1
|
Teotia V, Jha P, Chopra M. Discovery of Potential Inhibitors of CDK1 by Integrating Pharmacophore-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation Studies, and Evaluation of Their Inhibitory Activity. ACS OMEGA 2024; 9:39873-39892. [PMID: 39346877 PMCID: PMC11425824 DOI: 10.1021/acsomega.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
The ability of CDK1 to compensate for the absence of other cell cycle CDKs poses a great challenge to treat cancers that overexpress these proteins. Despite several studies focusing on the area, there are no FDA-approved drugs selectively targeting CDK1. Here, the study aimed to develop potential CDK1 selective inhibitors through drug repurposing and leveraging the structural insights provided by the hit molecules generated. Approximately 280,000 compounds from DrugBank, Selleckchem, Otava and an in-house library were screened initially based on fit values using 3D QSAR pharmacophores built for CDK1 and subsequently through Lipinski, ADMET, and TOPKAT filters. 10,310 hits were investigated for docking into the binding site of CDK1 determined using the crystal structure of human CDK1 in complex with NU6102. The best 55 hits with better docking scores were further analyzed, and 12 hits were selected for 100 ns MD simulations followed by binding energy calculations using the MM-PBSA method. Finally, 10 hit molecules were tested in an in vitro CDK1 Kinase inhibition assay. Out of these, 3 hits showed significant CDK1 inhibitory potential with IC50 < 5 μM. These results indicate these compounds can be used to develop subtype-selective CDK1 inhibitors with better efficacy and reduced toxicities in the future.
Collapse
Affiliation(s)
- Vineeta Teotia
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Prakash Jha
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Madhu Chopra
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Campuzano S, Barderas R, Moreno-Casbas MT, Almeida Á, Pingarrón JM. Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level. Anal Bioanal Chem 2024; 416:2151-2172. [PMID: 37420009 PMCID: PMC10951035 DOI: 10.1007/s00216-023-04805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Maria Teresa Moreno-Casbas
- Nursing and Healthcare Research Unit (Investén-isciii), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángeles Almeida
- Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
3
|
Velayuthan LP, Moretto L, Tågerud S, Ušaj M, Månsson A. Virus-free transfection, transient expression, and purification of human cardiac myosin in mammalian muscle cells for biochemical and biophysical assays. Sci Rep 2023; 13:4101. [PMID: 36907906 PMCID: PMC10008826 DOI: 10.1038/s41598-023-30576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Myosin expression and purification is important for mechanistic insights into normal function and mutation induced changes. The latter is particularly important for striated muscle myosin II where mutations cause several debilitating diseases. However, the heavy chain of this myosin is challenging to express and the standard protocol, using C2C12 cells, relies on viral infection. This is time and work intensive and associated with infrastructural demands and biological hazards, limiting widespread use and hampering fast generation of a wide range of mutations. We here develop a virus-free method to overcome these challenges. We use this system to transfect C2C12 cells with the motor domain of the human cardiac myosin heavy chain. After optimizing cell transfection, cultivation and harvesting conditions, we functionally characterized the expressed protein, co-purified with murine essential and regulatory light chains. The gliding velocity (1.5-1.7 µm/s; 25 °C) in the in vitro motility assay as well as maximum actin activated catalytic activity (kcat; 8-9 s-1) and actin concentration for half maximal activity (KATPase; 70-80 µM) were similar to those found previously using virus based infection. The results should allow new types of studies, e.g., screening of a wide range of mutations to be selected for further characterization.
Collapse
Affiliation(s)
- Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Sven Tågerud
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| |
Collapse
|
4
|
Deane DT, Cope TA, Schulz AM, Bennett ET, Hughes RM. Design, Heterologous Expression, and Application of an Immobilized Protein Kinase. Bioconjug Chem 2023; 34:204-211. [PMID: 36379001 DOI: 10.1021/acs.bioconjchem.2c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase A (PKA) is a biologically important enzyme for cell regulation, often referred to as the "central kinase". An immobilized PKA that retains substrate specificity and activity would be a useful tool for laboratory scientists, enabling targeted phosphorylation without interference from downstream kinase contamination or kinase autophosphorylation in sensitive assays. Moreover, it might also provide the benefits of robustness and reusability that are often associated with immobilized enzyme preparations. In this work, we describe the creation of a recombinant PKA fusion protein that incorporates the HaloTag covalent immobilization system. We demonstrate that protein fusion design, including affinity tag placement, is critical for optimal heterologous expression in Escherichia coli. Furthermore, we demonstrate various applications of our immobilized PKA, including the phosphorylation of recombinant PKA substrates, such as vasodilator-stimulated phosphoprotein, and endogenous PKA substrates in a cell lysate. This immobilized PKA also possesses robust activity and reusability over multiple trials. This work holds promise as a generalizable strategy for the production and application of immobilized protein kinases.
