1
|
van Sluijs B, Zhou T, Helwig B, Baltussen MG, Nelissen FHT, Heus HA, Huck WTS. Iterative design of training data to control intricate enzymatic reaction networks. Nat Commun 2024; 15:1602. [PMID: 38383500 PMCID: PMC10881569 DOI: 10.1038/s41467-024-45886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Kinetic modeling of in vitro enzymatic reaction networks is vital to understand and control the complex behaviors emerging from the nonlinear interactions inside. However, modeling is severely hampered by the lack of training data. Here, we introduce a methodology that combines an active learning-like approach and flow chemistry to efficiently create optimized datasets for a highly interconnected enzymatic reactions network with multiple sub-pathways. The optimal experimental design (OED) algorithm designs a sequence of out-of-equilibrium perturbations to maximize the information about the reaction kinetics, yielding a descriptive model that allows control of the output of the network towards any cost function. We experimentally validate the model by forcing the network to produce different product ratios while maintaining a minimum level of overall conversion efficiency. Our workflow scales with the complexity of the system and enables the optimization of previously unobtainable network outputs.
Collapse
Affiliation(s)
- Bob van Sluijs
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Tao Zhou
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands.
| | - Britta Helwig
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Mathieu G Baltussen
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands.
| |
Collapse
|
2
|
Olenginski LT, Becette OB, Beaucage SL, Dayie TK. Synthesis of an Atom-Specifically 2 H/ 13 C-Labeled Uridine Ribonucleoside Phosphoramidite. Curr Protoc 2022; 2:e481. [PMID: 35862131 DOI: 10.1002/cpz1.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A combined enzymatic and chemical synthesis of a 2'-O-cyanoethoxymethyl (CEM) protected [1',6-13 C2 , 5-2 H]-uridine phosphoramidite is described herein. This is the first report of an atom-specific nucleobase and ribose labeled 2'-O-CEM protected ribonucleoside phosphoramidite. Importantly, the CEM 2'-OH protecting group permits the efficient solid-phase synthesis of large (>60 nucleotides) RNAs with good yield and purity. The new isotope-labeled phosphoramidite can therefore be applied to nuclear magnetic resonance (NMR) spectroscopy studies. Specifically, the [1',6-13 C2 , 5-2 H]-uridine phosphoramidite can be used to make position-specifically labeled RNAs for NMR analysis without complications from resonance overlap and scalar and dipolar couplings. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the ribonucleoside 6 Basic Protocol 2: Synthesis of the ribonucleoside phosphoramidite 11.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Owen B Becette
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
- Current Address: Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| |
Collapse
|
3
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Chopra NK, Sondhi S. Cloning, expression and characterization of laccase from Bacillus licheniformis NS2324 in E. coli application in dye decolorization. Int J Biol Macromol 2022; 206:1003-1011. [PMID: 35337908 DOI: 10.1016/j.ijbiomac.2022.03.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Laccase gene from Bacillus licheniformis NS2324 was cloned and expressed in E. coli by using pUC 18 as cloning vector and pet 15b as expression vector. The purified recombinant laccase (rLacNS2324) showed a molecular mass of 66 KDa. The optimum pH and temperature for rLacNS2324 was found to be pH 8 and 40 °C respectively. The half life of rLacNS2324 at pH 7, 8 and 9 is 24 h. The half life of laccase at 45 °C is 8 h. Laccase activity was increased in the presence of Cu2+ (135.3%), Mn2+ (283.76%), and Co2+ (199.96%) at 5 mM of concentration, but inhibited to 17.01% in the presence of 5 mM Zn2+ ions. rLacNS2324 was found tolerant to NaCl and NaI. Among the inhibitors, it was found to be tolerant to EDTA, however, its activity was inhibited in the presence of sodium azide, dithiothreitol and β-mercapethanol. rLacNS2324 was able to decolorize a bromophenol blue by 85% and phenol red by 75% in 1 h without any mediator. Methylene blue was almost completely degraded (99.28% decolorization) by 10 IUml-1 of laccase at 40 °C, pH 8.0 and in time 4 h. Overall rLacNS2324 showed ability to be used industrially to decolorize dyes in an eco-friendly and cost effective way.
Collapse
Affiliation(s)
- Navleen Kaur Chopra
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sonica Sondhi
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, 140307 Mohali, Punjab, India.
| |
Collapse
|
5
|
Taiwo KM, Olenginski LT, Nußbaumer F, Nam H, Hilber S, Kreutz C, Dayie TK. Synthesis of [7- 15N]-GTPs for RNA structure and dynamics by NMR spectroscopy. MONATSHEFTE FUR CHEMIE 2022; 153:293-299. [PMID: 35400760 PMCID: PMC8948113 DOI: 10.1007/s00706-022-02892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
Several isotope-labeling strategies have been developed for the study of RNA by nuclear magnetic resonance (NMR) spectroscopy. Here, we report a combined chemical and enzymatic synthesis of [7-15N]-guanosine-5'-triphosphates for incorporation into RNA via T7 RNA polymerase-based in vitro transcription. We showcase the utility of these labels to probe both structure and dynamics in two biologically important RNAs. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-022-02892-1.
