1
|
Wang J, Liu Y, Guo X, Dong B, Cao Y. High-level expression of lipase from Galactomyces geotrichum mafic-0601 by codon optimization in Pichia pastoris and its application in hydrolysis of various oils. 3 Biotech 2019; 9:354. [PMID: 31501755 DOI: 10.1007/s13205-019-1891-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022] Open
Abstract
A Galactomyces geotrichum strain with lipolytic activity was isolated and identified by the analysis of internal transcribed spacer (ITS) sequence of 18 s rDNA. Full-length lipase gene of this stain is composed of 1692 base pairs (bp) without intron, which encodes a 563-amino-acid protein. A catalytic triad (Ser217-Glu354-His463) was found by constructing the three-dimensional structure of the lipase. In shake flasks, the lipase (LIP) catalytic activity in the supernatant of the recombinant Pichia pastoris increased 48.7% by codon optimization. LIP purified by anion exchange column showed a single protein band on 12% SDS-PAGE. The molecular weight (MW) of LIP was approximately 62 kDa. The specific activity of purified LIP reached 1257.9 U/mg. The optimum temperature and pH of LIP catalysis were 45 °C and pH 8.2, respectively. LIP was stable over the pH range of 4.2-11.2. LIP maintained its activity constantly at 40 °C and 50 °C for 120 min. Zn2+ inhibited LIP activity; Ba2+, Mn2+, Ca2+ and EDTA increased the enzyme activity. Referring the amount of hydrolyzed olive oil by LIP as 100%, various oils including lard, peanut oil, rapeseed oil, sunflower oil, soybean oil and linseed oil were efficiently hydrolyzed by 17.24 ± 1.34%, 40.34 ± 2.56%, 105.86 ± 2.78%, 115.51 ± 2.32%, 116.21 ± 2.15%, 120.69 ± 1.98%, respectively. The characteristics allow LIP as a potential biocatalyst in various fields of industry.
Collapse
|
2
|
Liu W, Li M, Yan Y. Heterologous expression and characterization of a new lipase from Pseudomonas fluorescens Pf0-1 and used for biodiesel production. Sci Rep 2017; 7:15711. [PMID: 29146968 PMCID: PMC5691200 DOI: 10.1038/s41598-017-16036-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 11/08/2022] Open
Abstract
As a kind of important biocatalysts, Pseudomonas lipases are commonly applied in various industrial fields. Pflip1, a new extracellular lipase gene from Pseudomonas. fluorescens Pf0-1, was first cloned and respectively expressed in Escherichia coli BL21(DE3) and Pichia pastoris KM71, the recombinant proteins Pflip1a and Pflip1b were later purified separately. Then Pflip1a was further characterized. The optimum pH of Pflip1a was 8.0 and its optimal temperature was 70 °C. After incubation at 70 °C for 12 h, Pflip1a could retain over 95% of its original activity. It showed the highest activity towards p-nitrophenyl caprylate. Moreover, its activity was profoundly affected by metal ion, ionic surfactants and organic solvents. Furthermore, the two obtained recombinant lipases were immobilized on the magnetic nanoparticles for biodiesel preparation. The GC analysis showed that for the immobilized lipases Pflip1b and Pflip1a, the biodiesel yield within 24 h respectively attained 68.5% and 80.5% at 70 °C. The activities of the two immobilized lipases still remained 70% and 82% after 10 cycles of operations in non-solvent system. These characteristics and transesterification capacity of the recombinant protein indicated its great potential for organic synthesis, especially for biodiesel production.
Collapse
Affiliation(s)
- Wu Liu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Menggang Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Enhanced expression of lipase I from Galactomyces geotrichum by codon optimisation in Pichia pastoris. Protein Expr Purif 2017; 138:34-45. [DOI: 10.1016/j.pep.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
4
|
Oslan SN, Salleh AB, Raja Abd Rahman RNZ, Leow TC, Sukamat H, Basri M. A newly isolated yeast as an expression host for recombinant lipase. Cell Mol Biol Lett 2015. [PMID: 26204408 DOI: 10.1515/cmble-2015-0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pichia guilliermondii strain SO isolated from spoiled orange was developed for use as an alternative expression host by using Pichia pastoris as the model of the experiment. This is the first study to report on the capability of P. guilliermondii SO as a host to express thermostable T1 lipase from Geobacillus zalihae. Alcohol oxidase and formaldehyde dehydrogenase promoters were present in the yeast genome. Interestingly, the recombinant yeast [SO/pPICZαB/T1-2 (SO2)] took only 30 h to reach optimal production with minimal methanol induction [1.5% (v/v)] in YPTM medium, as compared to P. pastoris, which took longer to reach its optimal condition. The purification yield of the His-tagged fusion lipase was 68.58%, with specific activity of 194.58 U/mg. The optimum temperature was 65°C at pH 9 in glycine-NaOH buffer, and it was stable up to 70°C in a wide pH range from pH 5 to 12. In conclusion, a newly isolated yeast from spoiled orange has been proven suitable for use as an expression host.