Collapse
Affiliation(s)
- Dalton T Deane
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Thomas A Cope
- University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Anna M Schulz
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Edward T Bennett
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
5
|
Shams R, Ito Y, Miyatake H. Evaluation of the Binding Kinetics of RHEB with mTORC1 by In-Cell and In Vitro Assays. Int J Mol Sci 2021; 22:ijms22168766. [PMID: 34445471 PMCID: PMC8395731 DOI: 10.3390/ijms22168766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, Ras homolog enriched in brain (RHEB–GTPase). On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and the focal adhesion targeting (FAT) domain, which allosterically regulates ATP binding in the active site for further phosphorylation. The crucial role of RHEB in regulating growth and survival through mTORC1 makes it a targetable site for anti-cancer therapeutics. However, the binding kinetics of RHEB to mTORC1 is still unknown at the molecular level. Therefore, we studied the kinetics by in vitro and in-cell protein–protein interaction (PPI) assays. To this end, we used the split-luciferase system (NanoBiT®) for in-cell studies and prepared proteins for the in vitro measurements. Consequently, we demonstrated that RHEB binds to the whole mTOR both in the presence or absence of GTPγS, with five-fold weaker affinity in the presence of GTPγS. In addition, RHEB bound to the truncated mTOR fragments of N-heat domain (∆N, aa 60–167) or M-heat domain (∆M, aa 967–1023) with the same affinity in the absence of GTP. The reconstructed binding site of RHEB, ∆N-FAT-M, however, bound to RHEB with the same affinity as ∆N-M, indicating that the FAT domain (∆FAT, aa 1240–1360) is dispensable for RHEB binding. Furthermore, RHEB bound to the truncated kinase domain (∆ATP, aa 2148–2300) with higher affinity than to ∆N-FAT-M. In conclusion, RHEB engages two different binding sites of mTOR, ∆N-FAT-M and ∆ATP, with higher affinity for ∆ATP, which likely regulates the kinase activity of mTOR through multiple different biding modes.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan; (R.S.); (Y.I.)
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City 338-8570, Saitama, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan; (R.S.); (Y.I.)
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Saitama, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City 338-8570, Saitama, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Saitama, Japan
- Correspondence: ; Tel.: +81-48-467-4979
| |
Collapse
|
6
|
Campuzano S, Barderas R, Yáñez-Sedeño P, Pingarrón JM. Electrochemical biosensing to assist multiomics analysis in precision medicine. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 28:100703. [DOI: 10.1016/j.coelec.2021.100703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Abstract
HaloTag is a modified haloalkane dehalogenase used for many applications in chemical biology including protein purification, cell-based imaging, and cytosolic penetration assays. While working with purified, recombinant HaloTag protein, we discovered that HaloTag forms an internal disulfide bond under oxidizing conditions. In this work, we describe this internal disulfide formation and the conditions under which it occurs, and we identify the relevant cysteine residues. Further, we develop a mutant version of HaloTag, HaloTag8, that maintains activity while avoiding internal disulfide formation altogether. While there is no evidence that HaloTag is prone to disulfide formation in intracellular environments, researchers using recombinant HaloTag, HaloTag expressed on the cell surface, or HaloTag in the extracellular space might consider using HaloTag8 to avoid intramolecular disulfide formation.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Halo-tagged protein immobilization: Effect of halide linkers on peak profile and drug-protein interaction. J Chromatogr A 2021; 1640:461946. [PMID: 33556682 DOI: 10.1016/j.chroma.2021.461946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
In previous work, we have established a one-step method to immobilize halo-tagged proteins onto microspheres through the covalent bond formed between the halo-tag and the halide linkers on the support surface. We observe extremely tailed peaks of most of drugs on the immobilized proteins, which is reasoned by the nonspecific interaction between the linkers and the drugs. To prove this, the current work designed five different halide linkers for the immobilization of beta2-adrenoceptor (β2-AR). We applied the immobilized receptor to systematically realize the effects of these halide linkers on drug-receptor interaction by analyzing peak profiles of five drugs. The retention times and the half-widths of the drugs appeared to be negatively correlated to the atom numbers of the linkers in the range of 6-13 atoms. Subsequent increase of linker atoms resulted in reduced retention times and wider peaks of the drugs. Applying identical linker length, we observed clear reduced retention times and half-widths of the five drugs than the linker in the absence of oxygen atom. Such improvement was dominated by the number of oxygen atoms. These indicated that linker S-4 (2-(2-(2-(2-chloroethoxy) ethoxy) ethoxy) acetic acid) was optimal to eliminate the unwanted non-specific interactions. In comparison with the columns prepared by linker S-1 (6-chlorocaproic acid) and histidine tagged β2-AR, the drugs on the linker S-4 column gave greater dissociation rate constants (e.g. 60.3±0.3 s-1 for salbutamol), which is closer to the data in literatures. Taking together, we concluded that optimization of the linker structure plays particular role in reducing the non-specific interaction between the immobilized protein and the drugs, thereby making the determination of drug-protein interaction more reliable.
Collapse
|
9
|
Hoelzel CA, Zhang X. Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies. Chembiochem 2020; 21:1935-1946. [PMID: 32180315 PMCID: PMC7367766 DOI: 10.1002/cbic.202000037] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific insights that are difficult to obtain by traditional methodologies. As the multiplex of self-labeling protein tag systems continues to be developed and expanded, the utility of these protein tags will allow researchers to address previously inaccessible questions at the forefront of biology.
