1
|
Watts JA, Grunseich C, Rodriguez Y, Liu Y, Li D, Burdick J, Bruzel A, Crouch RJ, Mahley RW, Wilson S, Cheung V. A common transcriptional mechanism involving R-loop and RNA abasic site regulates an enhancer RNA of APOE. Nucleic Acids Res 2022; 50:12497-12514. [PMID: 36453989 PMCID: PMC9757052 DOI: 10.1093/nar/gkac1107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
RNA is modified by hundreds of chemical reactions and folds into innumerable shapes. However, the regulatory role of RNA sequence and structure and how dysregulation leads to diseases remain largely unknown. Here, we uncovered a mechanism where RNA abasic sites in R-loops regulate transcription by pausing RNA polymerase II. We found an enhancer RNA, AANCR, that regulates the transcription and expression of apolipoprotein E (APOE). In some human cells such as fibroblasts, AANCR is folded into an R-loop and modified by N-glycosidic cleavage; in this form, AANCR is a partially transcribed nonfunctional enhancer and APOE is not expressed. In contrast, in other cell types including hepatocytes and under stress, AANCR does not form a stable R-loop as its sequence is not modified, so it is transcribed into a full-length enhancer that promotes APOE expression. DNA sequence variants in AANCR are associated significantly with APOE expression and Alzheimer's Disease, thus AANCR is a modifier of Alzheimer's Disease. Besides AANCR, thousands of noncoding RNAs are regulated by abasic sites in R-loops. Together our data reveal the essentiality of the folding and modification of RNA in cellular regulation and demonstrate that dysregulation underlies common complex diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jason A Watts
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yesenia Rodriguez
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yaojuan Liu
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dongjun Li
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua T Burdick
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan Bruzel
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Crouch
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Departments of Pathology and Medicine, University of California, San Francisco, CA, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivian G Cheung
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Healing E, Charlier CF, Meira LB, Elliott RM. A panel of colorimetric assays to measure enzymatic activity in the base excision DNA repair pathway. Nucleic Acids Res 2019; 47:e61. [PMID: 30869144 PMCID: PMC6582407 DOI: 10.1093/nar/gkz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
DNA repair is essential for the maintenance of genomic integrity, and evidence suggest that inter-individual variation in DNA repair efficiency may contribute to disease risk. However, robust assays suitable for quantitative determination of DNA repair capacity in large cohort and clinical trials are needed to evaluate these apparent associations fully. We describe here a set of microplate-based oligonucleotide assays for high-throughput, non-radioactive and quantitative determination of repair enzyme activity at individual steps and over multiple steps of the DNA base excision repair pathway. The assays are highly sensitive: using HepG2 nuclear extract, enzyme activities were quantifiable at concentrations of 0.0002 to 0.181 μg per reaction, depending on the enzyme being measured. Assay coefficients of variation are comparable with other microplate-based assays. The assay format requires no specialist equipment and has the potential to be extended for analysis of a wide range of DNA repair enzyme activities. As such, these assays hold considerable promise for gaining new mechanistic insights into how DNA repair is related to individual genetics, disease status or progression and other environmental factors and investigating whether DNA repair activities can be used a biomarker of disease risk.
