1
|
Li H, Spagnol G, Pontifex TK, Burt JM, Sorgen PL. Chemical shift assignments of the connexin37 carboxyl terminal domain. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:137-141. [PMID: 28251507 PMCID: PMC5581280 DOI: 10.1007/s12104-017-9735-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/20/2017] [Indexed: 05/07/2023]
Abstract
Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury. Here we report the 1H, 15N, and 13C resonance assignments for an important regulatory domain of Cx37, the carboxyl terminus (CT; C233-V333). The predicted secondary structure of the Cx37CT domain based on the chemical shifts is that of an intrinsically disordered protein. In the 1H-15N HSQC, N-terminal residues S254-Y259 displayed a second weaker peak and residues E261-Y266 had significant line broadening. These residues are flanked by prolines (P250, P258, P260, and P268), suggesting proline cis-trans isomerization. Overall, these assignments will be useful for identifying the binding sites for intra- and inter-molecular interactions that affect Cx37 channel activity.
Collapse
Affiliation(s)
- Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tasha K Pontifex
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
Spagnol G, Al-Mugotir M, Kopanic JL, Zach S, Li H, Trease AJ, Stauch KL, Grosely R, Cervantes M, Sorgen PL. Secondary structural analysis of the carboxyl-terminal domain from different connexin isoforms. Biopolymers 2016; 105:143-62. [PMID: 26542351 DOI: 10.1002/bip.22762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
The connexin carboxyl-terminal (CxCT) domain plays a role in the trafficking, localization, and turnover of gap junction channels, as well as the level of gap junction intercellular communication via numerous post-translational modifications and protein-protein interactions. As a key player in the regulation of gap junctions, the CT presents itself as a target for manipulation intended to modify function. Specific to intrinsically disordered proteins, identifying residues whose secondary structure can be manipulated will be critical toward unlocking the therapeutic potential of the CxCT domain. To accomplish this goal, we used biophysical methods to characterize CxCT domains attached to their fourth transmembrane domain (TM4). Circular dichroism and nuclear magnetic resonance were complementary in demonstrating the connexin isoforms that form the greatest amount of α-helical structure in their CT domain (Cx45 > Cx43 > Cx32 > Cx50 > Cx37 ≈ Cx40 ≈ Cx26). Studies compared the influence of 2,2,2-trifluoroethanol, pH, phosphorylation, and mutations (Cx32, X-linked Charcot-Marie Tooth disease; Cx26, hearing loss) on the TM4-CxCT structure. While pH modestly influences the CT structure, a major structural change was associated with phosphomimetic substitutions. Since most connexin CT domains are phosphorylated throughout their life cycle, studies of phospho-TM4-CxCT isoforms will be critical toward understanding the role that structure plays in regulating gap junction function.
Collapse
Affiliation(s)
- Gaëlle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Mona Al-Mugotir
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Jennifer L Kopanic
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Sydney Zach
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Kelly L Stauch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Rosslyn Grosely
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Matthew Cervantes
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198
| |
Collapse
|
3
|
Kopanic JL, Al-mugotir MH, Kieken F, Zach S, Trease AJ, Sorgen PL. Characterization of the connexin45 carboxyl-terminal domain structure and interactions with molecular partners. Biophys J 2014; 106:2184-95. [PMID: 24853747 PMCID: PMC4052358 DOI: 10.1016/j.bpj.2014.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 02/02/2023] Open
Abstract
Mechanisms underlying the initiation and persistence of lethal cardiac rhythms are of significant clinical and scientific interests. Gap junctions are principally involved in forming the electrical connections between myocytes, and changes in distribution, density, and properties are consistent characteristics in arrhythmic heart disease. Therefore, understanding the structure and function of gap junctions during normal and abnormal impulse propagation are essential in the control of arrhythmias. For example, Cx45 is predominately expressed in the specialized myocytes of the impulse generation and conduction system. In both ventricular and atrial human working myocytes, Cx45 is present in very low quantities. However, a reduction in Cx43 coupled with an increased Cx45 protein levels within the ventricles have been observed after myocardial infarction and end-stage heart failure. Cx45 may influence electrical and/or metabolic coupling as a result of pathophysiological overexpression. Our goal was to identify mechanisms that could cause cellular coupling to be different between the cardiac connexins. Based upon the conserved transmembrane and extracellular loop segments, our focus was on identifying features within the divergent cytoplasmic portions. Here, we biophysically characterize the carboxyl-terminal domain of Cx45 (Cx45CT). Purification revealed the possibility of oligomeric species, which was confirmed by analytical ultracentrifugation experiments. Sedimentation equilibrium and circular dichroism studies of different Cx45CT constructs identified one region of α-helical structure (A333-N361) that mediates CT dimerization through hydrophobic contacts. Interestingly, the binding affinity of Cx45CT dimerization is 1000-fold stronger than Cx43CT dimerization. Cx45CT resonance assignments were also used to identify the binding sites and affinities of molecular partners involved in the Cx45 regulation; although none disrupted dimerization, many of these proteins interacted within one intrinsically disordered region (P278-P285). This domain has similarities with other cardiac connexins, and we propose they constitute a master regulatory domain, which contains overlapping molecular partner binding, cis-trans proline isomerization, and phosphorylation sites.