Collapse
Affiliation(s)
- Conner A Hoelzel
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| |
Collapse
|
10
|
Garranzo-Asensio M, Guzmán-Aránguez A, Povedano E, Ruiz-Valdepeñas Montiel V, Poves C, Fernandez-Aceñero MJ, Montero-Calle A, Solís-Fernández G, Fernandez-Diez S, Camps J, Arenas M, Rodríguez-Tomàs E, Joven J, Sanchez-Martinez M, Rodriguez N, Dominguez G, Yáñez-Sedeño P, Pingarrón JM, Campuzano S, Barderas R. Multiplexed monitoring of a novel autoantibody diagnostic signature of colorectal cancer using HaloTag technology-based electrochemical immunosensing platform. Theranostics 2020; 10:3022-3034. [PMID: 32194852 PMCID: PMC7053203 DOI: 10.7150/thno.42507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose: The humoral immune response in cancer patients can be used for early detection of the disease. Autoantibodies raised against tumor-associated antigens (TAAs) are promising clinical biomarkers for reliable cancer diagnosis, prognosis, and therapy monitoring. In this study, an electrochemical disposable multiplexed immunosensing platform able to integrate difficult- and easy-to-express colorectal cancer (CRC) TAAs is reported for the sensitive determination of eight CRC-specific autoantibodies. Methods: The electrochemical immunosensing approach involves the use of magnetic microcarriers (MBs) as solid supports modified with covalently immobilized HaloTag fusion proteins for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric responses measured using the hydroquinone (HQ)/H2O2 system were related to the levels of autoantibodies in plasma. Results: The biosensing platform was applied to the analysis of autoantibodies against 8 TAAs described for the first time in this work in plasma samples from healthy asymptomatic individuals (n=3), and patients with high-risk of developing CRC (n=3), and from patients already diagnosed with colorectal (n=3), lung (n=2) or breast (n=2) cancer. The developed bioplatform demonstrated an improved discrimination between CRC patients and controls (asymptomatic healthy individuals and breast and lung cancer patients) compared to an ELISA-like luminescence test. Conclusions: The proposed methodology uses a just-in-time produced protein in a simpler protocol, with low sample volume, and involves cost-effective instrumentation, which could be used in a high-throughput manner for reliable population screening to facilitate the detection of early CRC patients at affordable cost.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| | - Ana Guzmán-Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Eloy Povedano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040, Madrid, Spain
| | | | - Ana Montero-Calle
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| | | | | | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | - Meritxell Arenas
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | - Elisabeth Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | | | - Nuria Rodriguez
- Medical Oncology Department, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Gemma Dominguez
- Departamento de Medicina, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, E-28029, Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| |
Collapse
|
11
|
Friedman Ohana R, Hurst R, Rosenblatt M, Levin S, Machleidt T, Kirkland TA, Encell LP, Robers MB, Wood KV. Utilizing a Simple Method for Stoichiometric Protein Labeling to Quantify Antibody Blockade. Sci Rep 2019; 9:7046. [PMID: 31065015 PMCID: PMC6504924 DOI: 10.1038/s41598-019-43469-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Ligand binding assays routinely employ fluorescently-labeled protein ligands to quantify the extent of binding. These ligands are commonly generated through chemical modification of accessible lysine residues, which often results in heterogeneous populations exhibiting variable binding properties. This could be remedied by quantitative, site-specific labeling. Recently, we reported on a single-step method integrating recombinant protein purification with 2-cyanobenzothiazole (CBT) condensation for labeling a proteolytically exposed N-terminal cysteine. Here, using three growth factors, we show that unlike random lysine labeling, this site-specific approach yielded homogeneous populations of growth factors that were quantitatively labeled at their N-termini and retained their binding characteristics. We demonstrate the utility of this labeling method through the development of a novel assay that quantifies the capacity of antibodies to block receptor-ligand interactions (i.e. antibody blockade). The assay uses bioluminescence resonance energy transfer (BRET) to detect binding of CBT-labeled growth factors to their cognate receptors genetically fused to NanoLuc luciferase. The ability of antibodies to block these interactions is quantified through decrease in BRET. Using several antibodies, we show that the assay provides reliable quantification of antibody blockade in a cellular context. As demonstrated here, this simple method for generating uniformly-labeled proteins has potential to promote more accurate and robust ligand binding assays.
Collapse
Affiliation(s)
| | - Robin Hurst
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Mike Rosenblatt
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Sergiy Levin
- Promega Biosciences LLC, 277 Granada Dr, San Luis Obispo, CA, 93401, USA
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Thomas A Kirkland
- Promega Biosciences LLC, 277 Granada Dr, San Luis Obispo, CA, 93401, USA
| | - Lance P Encell
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| | - Keith V Wood
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
| |
Collapse
|
12
|
Overexpression and purification of human myosins from transiently and stably transfected suspension adapted HEK293SF-3F6 cells. Anal Biochem 2018; 558:19-27. [PMID: 30075102 DOI: 10.1016/j.ab.2018.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The myosin family of motor proteins is an attractive target of therapeutic small-molecule protein inhibitors and modulators. Milligrams of protein quantities are required to conduct proper biophysical and biochemical studies to understand myosin functions. Myosin protein expression and purification represent a critical starting point towards this goal. Established utilization of Dictyostelium discoideum, Drosophila melanogaster, insect and mouse cells for myosin expression and purification is limited, cost, labor and time inefficient particularly for (full-length) human myosins. Here we are presenting detailed protocols for production of several difficult-to-purify recombinant human myosins in efficient quantities up to 1 mg of protein per liter of cell culture. This is the first time that myosins have been purified in large scales from suspension adapted transiently and stably expressing human cells. The method is also useful for expressing other human proteins in quantities sufficient to perform extensive biochemical and biophysical characterization.