Collapse
|
5
|
Kumari A, Gupta R. Functional Characterisation of Novel Enantioselective Lipase TALipA from Trichosporon asahii MSR54: Sequence Comparison Revealed New Signature Sequence AXSXG Among Yeast Lipases. Appl Biochem Biotechnol 2014; 175:360-71. [DOI: 10.1007/s12010-014-1268-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 09/23/2014] [Indexed: 01/26/2023]
|
6
|
Kumari A, Gupta R. Functional characterization of a novel aspartic acid rich lipase, TALipC, from Trichosporon asahii MSR54: solvent-dependent enantio inversion during esterification of 1-phenylethanol. Biotechnol Lett 2014; 37:121-30. [DOI: 10.1007/s10529-014-1648-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
|
7
|
Hwang HT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A. Lipase-catalyzed process for biodiesel production: Protein engineering and lipase production. Biotechnol Bioeng 2013; 111:639-53. [PMID: 24284881 DOI: 10.1002/bit.25162] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Hyun Tae Hwang
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Feng Qi
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Chongli Yuan
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Xuebing Zhao
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Doraiswami Ramkrishna
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Dehua Liu
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Arvind Varma
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| |
Collapse
|
8
|
Yang JK, Liu LY, Dai JH, Li Q. de novo design and synthesis of Candida antarctica lipase B gene and α-factor leads to high-level expression in Pichia pastoris. PLoS One 2013; 8:e53939. [PMID: 23326544 PMCID: PMC3542265 DOI: 10.1371/journal.pone.0053939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
Candida antarctica lipase B (CALB) is one of the most widely used and studied enzymes in the world. In order to achieve the high-level expression of CALB in Pichia, we optimized the codons of CALB gene and α-factor by using a de novo design and synthesis strategy. Through comparative analysis of a series of recombinants with different expression components, we found that the methanol-inducible expression recombinant carrying the codon-optimized α-factor and mature CALB gene (pPIC9KαM-CalBM) has the highest lipase production capacity. After fermentation parameters optimization, the lipase activity and protein content of the recombinant pPIC9KαM-CalBM reached 6,100 U/mL and 3.0 g/L, respectively, in a 5-L fermentor. We believe this strategy could be of special interest due to its capacity to improve the expression level of target gene, and the Pichia transformants carrying the codon-optimized gene had great potential for the industrial-scale production of CALB lipase.
Collapse
Affiliation(s)
- Jiang-Ke Yang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- * E-mail:
| | - Li-Ying Liu
- School of Life Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiang-Hong Dai
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Qin Li
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Pan XX, Xu L, Zhang Y, Xiao X, Wang XF, Liu Y, Zhang HJ, Yan YJ. Efficient display of active Geotrichum sp. lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9673-9679. [PMID: 22934819 DOI: 10.1021/jf301827y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Geotrichum sp. lipase (GSL) was first displayed on the cell wall of Pichia pastoris on the basis of the a-agglutinin anchor system developed in Saccharomyces cerevisiae . Surface display levels were monitored using Western blotting, immunofluorescence miscroscopy, and fluorescence-activated cell sorting analysis. Lipase activity of the yeast whole cells reached a maximum at 273 ± 2.4 U/g of dry cells toward olive oil after 96 h of culture at 30 °C, with optimal pH and temperature at 7.5 and 45 °C, respectively. Displayed GSL exhibited relatively high stability between pH 6.0 and 8.0 and retained >70% of the maximum activity. The surface-displayed lipase retained 80% of its original activity after incubation at 45 °C for 4 h. Moreover, the GSL-displaying yeast whole cells were then used as a biocatalyst to enrich eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil on the basis of selective hydrolysis. As a result, EPA and DHA increased from 1.53 and 24.1% in the original fish oil to 1.85 and 30.86%, which were increases of 1.21- and 1.29-fold, respectively. The total yield of EPA and DHA reached 46.62%.