Collapse
Affiliation(s)
- Jennifer L Kopanic
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mona H Al-mugotir
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fabien Kieken
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sydney Zach
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
4
|
Grosely R, Kieken F, Sorgen PL. ¹H, ¹³C, and ¹⁵N backbone resonance assignments of the connexin43 carboxyl terminal domain attached to the 4th transmembrane domain in detergent micelles. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:299-303. [PMID: 23065337 PMCID: PMC3822759 DOI: 10.1007/s12104-012-9432-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
Gap junctions are specialized membrane channels that enable coordination of cellular functions and whole-organ responses by facilitating both molecular and electrical communication between neighboring cells. Connexin43 (Cx43) is the most widely expressed and well-studied gap junction protein. In the heart, Cx43 is essential for normal cardiac development and function. Studies using a soluble version of the Cx43 carboxyl-terminal domain (Cx43CT; S255-I382) have established the central role it plays in channel regulation. However, in purifying and characterizing a more 'native-like' construct (Cx43CT attached to the fourth transmembrane domain (TM4-Cx43CT; D196-I382)), we have identified that the TM4-Cx43CT is a better model than the soluble Cx43CT to further investigate the mechanisms governing Cx43 channel regulation. Here, we report the backbone (1)H, (15)N, and (13)C assignments and predicted secondary structure of the TM4-Cx43CT. Assignment of the TM4-Cx43CT is a key step towards a better understanding of the structural basis of Cx43 regulation, which will lead to improved strategies for modulation of junctional communication that has been altered due to disease or ischemic injury.
Collapse
Affiliation(s)
| | | | - Paul L. Sorgen
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198. Phone: (402) 559-7557; Fax: (402) 559-6650;
| |
Collapse
|
5
|
Kopanic JL, Al-Mugotir M, Zach S, Das S, Grosely R, Sorgen PL. An Escherichia coli strain for expression of the connexin45 carboxyl terminus attached to the 4th transmembrane domain. Front Pharmacol 2013; 4:106. [PMID: 23986705 PMCID: PMC3750199 DOI: 10.3389/fphar.2013.00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022] Open
Abstract
A major problem for structural characterization of membrane proteins, such as connexins, by nuclear magnetic resonance (NMR) occurs at the initial step of the process, the production of sufficient amounts of protein. This occurs because proteins must be expressed in minimal based media. Here, we describe an expression system for membrane proteins that significantly improves yield by addressing two common problems, cell toxicity caused by protein translation and codon bias between genomes. This work provides researchers with a cost-effective tool for NMR and other biophysical studies, to use when faced with little-to-no expression of eukaryotic membrane proteins in Escherichia coli expression systems.