Collapse
|
13
|
Klisch TJ, Vainshtein A, Patel AJ, Zoghbi HY. Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth. eLife 2017; 6:31181. [PMID: 29168692 PMCID: PMC5736349 DOI: 10.7554/elife.31181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
Treatment for medulloblastoma, the most common malignant brain tumor in children, remains limited to surgical resection, radiation, and traditional chemotherapy; with long-term survival as low as 50–60% for Sonic Hedgehog (Shh)-type medulloblastoma. We have shown that the transcription factor Atonal homologue 1 (Atoh1) is required for Shh-type medulloblastoma development in mice. To determine whether reducing either Atoh1 levels or activity in tumors after their development is beneficial, we studied Atoh1 dosage and modifications in Shh-type medulloblastoma. Heterozygosity of Atoh1 reduced tumor occurrence and prolonged survival. We discovered tyrosine 78 of Atoh1 is phosphorylated by a Jak2-mediated pathway only in tumor-initiating cells and in human SHH-type medulloblastoma. Phosphorylation of tyrosine 78 stabilizes Atoh1, increases Atoh1’s transcriptional activity, and is independent of canonical Jak2 signaling. Importantly, inhibition of Jak2 impairs tyrosine 78 phosphorylation and tumor growth in vivo. Taken together, inhibiting Jak2-mediated tyrosine 78 phosphorylation could provide a viable therapy for medulloblastoma. Medulloblastoma is the most common solid brain tumor that develops in children, with more than five hundred new cases diagnosed in the United States every year. There are four broad types of medulloblastoma. One of these is called the “Sonic Hedgehog” subtype, named after the biological pathway that becomes re-activated in these tumors. Only about half of patients with this subtype survive for more than 10 years. Moreover, medulloblastoma treatment combines surgery, chemotherapy and radiation, which can cause severe side effects including psychiatric disorders and cognitive impairment. Several drugs that treat medulloblastoma by targeting the Sonic Hedgehog pathway are currently being tested in clinical trials. However, these drugs are usually only effective for a limited time before the tumor evades the treatment. Therefore, there is a need to develop new treatment options for medulloblastoma, perhaps by targeting different signaling pathways in the cells. A protein called Atoh1 is needed for proper brain development in humans, but is not normally present after the first year of life. This protein is, however, re-expressed at high levels in medulloblastoma in mice and humans and is essential for Sonic Hedgehog-type medulloblastoma to form in mice. Klisch et al. used genetic techniques to reduce the amount of Atoh1 in mice that develop medulloblastoma. This intervention reduced the number of mice that developled tumors and increased their lifespan. Biochemical experiments showed that the tumor stem cells of the mice contain a modified version of Atoh1 where a phosphate molecule is bound to a particular region of the protein. This phosphorylation increased the amount and activity of Atoh1 in the cell, and so caused tumors to grow more quickly in mice. Phosphorylated Atoh1 was also detected in samples taken from human medulloblastoma tumors. Klisch et al. also found that an enzyme called Jak2 phosphorylates Atoh1. Inhibiting Jak2 reduced the levels of Atoh1 in medulloblastoma cells and slowed tumor growth in mice. Future work could investigate different ways of preventing Atoh1 phosphorylation, with the hope of finding new treatments for Sonic-Hedgehog-type medulloblastomas.
Collapse
Affiliation(s)
- Tiemo J Klisch
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Anna Vainshtein
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Akash J Patel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| |
Collapse
|
14
|
Zeng K, Li Q, Wang J, Yin G, Zhang Y, Xiao C, Fan T, Zhao X, Zheng X. One-step methodology for the direct covalent capture of GPCRs from complex matrices onto solid surfaces based on the bioorthogonal reaction between haloalkane dehalogenase and chloroalkanes. Chem Sci 2017; 9:446-456. [PMID: 29629116 PMCID: PMC5868316 DOI: 10.1039/c7sc03887a] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
An approach is established for the specific immobilization of GPCRs from cell lysates that circumvents labor intensive purification procedures and minimize loss of activity.