Collapse
Affiliation(s)
- Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hyeyeon Nam
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
- Present Address: Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
6
|
Synthesis of atom-specific nucleobase and ribose labeled uridine phosphoramidite for NMR analysis of large RNAs. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02851-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
8
|
Chemo-enzymatic synthesis of 13C- and 19F-labeled uridine-5′-triphosphate for RNA NMR probing. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Becette OB, Zong G, Chen B, Taiwo KM, Case DA, Dayie TK. Solution NMR readily reveals distinct structural folds and interactions in doubly 13C- and 19F-labeled RNAs. SCIENCE ADVANCES 2020; 6:6/41/eabc6572. [PMID: 33028531 PMCID: PMC7541061 DOI: 10.1126/sciadv.abc6572] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 06/10/2023]
Abstract
RNAs form critical components of biological processes implicated in human diseases, making them attractive for small-molecule therapeutics. Expanding the sites accessible to nuclear magnetic resonance (NMR) spectroscopy will provide atomic-level insights into RNA interactions. Here, we present an efficient strategy to introduce 19F-13C spin pairs into RNA by using a 5-fluorouridine-5'-triphosphate and T7 RNA polymerase-based in vitro transcription. Incorporating the 19F-13C label in two model RNAs produces linewidths that are twice as sharp as the commonly used 1H-13C spin pair. Furthermore, the high sensitivity of the 19F nucleus allows for clear delineation of helical and nonhelical regions as well as GU wobble and Watson-Crick base pairs. Last, the 19F-13C label enables rapid identification of a small-molecule binding pocket within human hepatitis B virus encapsidation signal epsilon (hHBV ε) RNA. We anticipate that the methods described herein will expand the size limitations of RNA NMR and aid with RNA-drug discovery efforts.
Collapse
Affiliation(s)
- Owen B Becette
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Kehinde M Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA.
| |
Collapse
|
10
|
Chemo-enzymatic synthesis of [2-13C, 7-15 N]-ATP for facile NMR analysis of RNA. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02667-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Veerareddygari GR, Mueller EG. Kinetic Isotope Effect Studies to Elucidate the Reaction Mechanism of RNA-Modifying Enzymes. Methods Enzymol 2017; 596:523-546. [DOI: 10.1016/bs.mie.2017.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Nelissen FHT, Tessari M, Wijmenga SS, Heus HA. Stable isotope labeling methods for DNA. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:89-108. [PMID: 27573183 DOI: 10.1016/j.pnmrs.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Sybren S Wijmenga
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Chemo-enzymatic labeling for rapid assignment of RNA molecules. Methods 2016; 103:11-7. [PMID: 27090003 DOI: 10.1016/j.ymeth.2016.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
Even though Nuclear Magnetic Resonance (NMR) spectroscopy is one of the few techniques capable of determining atomic resolution structures of RNA, it is constrained by two major problems of chemical shift overlap of resonances and rapid signal loss due to line broadening. Emerging tools to tackle these problems include synthesis of atom specifically labeled or chemically modified nucleotides. Herein we review the synthesis of these nucleotides, the design and production of appropriate RNA samples, and the application and analysis of the NMR experiments that take advantage of these labels.
Collapse
|
14
|
Alvarado LJ, Longhini AP, LeBlanc RM, Chen B, Kreutz C, Dayie TK. Chemo-enzymatic synthesis of selectively ¹³C/¹⁵N-labeled RNA for NMR structural and dynamics studies. Methods Enzymol 2015; 549:133-62. [PMID: 25432748 DOI: 10.1016/b978-0-12-801122-5.00007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RNAs are an important class of cellular regulatory elements, and they are well characterized by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy in their folded or bound states. However, the apo or unfolded states are more difficult to characterize by either method. Particularly, effective NMR spectroscopy studies of RNAs in the past were hampered by chemical shift overlap of resonances and associated rapid signal loss due to line broadening for RNAs larger than the median size found in the PDB (~25 nt); most functional riboswitches are bigger than this median size. Incorporation of selective site-specific (13)C/(15)N-labeled nucleotides into RNAs promises to overcome this NMR size limitation. Unlike previous isotopic enrichment methods such as phosphoramidite, de novo, uniform-labeling, and selective-biomass approaches, this newer chemical-enzymatic selective method presents a number of advantages for producing labeled nucleotides over these other methods. For example, total chemical synthesis of nucleotides, followed by solid-phase synthesis of RNA using phosphoramidite chemistry, while versatile in incorporating isotope labels into RNA at any desired position, faces problems of low yields (<10%) that drop precipitously for oligonucleotides larger than 50 nt. The alternative method of de novo pyrimidine biosynthesis of NTPs is also a robust