1
|
Tan WY, Khoo BY, Chew AL. Optimization of Physical Parameters for the Enhanced Expression of Recombinant Chemokine Receptors D6 and DARC in Pichia pastoris. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Castro LS, Lobo GS, Pereira P, Freire MG, Neves MC, Pedro AQ. Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation. Vaccines (Basel) 2021; 9:328. [PMID: 33915863 PMCID: PMC8065594 DOI: 10.3390/vaccines9040328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, and multiple sclerosis. Given their relevance and sustained market share, this review provides an overview on the evolution of interferon manufacture, comprising their production, purification, and formulation stages. Remarkable developments achieved in the last decades are herein discussed in three main sections: (i) an upstream stage, including genetically engineered genes, vectors, and hosts, and optimization of culture conditions (culture media, induction temperature, type and concentration of inducer, induction regimens, and scale); (ii) a downstream stage, focusing on single- and multiple-step chromatography, and emerging alternatives (e.g., aqueous two-phase systems); and (iii) formulation and delivery, providing an overview of improved bioactivities and extended half-lives and targeted delivery to the site of action. This review ends with an outlook and foreseeable prospects for underdeveloped aspects of biopharma research involving human interferons.
Collapse
Affiliation(s)
- Leonor S. Castro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Guilherme S. Lobo
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Patrícia Pereira
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal;
| | - Mara G. Freire
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Márcia C. Neves
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Augusto Q. Pedro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| |
Collapse
|
3
|
Katla S, Pavan SS, Mohan N, Sivaprakasam S. Biocalorimetric monitoring of glycoengineered P. pastoris cultivation for the production of recombinant huIFNα2b: A quantitative study based on mixed feeding strategies. Biotechnol Prog 2020; 36:e2971. [PMID: 31990134 DOI: 10.1002/btpr.2971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 11/05/2022]
Abstract
Real-time monitoring of glycoengineered Pichia pastoris by employing process analytical technology (PAT) tools is vital for gaining deeper insights into the therapeutic protein production process. The present study focuses on influence of mixed feed carbon substrates during the induction phases of glycoengineered P. pastoris cultivation, for recombinant human interferon α2b (huIFNα2b) production by employing calorimetric (biological heat rate, q B ) and respirometric (oxygen uptake rate and carbon dioxide evolution rate) measurements. Mixed feed stream of carbon substrates (methanol + glycerol, methanol + sorbitol) at a predetermined "C-molar ratios" were added during the induction phases. Methanol- and sorbitol-based mixed feeding approach resulted in an improved huIFNα2b titer of 288 mg/L by channeling of methanol predominantly towards an optimal functioning of AOX expression system. A stand-off between biomass yield Y X S and biomass heat yield Y Q X coefficient, degree of reduction of methanol and its cosubstrate (glycerol and sorbitol) determines the fraction of carbon energy channeled toward biomass and protein production, under strict aerobic conditions. Calorespirometric monitoring and assessment of thermal yields enables a reliable prediction of process variables, leading to futuristic efficient PAT-based feed rate control.
Collapse
Affiliation(s)
- Srikanth Katla
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Naresh Mohan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
4
|
Katla S, Karmakar B, Tadi SRR, Mohan N, Anand B, Pal U, Sivaprakasam S. High level extracellular production of recombinant human interferon alpha 2b in glycoengineered Pichia pastoris: culture medium optimization, high cell density cultivation and biological characterization. J Appl Microbiol 2019; 126:1438-1453. [PMID: 30776176 DOI: 10.1111/jam.14227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
AIMS The present study was aimed at design of experiments (DoE)- and artificial intelligence-based culture medium optimization for high level extracellular production of a novel recombinant human interferon alpha 2b (huIFNα2b) in glycoengineered Pichia pastoris and its characterization. METHODS AND RESULTS The artificial neural network-genetic algorithm model exhibited improved huIFNα2b production and better predictability compared to response surface methodology. The optimized medium exhibited a fivefold increase in huIFNα2b titre compared to the complex medium. A maximum titre of huIFNα2b (436 mg l-1 ) was achieved using the optimized medium in the bioreactor. Real-time capacitance data from dielectric spectroscopy were utilized to model the growth kinetics with unstructured models. Biological characterization by antiproliferative assay proved that the purified recombinant huIFNα2b was biologically active, exhibiting growth inhibition on breast cancer cell line. CONCLUSIONS Culture medium optimization resulted in enhanced production of huIFNα2b in glycoengineered P. pastoris at both shake flask and bioreactor level. The purified huIFNα2b was found to be N-glycosylated and biologically active. SIGNIFICANCE AND IMPACT OF THE STUDY DoE-based medium optimization strategy significantly improved huIFNα2b production. The antiproliferative activity of huIFNα2b substantiates its potential scope for application in cancer therapy.