Protein immobilization techniques play an important role in the development of assays for disease diagnosis and drug discovery. However, many of these approaches are not applicable to transmembrane proteins. G protein-coupled receptors (GPCRs) are the largest protein superfamily encoded by the human genome and are targeted by a quarter of all prescription drugs. GPCRs are highly dynamic and sensitive to changes in the ambient environment, and current immobilization methodologies are not suitable for GPCRs. We used haloalkane dehalogenase (Halo) as an immobilization tag fused to the β2-adrenoceptor (β2-AR), angiotensin II type 1 (AT1) and angiotensin II type 2 (AT2) receptors. The engineered Halo-tag covalently binds to a specific substrate chloroalkane through Asp 106 in the catalytic pocket. The Halo-tagged GPCRs were expressed in Escherichia coli at a suitable yield. Accordingly, we loaded cell lysate containing Halo-tagged GPCRs onto a macroporous silica gel coated with chloroalkane. Morphological characterization indicated a homogeneous monolayer of immobilized Halo-tagged GPCRs on the silica gel surface. The immobilized receptors proved to be surrounded by specific bound phospholipids including PG C18:1/C18:1. We observed a radio-ligand binding ability and ligand-induced conformational changes in the immobilized GPCRs, suggesting the preservation of bioactivity. This method is a one-step approach for the specific immobilization of GPCRs from cell lysates and validates that immobilized receptors retain canonical ligand binding capacity. Our immobilization strategy circumvents labor-intensive purification procedures and minimizes loss of activity. The immobilized receptors can be applied to high-throughput drug and interaction partner screening for GPCRs.
Collapse
Affiliation(s)
- Kaizhu Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686
| | - Guowei Yin
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , NC , USA
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686
| | - Taiping Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686.,Department of Pharmacology , University of Cambridge , Cambridge CB2 1PD , UK
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , College of Life Sciences , Northwest University , Xi'an 710069 , China . ; ; Tel: +86 029 88302686
| |
Collapse
|
15
|
Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins. Proc Natl Acad Sci U S A 2017; 114:E5138-E5147. [PMID: 28607052 DOI: 10.1073/pnas.1704872114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10-14-10-17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays.
Collapse
|
16
|
Kilpatrick LE, Friedman-Ohana R, Alcobia DC, Riching K, Peach CJ, Wheal AJ, Briddon SJ, Robers MB, Zimmerman K, Machleidt T, Wood KV, Woolard J, Hill SJ. Real-time analysis of the binding of fluorescent VEGF 165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes. Biochem Pharmacol 2017; 136:62-75. [PMID: 28392095 PMCID: PMC5457915 DOI: 10.1016/j.bcp.2017.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/04/2017] [Indexed: 01/01/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. Here we have used a novel stoichiometric protein-labeling method to generate a fluorescent variant of VEGF (VEGF165a-TMR) labeled on a single cysteine within each protomer of the antiparallel VEGF homodimer. VEGF165a-TMR has then been used in conjunction with full length VEGFR2, tagged with the bioluminescent protein NanoLuc, to undertake a real time quantitative evaluation of VEGFR2 binding characteristics in living cells using bioluminescence resonance energy transfer (BRET). This provided quantitative information on VEGF-VEGFR2 interactions. At longer incubation times, VEGFR2 is internalized by VEGF165a-TMR into intracellular endosomes. This internalization can be prevented by the receptor tyrosine kinase inhibitors (RTKIs) cediranib, sorafenib, pazopanib or vandetanib. In the absence of RTKIs, the BRET signal is decreased over time as a consequence of the dissociation of agonist from the receptor in intracellular endosomes and recycling of VEGFR2 back to the plasma membrane.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Diana C Alcobia
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Chloe J Peach
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Amanda J Wheal
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | - Jeanette Woolard
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
17
|
Ji Y, Wang Z, Li Z, Huang N, Chen H, Li B, Hui B. Silencing IGF-II impairs C-myc and N-ras expressions of SMMC-7721 cells via suppressing FAK/PI3K/Akt signaling pathway. Cytokine 2016; 90:44-53. [PMID: 27768959 DOI: 10.1016/j.cyto.2016.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Emerging evidence confirms that insulin-like growth factor -II (IGF-II), oncogenes C-myc and N-ras are an essential regulator for development and growth in hepatocellular carcinoma (HCC). Although our previous study also indicated that IGF-II might upregulate levels of oncogenes C-myc and N-ras in hepatoma carcinoma cells, the molecular mechanism had not been fully elucidated. Herein, we successfully silenced IGF-II expression in SMCC-7721 cells by small RNA interference. Functional analysis showed that knockdown of IGF-II significantly suppressed growth and proliferation of SMMC-7721 cells and decreased C-myc and N-ras mRNA and protein levels. And this function was mediated by the FAK/PI3K/Akt signaling pathway. Taken together, IGF-II siRNA inactivates the FAK/PI3K/Akt signaling pathway, and further reduces cell proliferation, N-ras and C-myc levels in SMMC-7721 cells. Especially, understanding the relationship between IGF-II and oncogenes N-ras and C-myc in cancer cells will provide novel clues for clinic HCC treatment in the future.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Center, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhidong Wang
- Geriatric Digestive Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zongfang Li
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Na Huang
- Scientific Research Center, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Haiyan Chen
- Scientific Research Center, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Baohua Li
- Scientific Research Center, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Bo Hui
- Geriatric Digestive Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
18
|
Vistain LF, Rotz MW, Rathore R, Preslar AT, Meade TJ. Targeted delivery of gold nanoparticle contrast agents for reporting gene detection by magnetic resonance imaging. Chem Commun (Camb) 2016; 52:160-3. [PMID: 26505558 DOI: 10.1039/c5cc06565h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detection of protein expression by MRI requires a high payload of Gd(III) per protein binding event. Presented here is a targeted AuDNA nanoparticle capable of delivering several hundred Gd(III) chelates to the HaloTag reporter protein. Incubating this particle with HaloTag-expressing cells produced a 9.4 contrast-to-noise ratio compared to non-expressing cells.