Collapse
Affiliation(s)
- Xiao-Xing Pan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kumari A, Gupta R. Purification and Biochemical Characterization of a Novel Magnesium Dependent Lipase from Trichosporon asahii MSR 54 and its Application in Biodiesel Production. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajbkr.2012.70.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Alvarez-Rueda N, Fleury A, Morio F, Pagniez F, Gastinel L, Le Pape P. Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance. PLoS One 2011; 6:e21239. [PMID: 21698128 PMCID: PMC3116904 DOI: 10.1371/journal.pone.0021239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/24/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In the fungal pathogen Candida albicans, amino acid substitutions of 14alpha-demethylase (CaErg11p, CaCYP51) are associated with azole antifungals resistance. This is an area of research which is very dynamic, since the stakes concern the screening of new antifungals which circumvent resistance. The impact of amino acid substitutions on azole interaction has been postulated by homology modeling in comparison to the crystal structure of Mycobacterium tuberculosis (MT-CYP51). Modeling of amino acid residues situated between positions 428 to 459 remains difficult to explain to date, because they are in a major insertion loop specifically present in fungal species. METHODOLOGY/PRINCIPAL FINDING Fluconazole resistance of clinical isolates displaying Y447H and V456I novel CaErg11p substitutions confirmed in vivo in a murine model of disseminated candidiasis. Y447H and V456I implication into fluconazole resistance was then studied by site-directed mutagenesis of wild-type CaErg11p and by heterogeneously expression into the Pichia pastoris model. CLSI modified tests showed that V447H and V456I are responsible for an 8-fold increase in fluconazole MICs of P. pastoris mutants compared to the wild-type controls. Moreover, mutants showed a sustained capacity for producing ergosterol, even in the presence of fluconazole. Based on these biological results, we are the first to propose a hybrid homology structure-function model of Ca-CYP51 using 3 different homology modeling programs. The variable position of the protein insertion loop, using different liganded or non-liganded templates of recently solved CYP51 structures, suggests its inherent flexibility. Mapping of recognized azole-resistant substitutions indicated that the flexibility of this region is probably enhanced by the relatively high glycine content of the consensus. CONCLUSIONS/SIGNIFICANCE The results highlight the potential role of the insertion loop in azole resistance in the human pathogen C. albicans. This new data should be taken into consideration for future studies aimed at designing new antifungal agents, which circumvent azole resistance.
Collapse
Affiliation(s)
- Nidia Alvarez-Rueda
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
- * E-mail: (PLP); (NAR)
| | - Audrey Fleury
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
| | - Florent Morio
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
| | - Fabrice Pagniez
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
| | - Louis Gastinel
- Laboratoire de Pharmacologie des Immunosuppresseurs en Transplantation, INSERM UMR 850, Université de Limoges, Limoges, France
| | - Patrice Le Pape
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- * E-mail: (PLP); (NAR)
| |
Collapse
|
12
|
Yang J, Liu L. Codon optimization through a two-step gene synthesis leads to a high-level expression of Aspergillus niger lip2 gene in Pichia pastoris. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Fernández L, Jiao N, Soni P, Gumulya Y, de Oliveira LG, Reetz MT. An efficient method for mutant library creation inPichia pastorisuseful in directed evolution. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242420903505834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Bussamara R, Fuentefria AM, de Oliveira ES, Broetto L, Simcikova M, Valente P, Schrank A, Vainstein MH. Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. BIORESOURCE TECHNOLOGY 2010; 101:268-275. [PMID: 19700311 DOI: 10.1016/j.biortech.2008.10.063] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 05/28/2023]
Abstract
The production of lipase by twenty-nine yeasts isolated from the phylloplane of Hibiscus rosa-sinensis was evaluated. The highest lipase producers were Pseudozyma hubeiensis HB85A, Debaryomyces occidentalis-like HB83 and Cryptococcus sp. HB80. P. hubeiensis HB85A batch fermentations were carried out in a bioreactor and lipase production improved 3.2-fold as compared to flask submerged cultures. The production process was significantly reduced from 48 h (in flasks) to 18 h (in the bioreactor). The better hydrolytic activity was achieved with C16 p-nitrophenyl ester. Maximal activity was observed at pH 7.0, the optimum temperature was 50 degrees C at pH 7.0 and the enzyme was stable at 30 and 40 degrees C. The lipolytic activity was stimulated by Mg(2+), K(+) and Ba(2+) salts and EDTA and slightly inhibited by Ca(2+) salts. Non-ionic detergents such as Triton X-100, Tween 80 and Tween 20 strongly stimulated lipase activity, whereas SDS inhibited it. The lipase was stable in iso-octane and hexane at 80%.