Collapse
Affiliation(s)
- S Katla
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - B Karmakar
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - S R R Tadi
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - N Mohan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - B Anand
- MAB Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - U Pal
- Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - S Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
5
|
Design, biological activity and signaling pathway of bovine consensus omega interferon expressed in Pichia pastoris. Mol Immunol 2018; 106:46-52. [PMID: 30576951 DOI: 10.1016/j.molimm.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/19/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022]
Abstract
The bovine IFN-ω (BoIFN-ω) multigene family is located on chromosome 8, which has 14 potential functional genes and 10 pseudogenes. After aligning 14 BoIFN-ω subtypes and assigning the most frequently occurring amino acids in each position, one artificial consensus BoIFN-ω (CoBoIFN-ω) gene was designed, optimized and synthesized. Then, CoBoIFN-ω was expressed in Pichia pastoris, which was demonstrated to have 3.94-fold and 14.3-fold higher antiviral activity against VSV on MDBK cells than that of BoIFN-ω24 and BoIFN-ω3, respectively. Besides this, CoBoIFN-ω was confirmed to have antiviral activity against VSV on BL, BT, PK-15 cells, and against BEV, BHV-1, BPIV3 on MDBK cells. Additionally, CoBoIFN-ω could bind with bovine type I IFN receptors, and then activate the promoters of NF-κB, ISRE and BoIFN-β, and induce the transcription of ISGs and expression of Mx1 and NF-κB p65, which suggested CoBoIFN-ω exerts antiviral activity via activation of the JAK-STAT signaling pathway. Overall, this research on CoBoIFN-ω not only extends and improves consensus IFN research, but also reveals that CoBoIFN-ω has the potential to be used in the therapy of bovine viral diseases.
Collapse
|
6
|
El-Baky NA, Uversky VN, Redwan EM. Human consensus interferons: Bridging the natural and artificial cytokines with intrinsic disorder. Cytokine Growth Factor Rev 2015; 26:637-45. [DOI: 10.1016/j.cytogfr.2015.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
|
7
|
Khan WA, Qureshi JA. Increased binding of circulating systemic lupus erythematosus autoantibodies to recombinant interferon alpha 2b. APMIS 2015; 123:1016-24. [DOI: 10.1111/apm.12464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/22/2015] [Indexed: 12/09/2022]
Affiliation(s)
- Wahid Ali Khan
- Department of Clinical Biochemistry; College of Medicine; King Khalid University; Abha Saudi Arabia
| | - Javed Anwer Qureshi
- Department of Clinical Biochemistry; College of Medicine; King Khalid University; Abha Saudi Arabia
| |
Collapse
|
8
|
Pedro AQ, Martins LM, Dias JML, Bonifácio MJ, Queiroz JA, Passarinha LA. An artificial neural network for membrane-bound catechol-O-methyltransferase biosynthesis with Pichia pastoris methanol-induced cultures. Microb Cell Fact 2015; 14:113. [PMID: 26246150 PMCID: PMC4527236 DOI: 10.1186/s12934-015-0304-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Membrane proteins are important drug targets in many human diseases and gathering structural information regarding these proteins encourages the pharmaceutical industry to develop new molecules using structure-based drug design studies. Specifically, membrane-bound catechol-O-methyltransferase (MBCOMT) is an integral membrane protein that catalyzes the methylation of catechol substrates and has been linked to several diseases such as Parkinson's disease and Schizophrenia. Thereby, improvements in the clinical outcome of the therapy to these diseases may come from structure-based drug design where reaching MBCOMT samples in milligram quantities are crucial for acquiring structural information regarding this target protein. Therefore, the main aim of this work was to optimize the temperature, dimethylsulfoxide (DMSO) concentration and the methanol flow-rate for the biosynthesis of recombinant MBCOMT by Pichia pastoris bioreactor methanol-induced cultures using artificial neural networks (ANN). RESULTS The optimization trials intended to evaluate MBCOMT expression by P. pastoris bioreactor cultures led to the development of a first standard strategy for MBCOMT bioreactor biosynthesis with a batch growth on glycerol until the dissolved oxygen spike, 3 h of glycerol feeding and 12 h of methanol induction. The ANN modeling of the aforementioned fermentation parameters predicted a maximum MBCOMT specific activity of 384.8 nmol/h/mg of protein at 30°C, 2.9 mL/L/H methanol