Collapse
Affiliation(s)
- Luke F Vistain
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Matthew W Rotz
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Richa Rathore
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Adam T Preslar
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Thomas J Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| |
Collapse
|
19
|
Tai AW, Vidugiriene J. Measuring Activity of Phosphoinositide Lipid Kinases Using a Bioluminescent ADP-Detecting Assay. Methods Mol Biol 2016; 1360:75-85. [PMID: 26501903 DOI: 10.1007/978-1-4939-3073-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositol (PI) and its phosphorylated derivatives, collectively called phosphoinositides, are important second messengers involved in a variety of cellular processes, including cell proliferation, apoptosis, metabolism, and migration. These derivatives are generated by a family of kinases called phosphoinositide lipid kinases (PIKs). Due to the central role of these kinases in signaling pathways, assays for measuring their activity are often used for drug development. Lipid kinase substrates are present in unique membrane environments in vivo and are insoluble in aqueous solutions. Therefore the most important consideration in developing successful lipid kinase assays is the physical state of lipid kinase substrates. Here we describe the preparation of lipid substrates for two major classes of lipid kinases, phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 4-kinases (PI4Ks). Using PI4Ks as an example, we also provide a detailed protocol for small-scale kinase expression and affinity purification from transiently transfected mammalian cells. For measuring lipid kinase activity we apply a universal bioluminescent ADP detection approach. The approach is compatible with diverse lipid substrates and can be used as a single integrated platform for measuring all classes of lipid and protein kinases.
Collapse
Affiliation(s)
- Andrew W Tai
- University of Michigan, 6520 MSRB I SPC 5682, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5682, USA.
| | - Jolanta Vidugiriene
- Promega Corporation, Research and Development Department, 2800 Woods Hollow Road, Madison, WI, 53711, USA.
| |
Collapse
|
20
|
Target engagement and drug residence time can be observed in living cells with BRET. Nat Commun 2015; 6:10091. [PMID: 26631872 PMCID: PMC4686764 DOI: 10.1038/ncomms10091] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022] Open
Abstract
The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.
Collapse
|
21
|
Mondal S, Hsiao K, Goueli SA. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities. Assay Drug Dev Technol 2015; 13:444-55. [PMID: 26167953 PMCID: PMC4605356 DOI: 10.1089/adt.2015.643] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GTPases play a major role in various cellular functions such as cell signaling, cell proliferation, cell differentiation, cytoskeleton modulation, and cell motility. Deregulation or mutation of these proteins has considerable consequences resulting in multiple pathological conditions. Targeting GTPases and its regulators has been challenging due to paucity of convenient assays. In this study, we describe a homogenous bioluminescent assay for monitoring the activities of GTPase and its immediate regulators: GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Since Mg2+ plays a critical role in influencing the affinity of GTPases with guanosine triphosphate/guanosine diphosphate (GTP/GDP) and the process of nucleotide exchange, manipulating Mg2+ concentrations in the GTPase reaction buffer allows continuous progression of the GTPase cycle and faster hydrolysis of GTP. The assay relies on enzymatic conversion of GTP that remains after the GTPase reaction to ATP and detection of the generated ATP using the luciferin/luciferase combination. The GTPase/GAP/GEF-Glo assay system enables monitoring of GTPase, GAP-stimulated GTPase, GAP, and GEF activities. The system can also be used to analyze these proteins when expressed in cells as fusion proteins by performing the assay in a pulldown format. The assays showed minimal false hits upon testing for compound interference using the library of pharmacologically active compounds and its robustness was demonstrated by a high Z′-factor of 0.93 and CV of 2.2%. The assay system has a high dynamic range, formatted in a convenient add–mix–read, and applicable to high-throughput screening.
Collapse
Affiliation(s)
- Subhanjan Mondal
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Kevin Hsiao
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Said A Goueli
- 1 Research and Development , Promega Corporation, Madison, Wisconsin.,2 Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
22
|
Abstract
![]()
Exploration of protein function and
interaction is critical for
discovering links among genomics, proteomics, and disease state; yet,
the immense complexity of proteomics found in biological systems currently
limits our investigational capacity. Although affinity and autofluorescent
tags are widely employed for protein analysis, these methods have
been met with limited success because they lack specificity and require
multiple fusion tags and genetic constructs. As an alternative approach,
the innovative HaloTag protein fusion platform allows protein function
and interaction to be comprehensively analyzed using a single genetic
construct with multiple capabilities. This is accomplished using a
simplified process, in which a variable HaloTag ligand binds rapidly
to the HaloTag protein (usually linked to the protein of interest)
with high affinity and specificity. In this review, we examine all
current applications of the HaloTag technology platform for biomedical
applications, such as the study of protein isolation and purification,
protein function, protein–protein and protein–DNA interactions,
biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the
HaloTag platform are briefly discussed along with potential future
applications.
