1
|
Arhab Y, Bessaa K, Abla H, Aydin M, Rahier R, Comte A, Brizuela L, Mebarek S, Perret F, Cherrier MV, Abousalham A, Noiriel A. Phospholipase D inhibitors screening: Probing and evaluation of ancient and novel molecules. Int J Biol Macromol 2020; 166:1131-1140. [PMID: 33161081 DOI: 10.1016/j.ijbiomac.2020.10.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/03/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Phospholipase D (PLD) is a ubiquitous enzyme that cleaves the distal phosphoester bond of phospholipids generating phosphatidic acid (PA). In plants, PA is involved in numerous cell responses triggered by stress. Similarly, in mammals, PA is also a second messenger involved in tumorigenesis. PLD is nowadays considered as a therapeutic target and blocking its activity with specific inhibitors constitutes a promising strategy to treat cancers. Starting from already described PLD inhibitors, this study aims to investigate the effect of their structural modifications on the enzyme's activity, as well as identifying new potent inhibitors of eukaryotic PLDs. Being able to purify the plant PLD from Vigna unguiculata (VuPLD), we obtained a SAXS model of its structure. We then used a fluorescence-based test suitable for high-throughput screening to review the effect of eukaryotic PLD inhibitors described in the literature. In this regard, we found that only few molecules were in fact able to inhibit VuPLD and we confirmed that vanadate is the most potent of all with an IC50 around 58 μM. Moreover, the small-scale screening of a chemical library of 3120 compounds allowed us to optimize the different screening's steps and paved the way towards the discovery of new potent inhibitors.
Collapse
Affiliation(s)
- Yani Arhab
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Karim Bessaa
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Houda Abla
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Meryem Aydin
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Renaud Rahier
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Arnaud Comte
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Chimiothèque, Bât Lederer, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Leyre Brizuela
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Saïda Mebarek
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Florent Perret
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Chimie Supramoléculaire Appliquée (CSAp), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Mickaël V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins, F-38000 Grenoble, France
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Alexandre Noiriel
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
2
|
Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res 2019; 30:61-69. [PMID: 31619765 DOI: 10.1038/s41422-019-0244-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids and produces phosphatidic acid (PA), which acts as a second messenger in many living organisms. A large number of PLDs have been identified in eukaryotes, and are viewed as promising targets for drug design because these enzymes are known to be tightly regulated and to function in the pathophysiology of many human diseases. However, the underlying molecular mechanisms of catalysis and regulation of eukaryotic PLD remain elusive. Here, we determined the crystal structure of full-length plant PLDα1 in the apo state and in complex with PA. The structure shows that the N-terminal C2 domain hydrophobically interacts with the C-terminal catalytic domain that features two HKD motifs. Our analysis reveals the catalytic site, substrate-binding mechanism, and a new Ca2+-binding site that is required for the activation of PLD. In addition, we tested several efficient small-molecule inhibitors against PLDα1, and suggested a possible competitive inhibition mechanism according to structure-based docking analysis. This study explains many long-standing questions about PLDs and provides structural insights into PLD-targeted inhibitor/drug design.
Collapse
|
5
|
Direct and Continuous Measurement of Phospholipase D Activities Using the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline. Methods Mol Biol 2018. [PMID: 30109649 DOI: 10.1007/978-1-4939-8672-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phospholipase D (PLD) hydrolyzes phospholipids to form phosphatidic acid (PA) and the corresponding headgroup. To date, PLD has been linked to several pathologies, such as cancer, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released upon phosphatidylcholine (PC) hydrolysis. Therefore, we designed a PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline. This assay exhibits a strong fluorescence signal upon Ca2+ complexation with the PLD-generated PA and is not limited to PC as the substrate but allows the use of natural phospholipids with various headgroups. Besides, this easy-to-handle assay allows to monitor prokaryotic and eukaryotic PLD activities in a continuous way and on a microplate scale.