constant flow-rate and with the addition of 6% (v/v) DMSO with almost 90% of healthy cells at the end of the induction phase. These results allowed an improvement of MBCOMT specific activity of 6.4-fold in comparison to that from the small-scale biosynthesis in baffled shake-flasks. CONCLUSIONS The ANN model was able to describe the effects of temperature, DMSO concentration and methanol flow-rate on MBCOMT specific activity, as shown by the good fitness between predicted and observed values. This experimental procedure highlights the potential role of chemical chaperones such as DMSO in improving yields of recombinant membrane proteins with a different topology than G-coupled receptors. Finally, the proposed ANN shows that the manipulation of classic fermentation parameters coupled with the addition of specific molecules can open and reinforce new perspectives in the optimization of P. pastoris bioprocesses for membrane proteins biosynthesis.
Collapse
Affiliation(s)
- Augusto Q Pedro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| | - Luís M Martins
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| | - João M L Dias
- Department of Biochemistry, Cambridge System Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Maria J Bonifácio
- Departamento de Investigação e Desenvolvimento, Bial, 4745-457, São Mamede do Coronado, Portugal.
| | - João A Queiroz
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| | - Luís A Passarinha
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| |
Collapse
|
9
|
Heiss S, Puxbaum V, Gruber C, Altmann F, Gasser B, Mattanovich D. Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology (Reading) 2015; 161:1356-68. [DOI: 10.1099/mic.0.000105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
El-Baky NA, Redwan EM. Therapeutic alpha-interferons protein: structure, production, and biosimilar. Prep Biochem Biotechnol 2015; 45:109-27. [PMID: 24785737 DOI: 10.1080/10826068.2014.907175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 2007, the world solemnized the golden jubilee of the discovery of interferon (IFN). Interferon is a small protein messenger called a pluripotent cytokine, produced by several cells of the host in response to various biological as well as synthetic stimuli. There are three major classes of interferons in humans: IFN-alpha, IFN-beta, and IFN-gamma. As a treatment option, interferon-alpha (IFN-α) is the most effective one. IFN-α has proved to be effective as an antiviral therapy and tumor-fighting drug in the past two decades. Meanwhile, great progress has been achieved in establishing IFN-α as the first choice of antiviral therapy for chronic hepatitis C virus (HCV) patients. Recently, novel pegylated IFN-α2 products with extended in vivo half-lives and consensus interferon, an artificially engineered type I interferon, have been developed to substantially improve treatment regimes for HCV patients. Undesirable acute and chronic side effects in addition to immunogenicity of therapeutic IFN products remain constraints to conquer for further improvements in clinical applications of IFN. It is certainly expected that more research will be conducted in the future, not only to face these challenges but also to extend the range of IFN products and their clinical targets. The objective herein is to review the current therapeutic alpha-interferons production, formulation technologies, and prospective future for the original entity and its biogeneric version.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- a Biological Sciences Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia
| | | |
Collapse
|
11
|
Mutations of the human interferon alpha-2b gene in brain tumor patients exposed to different environmental conditions. Cancer Gene Ther 2015; 22:246-61. [DOI: 10.1038/cgt.2015.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/24/2023]
|
12
|
Lin YK, Ooi CW, Tan JS, Show PL, Ariff A, Ling TC. Recovery of human interferon alpha-2b from recombinant Escherichia coli using alcohol/salt-based aqueous two-phase systems. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.09.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Ertürk G, Bereli N, Tümer MA, Say R, Denizli A. Molecularly imprinted cryogels for human interferon-alpha purification from human gingival fibroblast culture. J Mol Recognit 2013; 26:633-42. [DOI: 10.1002/jmr.2305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 07/01/2013] [Accepted: 07/31/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Gizem Ertürk
- Department of Biology; Hacettepe University; Ankara Turkey
| | - Nilay Bereli