Collapse
Affiliation(s)
- Christopher G England
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Haiming Luo
- ‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,§University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
23
|
Ohana RF, Hurst R. Purification of Recombinant Proteins from Cultured Mammalian Cells by HaloTag Technology. ACTA ACUST UNITED AC 2015; 110:10.31.1-10.31.15. [PMID: 25827085 DOI: 10.1002/0471142727.mb1031s110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cultured mammalian cells provide an environment ideal for producing functional recombinant mammalian proteins. However, low expression levels of recombinant proteins present a challenge for their detection and purification. This unit will focus on HaloTag, a protein fusion tag designed to bind selectively and covalently to a chloroalkane ligand that may be attached to a variety of functional groups, allowing both protein detection and immobilization. Detection of HaloTag-fusion protein is achieved through binding to a fluorescent chloroalkane ligand, enabling rapid optimization of expression levels. HaloTag-based purification uses covalent capture of the HaloTag fusion onto HaloLink resin coupled with proteolytic cleavage to release the protein of interest from the resin. Covalent binding provides efficient protein capture regardless of expression level and eliminates protein loss during washes of the resin and as a result, offers significant improvements in protein recovery and purity over traditional non-covalent approaches.
Collapse
|
24
|
Basso AMM, Pelegrini PB, Mulinari F, Costa MC, Viana AB, Silva LP, Grossi-de-Sa MF. Recombinant glucagon: a differential biological activity. AMB Express 2015; 5:20. [PMID: 25852997 PMCID: PMC4385203 DOI: 10.1186/s13568-015-0099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
In Brazil, there is a growing demand for specialised pharmaceuticals, and the high cost of their importation results in increasing costs, reaching US$ 1.34 billion in 2012 and US$ 1.61 billion in 2013. Worldwide expenses related to drugs could reach US$ 1.3 trillion in 2018, especially due to new treatments for hepatitis C and cancer. Specialised or high-cost pharmaceutical drugs used for the treatment of viral hepatitis, multiple sclerosis, HIV and diabetes are distributed free of charge by the Brazilian government. The glucagon peptide was included in this group of high-cost biopharmaceuticals in 2008. Although its main application is the treatment of hypoglycaemia in diabetic patients, it can also be used with patients in an alcoholic coma, for those patients with biliary tract pain, and as a bronchodilator. Therefore, in order to reduce biopharmaceutical production costs, the Brazilian government passed laws focusing on the development and increase of a National Pharmaceutical Industrial Centre, including the demand for the national production of glucagon. For that reason and given the importance and high cost of recombinant glucagon, the purpose of this study was to develop methods to improve production, purification and performance of the biological activity of recombinant glucagon. Glucagon was recombined into a plasmid vector containing a Glutathione S-transferase tag, and the peptide was expressed in a heterologous Escherichia coli system. After purification procedures and molecular analyses, the biological activity of this recombinant glucagon was examined using in vivo assays and showed a highly significant (p < 0.00001) and prolonged effect on glucose levels when compared with the standard glucagon. The experimental procedure described here facilitates the high level production of recombinant glucagon with an extended biological activity.
Collapse
Affiliation(s)
- Angelina M M Basso
- />Department of Molecular Pathology, University of Brasilia, Brasilia, DF Brazil
- />Laboratory of Plant-Pest Interaction, Embrapa – Genetic Resources and Biotechnology, Brasília, DF Brazil
| | - Patrícia B Pelegrini
- />Laboratory of Plant-Pest Interaction, Embrapa – Genetic Resources and Biotechnology, Brasília, DF Brazil
| | - Fernanda Mulinari
- />Laboratory of Plant-Pest Interaction, Embrapa – Genetic Resources and Biotechnology, Brasília, DF Brazil
- />Pioneer Union for Social Insertion – UPIS, Planaltina, DF Brazil
| | - Michelle C Costa
- />Laboratory of Plant-Pest Interaction, Embrapa – Genetic Resources and Biotechnology, Brasília, DF Brazil
| | - Antonio B Viana
- />Laboratory of Plant-Pest Interaction, Embrapa – Genetic Resources and Biotechnology, Brasília, DF Brazil
- />Catholic University of Brasilia, Brasilia, DF Brazil
| | - Luciano P Silva
- />Laboratory of Mass Spectrometry, Embrapa – Genetic Resources and Biotechnology, Brasília, DF Brazil
| | - Maria Fatima Grossi-de-Sa
- />Laboratory of Plant-Pest Interaction, Embrapa – Genetic Resources and Biotechnology, Brasília, DF Brazil
- />Catholic University of Brasilia, Brasilia, DF Brazil
| |
Collapse
|
25
|
Nettleship JE, Watson PJ, Rahman-Huq N, Fairall L, Posner MG, Upadhyay A, Reddivari Y, Chamberlain JMG, Kolstoe SE, Bagby S, Schwabe JWR, Owens RJ. Transient expression in HEK 293 cells: an alternative to E. coli for the production of secreted and intracellular mammalian proteins. Methods Mol Biol 2015; 1258:209-22. [PMID: 25447866 DOI: 10.1007/978-1-4939-2205-5_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transient transfection of human embryonic kidney cells (HEK 293) enables the rapid and affordable lab-scale production of recombinant proteins. In this chapter protocols for the expression and purification of both secreted and intracellular proteins using transient expression in HEK 293 cells are described.