Collapse
Affiliation(s)
- Eleanor Healing
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Clara F Charlier
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lisiane B Meira
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ruan M Elliott
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
3
|
DeVito S, Woodrick J, Song L, Roy R. Mutagenic potential of hypoxanthine in live human cells. Mutat Res 2017; 803-805:9-16. [PMID: 28704682 DOI: 10.1016/j.mrfmmm.2017.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
Hypoxanthine (Hx) is a major DNA lesion generated by deamination of adenine during chronic inflammatory conditions, which is an underlying cause of various diseases including cancer of colon, liver, pancreas, bladder and stomach. There is evidence that deamination of DNA bases induces mutations, but no study has directly linked Hx accumulation to mutagenesis and strand-specific mutations yet in human cells. Using a site-specific mutagenesis approach, we report the first direct evidence of mutation potential and pattern of Hx in live human cells. We investigated Hx-induced mutations in human nonmalignant HEK293 and cancer HCT116 cell lines and found that Hx is mutagenic in both HEK293 and HCT116 cell lines. There is a strand bias for Hx-mediated mutations in both the cell lines; the Hx in lagging strand is more mutagenic than in leading strand. There is also some difference in cell types regarding the strand bias for mutation types; HEK293 cells showed largely deletion (>80%) mutations in both leading and lagging strand and the rest were insertions and A:T→G:C transition mutations in leading and lagging strands, respectively, whereas in HCT116 cells we observed 60% A:T→G:C transition mutations in the leading strand and 100% deletions in the lagging strand. Overall, Hx is a highly mutagenic lesion capable of generating A:T→G:C transitions and large deletions with a significant variation in leading and lagging strands in human cells. In recent meta-analysis study A→G (T→C) mutations were found to be a prominent signature in a variety of cancers, including a majority types that are induced by inflammation. The deletions are known to be a major cause of copy-number variations or CNVs, which is a major underlying cause of many human diseases including mental illness, developmental disorders and cancer. Thus, Hx, a major DNA lesion induced by different deamination mechanisms, has potential to initiate inflammation-driven carcinogenesis in addition to various human pathophysiological consequences.
Collapse
Affiliation(s)
- Stephen DeVito
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jordan Woodrick
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Linze Song
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Rabindra Roy
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States.
| |
Collapse
|
4
|
Yoneshima Y, Abolhassani N, Iyama T, Sakumi K, Shiomi N, Mori M, Shiomi T, Noda T, Tsuchimoto D, Nakabeppu Y. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells. Sci Rep 2016; 6:32849. [PMID: 27618981 PMCID: PMC5020429 DOI: 10.1038/srep32849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity.
Collapse
Affiliation(s)
- Yasuto Yoneshima
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
| | - Teruaki Iyama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Center for Nucleotide Pool, Kyushu University, Fukuoka 812-8581, Japan
| | - Naoko Shiomi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masahiko Mori
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tadahiro Shiomi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tetsuo Noda
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Center for Nucleotide Pool, Kyushu University, Fukuoka 812-8581, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Center for Nucleotide Pool, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
5
|
Adhikari S, Chetram MA, Woodrick J, Mitra PS, Manthena PV, Khatkar P, Dakshanamurthy S, Dixon M, Karmahapatra SK, Nuthalapati NK, Gupta S, Narasimhan G, Mazumder R, Loffredo CA, Üren A, Roy R. Germ line variants of human N-methylpurine DNA glycosylase show impaired DNA repair activity and facilitate 1,N6-ethenoadenine-induced mutations. J Biol Chem 2014; 290:4966-4980. [PMID: 25538240 DOI: 10.1074/jbc.m114.627000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human N-methylpurine DNA glycosylase (hMPG) initiates base excision repair of a number of structurally diverse purine bases including 1,N(6)-ethenoadenine, hypoxanthine, and alkylation adducts in DNA. Genetic studies discovered at least eight validated non-synonymous single nucleotide polymorphisms (nsSNPs) of the hMPG gene in human populations that result in specific single amino acid substitutions. In this study, we tested the functional consequences of these nsSNPs of hMPG. Our results showed that two specific arginine residues, Arg-141 and Arg-120, are important for the activity of hMPG as the germ line variants R120C and R141Q had reduced enzymatic activity in vitro as well as in mammalian cells. Expression of these two variants in mammalian cells lacking endogenous MPG also showed an increase in mutations and sensitivity to an alkylating agent compared with the WT hMPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that these variants have substantial reduction in the equilibrium dissociation constant of binding (KD) of hMPG toward 1,N(6)-ethenoadenine-containing oligonucleotide (ϵA-DNA). Pre-steady-state kinetic studies showed that the substitutions at arginine residues affected the turnover of the enzyme significantly under multiple turnover condition. Surface plasmon resonance spectroscopy further showed that both variants had significantly decreased nonspecific (undamaged) DNA binding. Molecular modeling suggested that R141Q substitution may have resulted in a direct loss of the salt bridge between ϵA-DNA and hMPG, whereas R120C substitution redistributed, at a distance, the interactions among residues in the catalytic pocket. Together our results suggest that individuals carrying R120C and R141Q MPG variants may be at risk for genomic instability and associated diseases as a consequence.
