeGuzman A, Lorenson MY, Walker AM. A molecular mimic of phosphorylated prolactin (S179D PRL) secreted by eukaryotic cells has a conformation with an increased positive surface charge compared to that of unmodified prolactin. Biochemistry 2009; 48:6887-97. [PMID: 19555049 DOI: 10.1021/bi9004864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S179D prolactin (S179D PRL) is a pseudophosphorylated form of human PRL which has potent antitumor and anti-angiogenic activities in vivo. This molecule binds to the same forms of the PRL receptor (PRLR) as unmodified PRL, yet this binding results in different intracellular signaling and biological end points. Since it is now clear that PRLRs are predimerized and therefore that ligand binding must initiate signaling by inducing a conformational change in the receptor dimer, we hypothesized that S179D PRL had an altered conformation compared to unmodified PRL. The conformation of the ligand-receptor ternary complex would therefore also have an altered conformation, and thus, different signaling molecules would be activated. Here we present evidence in support of this hypothesis by demonstrating, in contrast to unmodified PRL, that S179D PRL has reduced nickel and zinc binding capacity and a higher affinity for heparin and DEAE. Conformational changes have occurred since these features are counterintuitive on the basis of the simple substitution of a serine with a negatively charged aspartate residue. To demonstrate that these particular properties of S179D PRL were not due to misfolding of the molecule during production, S179D PRL was expressed in two different mammalian cell lines. Also investigated was the potential for production of S179D PRL as a soluble cytoplasmic, or secreted periplasmic, protein in Escherichia coli.
Collapse
Affiliation(s)
- Eric K M Ueda
- Biotechnology Department, IPEN-CNEN, Cidade Universitaria, São Paulo 05508-900, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Huang K, Ueda E, Chen Y, Walker AM. Paradigm-shifters: phosphorylated prolactin and short prolactin receptors. J Mammary Gland Biol Neoplasia 2008; 13:69-79. [PMID: 18219563 DOI: 10.1007/s10911-008-9072-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/04/2008] [Indexed: 11/28/2022] Open
Abstract
Since the discovery of physiologically-regulated prolactin (PRL) phosphorylation, one focus of the laboratory has been an examination of the different functions of the unmodified and phosphorylated hormone. In the mammary gland, unmodified PRL promotes growth activities, whereas phosphorylated or pseudophosphorylated PRL antagonizes this while also being a superior agonist for changes that favor differentiation. Phosphorylated PRL also increases expression of the short forms of the PRL receptor. These short forms of the receptor have functions beyond the accepted dominant negative and in mammary epithelial cells are capable of generating an intracellular signal leading to increased tight junction formation and beta-casein expression.
Collapse
Affiliation(s)
- KuangTzu Huang
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
12
|
Soares C, Ueda E, Oliveira T, Gomide F, Heller S, Bartolini P. Distinct human prolactin (hPRL) and growth hormone (hGH) behavior under bacteriophage lambda PL promoter control: Temperature plays a major role in protein yields. J Biotechnol 2008; 133:27-35. [DOI: 10.1016/j.jbiotec.2007.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 08/21/2007] [Accepted: 08/24/2007] [Indexed: 11/29/2022]
|
13
|
Abstract
The aims of this review are three-fold: first, to collate what is known about the production and activities of phosphorylated prolactin (PRL), the latter largely, but not exclusively, as illustrated through the use of the molecular mimic, S179D PRL; second, to apply this and related knowledge to produce an updated model of prolactin-receptor interactions that may apply to other members of this cytokine super-family; and third, to promote a shift in the current paradigm for the development of clinically important growth antagonists. This third aim explains the title since, based on results with S179D PRL, it is proposed that agents which signal to antagonistic ends may be better therapeutics than pure antagonists-hence antagonistic agony. Since S179D PRL is not a pure antagonist, we have proposed the term selective prolactin receptor modulator (SPeRM) for this and like molecules.
Collapse
Affiliation(s)
- Ameae M Walker
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|