- Department of Chemistry; Hacettepe University; Ankara Turkey
| | - M. Aşkın Tümer
- Department of Biology; Hacettepe University; Ankara Turkey
| | - Rıdvan Say
- Department of Chemistry; Anadolu University; Eskişehir Turkey
| | - Adil Denizli
- Department of Chemistry; Hacettepe University; Ankara Turkey
| |
Collapse
|
14
|
Eilert E, Rolf T, Heumaier A, Hollenberg CP, Piontek M, Suckow M. Improved processing of secretory proteins in Hansenula polymorpha by sequence variation near the processing site of the alpha mating factor prepro sequence. J Biotechnol 2013; 167:94-100. [DOI: 10.1016/j.jbiotec.2012.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/27/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
|
15
|
Gull I, Samra ZQ, Aslam MS, Athar MA. Heterologous expression, immunochemical and computational analysis of recombinant human interferon alpha 2b. SPRINGERPLUS 2013; 2:264. [PMID: 23875128 PMCID: PMC3695685 DOI: 10.1186/2193-1801-2-264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022]
Abstract
Interferon alpha 2b (IFNα-2b) is an important cytokine and used for antiviral and anticancer treatment. The low cost production of IFNα-2b with high biological activity is necessary to provide the interferon therapy to the hepatitis patients in Pakistan. In the present study, human interferon alpha 2b (hIFNα-2b) gene from a healthy person was cloned and overexpressed in E. coli BL21(DE3). The molecular weight of the expressed hIFNα-2b is 19 kDa. The over expressed recombinant hIFNα-2b was checked by ELISA using antibodies raised against commercially available hIFNα-2b. The biocomputational analysis of recombinant hIFNα-2b gene showed the 99.9% nucleotide sequence and 100% deduced amino acid sequence homology with reported sequences of IFNα-2b. The predicted 3D-structure showed mainly five α-helices, one 310 helix and two disulfide bonds at Cys1-Cys98 and Cys129-Cys138. The amino acid sequence alignment indicated that the disulfide linkage position is conserved in all IFNα family members. On the basis of sequence homology among interferon alpha family, new potent variants of hIFNα-2b with enhance efficacy can be produced. Indigenous production of IFNα-2b from gene of local population will reduce the cost and increase tolerability of interferon therapy.
Collapse
Affiliation(s)
- Iram Gull
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590 Pakistan
| | | | | | | |
Collapse
|
16
|
Chew AL, Tan WY, Khoo BY. Potential combinatorial effects of recombinant atypical chemokine receptors in breast cancer cell invasion: A research perspective. Biomed Rep 2013; 1:185-192. [PMID: 24648916 DOI: 10.3892/br.2013.57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/22/2012] [Indexed: 12/28/2022] Open
Abstract
Apart from their major function in the coordination of leukocyte recruitment, chemokines, in cooperation with their receptors, have been implicated in the progression of various diseases including different types of cancer, affecting survival, proliferation and metastasis. A complex network of chemokines and receptors exists in the tumor microenvironment and affects tumor development in various ways where chemokines activate typical signalling pathways by binding to the respective receptors. The identification and characterization of a group of atypical chemokine receptors [D6, Duffy antigen receptor for chemokines (DARC), ChemoCentryx chemokine receptor (CCX-CKR) and CXCR7] which appear to use unique biochemical properties to regulate the biological activities of these chemokines, is useful in the effort to therapeutically manipulate chemokines in a broad spectrum of diseases in which these chemokines play a critical role. The aim of this review was to investigate the combinatorial effect of two reported atypical chemokine receptors, D6 and DARC, on breast cancer cell invasion to understand their role and therapeutic potential in cancer treatment. In this regard, findings of the present review should be confirmed via the construction of recombinant D6 and DARC clones as well as the expression of the respective recombinant proteins using the Pichia pastoris (P. pastoris) expression system is to be performed in a future study in order to support findings of the current review.
Collapse
Affiliation(s)
- Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Wee Yee Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
17
|
Gerasimov AS, Zeinalov OA, El’darov MA, Shul’ga AA. Biosynthesis of human β2-adrenergic receptor in methylotrophic yeast Pichia pastoris and its purification. Mol Biol 2012. [DOI: 10.1134/s0026893312020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|