Collapse
Affiliation(s)
- Sanjay Adhikari
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057,; Cancer Research Program, Houston Methodist Hospital Research Institute, Houston, Texas 77030, and
| | - Mahandranauth A Chetram
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Jordan Woodrick
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Partha S Mitra
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Praveen V Manthena
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Pooja Khatkar
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Sivanesan Dakshanamurthy
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Monica Dixon
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Soumendra K Karmahapatra
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Nikhil K Nuthalapati
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Suhani Gupta
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Ganga Narasimhan
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D. C. 20037
| | - Christopher A Loffredo
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Aykut Üren
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Rabindra Roy
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057,.
| |
Collapse
|
6
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
7
|
A unified method for purification of basic proteins. Anal Biochem 2010; 400:203-6. [PMID: 20109435 DOI: 10.1016/j.ab.2010.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 11/22/2022]
Abstract
Protein purification is still very empirical, and a unified method for purifying proteins without an affinity tag is not available yet. In the postgenomic era, functional genomics, however, strongly demands such a method. In this paper we have formulated a unique method that can be applied for purifying any recombinant basic protein from Escherichia coli. Here, we have found that if the pH of the buffer is merely one pH unit below the isoelectric point (pI) of the recombinant proteins, most of the latter bind to the column. This result supports the Henderson-Hasselbalch principle. Considering that E. coli proteins are mostly acidic, and based on the pI determined theoretically, apparently all recombinant basic proteins (at least pI-1 > or = 6.94) may be purified from E. coli in a single step using a cation-exchanger resin, SP-Sepharose, and a selected buffer pH, depending on the pI of the recombinant protein. Approximately, two-fifths of human proteome, including many if not all nucleic acid-interacting proteins, have a pI of 7.94 or higher; virtually all these 12,000 proteins may be purified using this method in a single step.
Collapse
|
8
|
Excised damaged base determines the turnover of human N-methylpurine-DNA glycosylase. DNA Repair (Amst) 2009; 8:1201-6. [PMID: 19616486 DOI: 10.1016/j.dnarep.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. In this study, we tested the role of excised base on MPG enzymatic activity. After the reaction, MPG produced two products: free damaged base and AP-site containing DNA. Our results showed that MPG excises 1,N(6)-ethenoadenine (varepsilonA) from varepsilonA-containing oligonucleotide (varepsilonA-DNA) at a similar or slightly increased efficiency than it does hypoxanthine (Hx) from Hx-containing oligonucleotide (Hx-DNA) under similar conditions. Real-time binding experiments by surface plasmon resonance (SPR) spectroscopy suggested that both the substrate DNAs have a similar equilibrium binding constant (K(D)) towards MPG, but under single-turnover (STO) condition there is apparently no effect on catalytic chemistry; however, the turnover of the enzyme under multiple-turnover (MTO) condition is higher for varepsilonA-DNA than it is for Hx-DNA. Real-time binding experiments by SPR spectroscopy further showed that the dissociation of MPG from its product, AP-site containing DNA, is faster than the overall turnover of either Hx- or varepsilonA-DNA reaction. We thereby conclude that the excised base plays a critical role in product inhibition and, hence, is essential for MPG glycosylase activity. Thus, the results provide the first evidence that the excised base rather than AP-site could be rate-limiting for DNA-glycosylase reactions.
Collapse
|
9
|
Mbene AB, Houreld NN, Abrahamse H. DNA damage after phototherapy in wounded fibroblast cells irradiated with 16J/cm2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 94:131-7. [DOI: 10.1016/j.jphotobiol.2008.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/04/2008] [Accepted: 11/12/2008] [Indexed: 11/27/2022]
|