Collapse
Affiliation(s)
- Roberta Bussamara
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fernandez L, Fernandez L, Bañuelos O, Zafra A, Ronchel C, Perez-Victoria I, Morales JC, Fernandez L, Bañuelos O, Zafra A, Ronchel C, Perez-Victoria I, Morales JC, Velasco J, Fernandez L, Bañuelos O, Zafra A, Ronchel C, Perez-Victoria I, Morales JC, Velasco J, Adrio JL. Alteration of substrate specificity ofGalactomyces geotrichumBT107 lipase I on eicosapentaenoic acid-rich triglycerides. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420801897650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl Biochem Biotechnol 2008; 159:355-65. [PMID: 19005622 DOI: 10.1007/s12010-008-8419-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
Pseudomonas lipases are important biocatalysts widely used in a variety of industrial fields. An extracellular lipase gene lipA with 1,854-bp open reading frame was cloned from Pseudomonas fluorescens 26-2. The multialignment assay of the putative amino acid and the secondary structure prediction revealed this enzyme could be classified into the lipolytic subfamily I.3 and secreted via adenosine-triphosphate-binding cassette pathway. The lipA gene was integrated into Pichia pastoris GS115, and the methanol-inducible recombinants with Mut(S) and Mut(+) phenotypes were acquired. The characteristics and the transesterification capacity shown by this enzyme suggested it is a useful biocatalyst for biodiesel preparation.
Collapse
|
17
|
Hamilton BS, Brede Y, Tolbert TJ. Expression and characterization of human glycosylated interleukin-1 receptor antagonist in Pichia pastoris. Protein Expr Purif 2008; 59:64-8. [DOI: 10.1016/j.pep.2008.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 01/10/2008] [Indexed: 01/14/2023]
|
18
|
Qi W, Wang H, Liu R, Gao C, Lu F. High-level production and characterisation of the recombinant thermostable lipase ofGeobacillus thermoleovorans inPichia methanolica. ANN MICROBIOL 2008. [DOI: 10.1007/bf03179455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in microaqueous solvent. Appl Microbiol Biotechnol 2008; 78:431-9. [DOI: 10.1007/s00253-007-1331-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 02/06/2023]
|
20
|
Optimized expression of an acid xylanase from Aspergillus usamii in Pichia pastoris and its biochemical characterization. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9622-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Gene cloning, overexpression and characterization of a novel organic solvent tolerant and thermostable lipase from Galactomyces geotrichum Y05. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcatb.2007.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Li ZX, Hong GQ, Hu B, Liang MJ, Xu J, Li L. Suitability of yeast- and Escherichia coli-expressed hepatitis B virus core antigen derivatives for detection of anti-HBc antibodies in human sera. Protein Expr Purif 2007; 56:293-300. [PMID: 17897838 DOI: 10.1016/j.pep.2007.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 07/27/2007] [Accepted: 08/07/2007] [Indexed: 12/20/2022]
Abstract
Antibody to hepatitis B virus core antigen (anti-HBc) is one of the most important serological markers during hepatitis B virus (HBV) infection. The quality of the hepatitis B virus core antigen (HBcAg; diagnostic antigen) is crucial to the accuracy of anti-HBc detection. In an attempt to explore the suitability of recombinant HBcAg (rHBcAg) for diagnostic purposes, HBcAg was expressed in Escherichia coli (E. coli) and Pichia pastoris (P. pastoris) and evaluated for the detection of anti-HBc. The expression level of the recombinant protein satisfied the criteria for large-scale biologic production. P. pastoris- and E. coli-derived rHBcAg were purified with gel filtration followed by sucrose gradient (reagents A and C) or with a monoclonal anti-HBc antibody binding (reagents B and D) and were utilized to detect anti-HBc in competitive inhibition enzyme-linked immunosorbent assay (ELISA) format. The ELISA using P. pastoris-derived rHBcAg had a higher specificity and sensitivity than that using E.coli-derived rHBcAg to detect the anti-HBc standard panel. Serum specimens were collected from HBV-infected patients and healthy individuals (voluntary blood donors). Anti-HBc was detected in those specimens using P. pastoris- and E. coli-derived rHBcAg. The positive rate of anti-HBc detection in HBV-infected patients' sera was 100% with reagents A and B, 96.4% with reagent C, and 93.6% with reagent D. The negative rate in healthy control sera was 100% with reagents A and B, 97.0% with reagent C, and 99.7% with reagent D. These data indicate that P. pastoris-derived rHBcAg is superior to E.coli-derived rHBcAg for the detection of anti-HBc using the diagnostic ELISA.
Collapse
Affiliation(s)
- Zhao-Xia Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
23
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|