Collapse
Affiliation(s)
- Jennifer L Kopanic
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
6
|
Grosely R, Kopanic JL, Nabors S, Kieken F, Spagnol G, Al-Mugotir M, Zach S, Sorgen PL. Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered connexin43 C-terminal domain. J Biol Chem 2013; 288:24857-70. [PMID: 23828237 DOI: 10.1074/jbc.m113.454389] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the connexin43 C-terminal (Cx43CT) domain regulates gap junction intercellular communication. However, an understanding of the mechanisms by which phosphorylation exerts its effects is lacking. Here, we test the hypothesis that phosphorylation regulates Cx43 gap junction intercellular communication by mediating structural changes in the C-terminal domain. Circular dichroism and nuclear magnetic resonance were used to characterize the effects of phosphorylation on the secondary structure and backbone dynamics of soluble and membrane-tethered Cx43CT domains. Cx43CT phospho-mimetic isoforms, which have Asp substitutions at specific Ser/Tyr sites, revealed phosphorylation alters the α-helical content of the Cx43CT domain only when attached to the membrane. The changes in secondary structure are due to variations in the conformational preference and backbone flexibility of residues adjacent and distal to the site(s) of modification. In addition to the known direct effects of phosphorylation on molecular partner interactions, the data presented here suggest phosphorylation may also indirectly regulate binding affinity by altering the conformational preference of the Cx43CT domain.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Grosely R, Sorgen PL. A history of gap junction structure: hexagonal arrays to atomic resolution. ACTA ACUST UNITED AC 2013; 20:11-20. [PMID: 23469928 DOI: 10.3109/15419061.2013.775256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | |
Collapse
|
8
|
Grosely R, Kieken F, Sorgen PL. Optimizing the solution conditions to solve the structure of the Connexin43 carboxyl terminus attached to the 4(th) transmembrane domain in detergent micelles. ACTA ACUST UNITED AC 2010; 17:23-33. [PMID: 20513204 DOI: 10.3109/15419061.2010.487956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
pH-mediated gating of Cx43 channels following an ischemic event is believed to contribute to the development of lethal cardiac arrhythmias. Studies using a soluble version of the Cx43 carboxyl-terminal domain (Cx43CT; S255-I382) have established the central role it plays in channel regulation; however, research in the authors' laboratory suggests that this construct may not be the ideal model system. Therefore, we have developed a more 'native-like' construct (Cx43CT attached to the 4th transmembrane domain [TM4-Cx43CT; G178-I382]) than the soluble Cx43CT to further investigate the mechanism(s) governing this regulation. Here, we utilize circular dichroism and nuclear magnetic resonance (NMR) were used to validate the TM4-Cx43CT for studying channel gating and optimize solution conditions for structural studies. The data indicate that, unlike the soluble Cx43CT, the TM4-Cx43CT is structurally responsive to changes in pH, suggesting the presence of the TM4 facilitates pH-induced structural alterations. Additionally, the optimal solution conditions for solving the NMR solution structure include 10% 2,2,2 trifluoroethanol and removal of the 2nd extracellular loop (G178-V196).
Collapse
Affiliation(s)
- Rosslyn Grosely
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | |
Collapse
|
9
|
Bouvier D, Spagnol G, Chenavas S, Kieken F, Vitrac H, Brownell S, Kellezi A, Forge V, Sorgen PL. Characterization of the structure and intermolecular interactions between the connexin40 and connexin43 carboxyl-terminal and cytoplasmic loop domains. J Biol Chem 2009; 284:34257-71. [PMID: 19808665 PMCID: PMC2797195 DOI: 10.1074/jbc.m109.039594] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/10/2009] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are intercellular channels that allow the passage of ions, small molecules, and second messengers that are essential for the coordination of cellular function. They are formed by two hemichannels, each constituted by the oligomerization of six connexins (Cx). Among the 21 different human Cx isoforms, studies have suggested that in the heart, Cx40 and Cx43 can oligomerize to form heteromeric hemichannels. The mechanism of heteromeric channel regulation has not been clearly defined. Tissue ischemia leads to intracellular acidification and closure of Cx43 and Cx40 homomeric channels. However, coexpression of Cx40 and Cx43 in Xenopus oocytes enhances the pH sensitivity of the channel. This phenomenon requires the carboxyl-terminal (CT) part of both connexins. In this study we used different biophysical methods to determine the structure of the Cx40CT and characterize the Cx40CT/Cx43CT interaction. Our results revealed that the Cx40CT is an intrinsically disordered protein similar to the Cx43CT and that the Cx40CT and Cx43CT can interact. Additionally, we have identified an interaction between the Cx40CT and the cytoplasmic loop of Cx40 as well as between the Cx40CT and the cytoplasmic loop of Cx43 (and vice versa). Our studies support the "particle-receptor" model for pH gating of Cx40 and Cx43 gap junction channels and suggest that interactions between cytoplasmic regulatory domains (both homo- and hetero-connexin) could be important for the regulation of heteromeric channels.
Collapse
Affiliation(s)
- Denis Bouvier
- From the Department of Biochemistry and Molecular Biology and
| | - Gaelle Spagnol
- From the Department of Biochemistry and Molecular Biology and
| | - Sylvie Chenavas
- From the Department of Biochemistry and Molecular Biology and
| | - Fabien Kieken
- From the Department of Biochemistry and Molecular Biology and
| | - Heidi Vitrac
- the Laboratoire de Chimie et Biologie des Métaux (UMR 5249), Commissariat à l'Energie Atomique, 17 rue des Martyrs, Grenoble F-38054, France
| | - Sarah Brownell
- From the Department of Biochemistry and Molecular Biology and
| | - Admir Kellezi
- the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Vincent Forge
- the Laboratoire de Chimie et Biologie des Métaux (UMR 5249), Commissariat à l'Energie Atomique, 17 rue des Martyrs, Grenoble F-38054, France
| | - Paul L. Sorgen
- From the Department of Biochemistry and Molecular Biology and
| |
Collapse
|