technique, with modest yields of up to 45%, but it comes at the cost of using 16 enzymes, expensive substrates, and difficulty in making some needed labeling patterns such as selective labeling of the ribose C1' and C5' and the pyrimidine nucleobase C2, C4, C5, or C6. Biomass-produced, uniformly or selectively labeled NTPs offer a third method, but suffer from low overall yield per labeled input metabolite and isotopic scrambling with only modest suppression of (13)C-(13)C couplings. In contrast to these four methods, our current chemo-enzymatic approach overcomes most of these shortcomings and allows for the synthesis of gram quantities of nucleotides with >80% yields while using a limited number of enzymes, six at most. The unavailability of selectively labeled ribose and base precursors had prevented the effective use of this versatile method until now. Recently, we combined an improved organic synthetic approach that selectively places (13)C/(15)N labels in the pyrimidine nucleobase (either (15)N1, (15)N3, (13)C2, (13)C4, (13)C5, or (13)C6 or any combination) with a very efficient enzymatic method to couple ribose with uracil to produce previously unattainable labeling patterns (Alvarado et al., 2014). Herein we provide detailed steps of both our chemo-enzymatic synthesis of custom nucleotides and their incorporation into RNAs with sizes ranging from 29 to 155 nt and showcase the dramatic improvement in spectral quality of reduced crowding and narrow linewidths. Applications of this selective labeling technology should prove valuable in overcoming two major obstacles, chemical shift overlap of resonances and associated rapid signal loss due to line broadening, that have impeded studying the structure and dynamics of large RNAs such as full-length riboswitches larger than the ~25 nt median size of RNA NMR structures found in the PDB.
Collapse
Affiliation(s)
- Luigi J Alvarado
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Andrew P Longhini
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Regan M LeBlanc
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain, Innsbruck, Austria
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
15
|
Azad R, Ingle S, Tullius T. Deuterated nucleotides as chemical probes of RNA structure: a detailed protocol for the enzymatic synthesis of a complete set of nucleotides specifically deuterated at ribose carbons. SCIENCEOPEN RESEARCH 2015. [DOI: 10.14293/s2199-1006.1.sor-life.alcjcn.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
We describe here a detailed protocol for the synthesis of ribonucleotides specifically deuterated at each ribose carbon atom. We synthesized 20 specifically deuterated ribonucleotides: ATP, CTP, GTP, and UTP, each of which contained one of five deuterated riboses (either 1′-D, 2″-D, 3′-D, 4′-D, or 5′,5″-D2). Our synthetic approach is inspired by the pioneering work of Tolbert and Williamson, who developed a method for the convenient one-pot enzymatic synthesis of nucleotides (Tolbert, T. J. and Williamson, J. R. (1996) J. Am. Chem. Soc. 118, 7929–7940). Our protocol consists of a comprehensive list of required chemical and enzymatic reagents and equipment, detailed procedures for enzymatic assays and nucleotide synthesis, and chromatographic procedures for purification of deuterated nucleotides. As an example of the utility of specifically deuterated nucleotides, we used them to synthesize specifically deuterated sarcin/ricin loop (SRL) RNA and measured the deuterium kinetic isotope effect on hydroxyl radical cleavage of the SRL.
Collapse
|
16
|
Alvarado LJ, LeBlanc RM, Longhini AP, Keane SC, Jain N, Yildiz ZF, Tolbert BS, D'Souza VM, Summers MF, Kreutz C, Dayie TK. Regio-selective chemical-enzymatic synthesis of pyrimidine nucleotides facilitates RNA structure and dynamics studies. Chembiochem 2014; 15:1573-7. [PMID: 24954297 DOI: 10.1002/cbic.201402130] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 12/16/2022]
Abstract
Isotope labeling has revolutionized NMR studies of small nucleic acids, but to extend this technology to larger RNAs, site-specific labeling tools to expedite NMR structural and dynamics studies are required. Using enzymes from the pentose phosphate pathway, we coupled chemically synthesized uracil nucleobase with specifically (13) C-labeled ribose to synthesize both UTP and CTP in nearly quantitative yields. This chemoenzymatic method affords a cost-effective preparation of labels that are unattainable by current methods. The methodology generates versatile (13) C and (15) N labeling patterns which, when employed with relaxation-optimized NMR spectroscopy, effectively mitigate problems of rapid relaxation that result in low resolution and sensitivity. The methodology is demonstrated with RNAs of various sizes, complexity, and function: the exon splicing silencer 3 (27 nt), iron responsive element (29 nt), Pro-tRNA (76 nt), and HIV-1 core encapsidation signal (155 nt).
Collapse
Affiliation(s)
- Luigi J Alvarado
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, 1115 Biomolecular Sciences Building, College Park, MD 20782 (USA)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guan Y, Wang J, Sun J. A method for determination of hexokinase activity by RP-HPLC. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11859-011-0793-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|