Collapse
|
6
|
Arhab Y, Rahier R, Noiriel A, Cherrier MV, Abousalham A. Expression and Purification of Recombinant Vigna unguiculata Phospholipase D in Pichia pastoris for Structural Studies. Methods Mol Biol 2018; 1835:191-201. [PMID: 30109653 DOI: 10.1007/978-1-4939-8672-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The production of pure enzymes in high quantities is a proven strategy to study the catalytic mechanism as well as the solving of structure at the atomic scale for therapeutic or industrial purposes. Phospholipase D (PLD, EC 3.1.4.4) is found in a wide majority of living organisms and has been shown to be involved in signal transduction, vesicle trafficking, and membrane metabolism processes. Located at the membrane-cytoplasm interface, plant PLDs are soluble but also bear an evident hydrophobic aspect making challenging its expression and its purification in large quantity. So far there is no high-resolution three-dimensional structure for a eukaryotic PLD. The protocols herein describe the cloning of the eukaryotic recombinant PLDα of Vigna unguiculata (cowpea) into the yeast expression system Pichia pastoris and its two-step purification process. This allowed us to purify to homogeneity hundreds of micrograms of highly pure protein to conduct in fine structural studies.
Collapse
Affiliation(s)
- Yani Arhab
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM²), Villeurbanne Cedex, 69622, France
| | - Renaud Rahier
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM²), Villeurbanne Cedex, 69622, France
| | - Alexandre Noiriel
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM²), Villeurbanne Cedex, 69622, France
| | - Mickael V Cherrier
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Université de Lyon-CNRS, Institut de Biologie et Chimie des Protéines, Lyon Cedex 07, France
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM²), Villeurbanne Cedex, 69622, France.
| |
Collapse
|
7
|
Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase D α and D β. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2721719. [PMID: 28101506 PMCID: PMC5215601 DOI: 10.1155/2016/2721719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022]
Abstract
Most of plant phospholipases D (PLD) exhibit a C2-lipid binding domain of around 130 amino acid residues at their N-terminal region, involved in their Ca2+-dependent membrane binding. In this study, we expressed and partially purified catalytically active PLDα from Arabidopsis thaliana (AtPLDα) in the yeast Pichia pastoris. The N-terminal amino acid sequence of the recombinant AtPLDα was found to be NVEETIGV and thus to lack the first 35 amino acid belonging to the C2 domain, as found in other recombinant or plant purified PLDs. To investigate the impact of such a cleavage on the functionality of C2 domains, we expressed, in E. coli, purified, and refolded the mature-like form of the C2 domain of the AtPLDα along with its equivalent C2 domain of the AtPLDβ, for the sake of comparison. Using Förster Resonance Energy Transfer and dot-blot assays, both C2 domains were shown to bind phosphatidylglycerol in a Ca2+-independent manner while phosphatidic acid and phosphatidylserine binding were found to be enhanced in the presence of Ca2+. Amino acid sequence alignment and molecular modeling of both C2 domains with known C2 domain structures revealed the presence of a novel Ca2+-binding site within the C2 domain of AtPLDα.
Collapse
|
8
|
Khatib A, Arhab Y, Bentebibel A, Abousalham A, Noiriel A. Reassessing the Potential Activities of Plant CGI-58 Protein. PLoS One 2016; 11:e0145806. [PMID: 26745266 PMCID: PMC4706320 DOI: 10.1371/journal.pone.0145806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.
Collapse
Affiliation(s)
- Abdallah Khatib
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Yani Arhab
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Assia Bentebibel
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Abdelkarim Abousalham
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Alexandre Noiriel
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
- * E-mail:
| |
Collapse
|
9
|
Rahier R, Noiriel A, Abousalham A. Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline. Anal Chem 2015; 88:666-74. [DOI: 10.1021/acs.analchem.5b02332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Renaud Rahier
- Institut
de Chimie et de Biochimie Moléculaires
et Supramoléculaires (ICBMS) UMR 5246 CNRS, Université Claude Bernard Lyon 1, Organisation
et Dynamique des Membranes Biologiques, Bâtiment Raulin, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Alexandre Noiriel
- Institut
de Chimie et de Biochimie Moléculaires
et Supramoléculaires (ICBMS) UMR 5246 CNRS, Université Claude Bernard Lyon 1, Organisation
et Dynamique des Membranes Biologiques, Bâtiment Raulin, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Abdelkarim Abousalham
- Institut
de Chimie et de Biochimie Moléculaires
et Supramoléculaires (ICBMS) UMR 5246 CNRS, Université Claude Bernard Lyon 1, Organisation
et Dynamique des Membranes Biologiques, Bâtiment Raulin, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|