Collapse
Affiliation(s)
- Joanne E Nettleship
- OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratories, Harwell Oxford, Didcot, OX11 0FA, UK,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Daniel L, Buryska T, Prokop Z, Damborsky J, Brezovsky J. Mechanism-Based Discovery of Novel Substrates of Haloalkane Dehalogenases Using in Silico Screening. J Chem Inf Model 2014; 55:54-62. [DOI: 10.1021/ci500486y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lukas Daniel
- Loschmidt
Laboratories, Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt
Laboratories, Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt
Laboratories, Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| |
Collapse
|
27
|
Hoppe S, Bier FF, von Nickisch-Rosenegk M. Identification of antigenic proteins of the nosocomial pathogen Klebsiella pneumoniae. PLoS One 2014; 9:e110703. [PMID: 25333280 PMCID: PMC4205017 DOI: 10.1371/journal.pone.0110703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL). After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens and their linear epitope sites, we have paved the way for crucial future research and applications including the design of point-of-care devices, vaccine development and serological screenings for a highly relevant nosocomial pathogen.
Collapse
Affiliation(s)
- Sebastian Hoppe
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Biosystem Integration and Automation, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocess (IZI-BB), Potsdam, Germany
| | - Markus von Nickisch-Rosenegk
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| |
Collapse
|
28
|
Mossuto MF, Sannino S, Mazza D, Fagioli C, Vitale M, Yoboue ED, Sitia R, Anelli T. A dynamic study of protein secretion and aggregation in the secretory pathway. PLoS One 2014; 9:e108496. [PMID: 25279560 PMCID: PMC4184786 DOI: 10.1371/journal.pone.0108496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/21/2014] [Indexed: 01/08/2023] Open
Abstract
Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC.
Collapse
Affiliation(s)
| | - Sara Sannino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Department of Biosciences, Università degli Studi di Milano, Milan, IT
| | - Davide Mazza
- Università Vita-Salute San Raffaele, Milan, IT
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, IT
| | - Claudio Fagioli
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
| | - Milena Vitale
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| | - Edgar Djaha Yoboue
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
| | - Roberto Sitia
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| |
Collapse
|
29
|
Sugiki T, Fujiwara T, Kojima C. Latest approaches for efficient protein production in drug discovery. Expert Opin Drug Discov 2014; 9:1189-204. [PMID: 25046062 DOI: 10.1517/17460441.2014.941801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pharmaceutical research looks to discover and develop new compounds which influence the function of disease-associated proteins or respective protein-protein interactions. Various scientific methods are available to discover those compounds, such as high-throughput screening of a library comprising chemical or natural compounds and computational rational drug design. The goal of these methods is to identify the seed compounds of future pharmaceuticals through the use of these technologies and laborious experiments. For every drug discovery effort made, the possession of accurate functional and structural information of the disease-associated proteins helps to assist drug development. Therefore, the investigation of the tertiary structure of disease-associated proteins and respective protein-protein interactions at the atomic level are of crucial importance for successful drug discovery. AREAS COVERED In this review article, the authors broadly outline current techniques utilized for recombinant protein production. In particular, the authors focus on bacterial expression systems using Escherichia coli as the living bioreactor. EXPERT OPINION The recently developed pCold-glutathione S-transferase (GST) system is one of the best systems for soluble protein expression in E. coli. Where the pCold-GST system does not succeed, it is preferable to change the host from E. coli to higher organisms such as yeast expression systems like Pichia pastoris and Kluyveromyces lactis. The selection of an appropriate expression system for each desired protein and the optimization of experimental conditions significantly contribute toward the successful outcome of any drug discovery study.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Osaka University, Institute for Protein Research , 3-2, Yamadaoka, Suita, Osaka 565-0871 , Japan
| | | | | |
Collapse
|
30
|
Daniels DL, Méndez J, Benink H, Niles A, Murphy N, Ford M, Jones R, Amunugama R, Allen D, Urh M. Discovering protein interactions and characterizing protein function using HaloTag technology. J Vis Exp 2014. [PMID: 25046345 PMCID: PMC4214499 DOI: 10.3791/51553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Research in proteomics has exploded in recent years with advances in mass spectrometry capabilities that have led to the characterization of numerous proteomes, including those from viruses, bacteria, and yeast. In comparison, analysis of the human proteome lags behind, partially due to the sheer number of proteins which must be studied, but also the complexity of networks and interactions these present. To specifically address the challenges of understanding the human proteome, we have developed HaloTag technology for protein isolation, particularly strong for isolation of multiprotein complexes and allowing more efficient capture of weak or transient interactions and/or proteins in low abundance. HaloTag is a genetically encoded protein fusion tag, designed for covalent, specific, and rapid immobilization or labelling of proteins with various ligands. Leveraging these properties, numerous applications for mammalian cells were developed to characterize protein function and here we present methodologies including: protein pull-downs used for discovery of novel interactions or functional assays, and cellular localization. We find significant advantages in the speed, specificity, and covalent capture of fusion proteins to surfaces for proteomic analysis as compared to other traditional non-covalent approaches. We demonstrate these and the broad utility of the technology using two important epigenetic proteins as examples, the human bromodomain protein BRD4, and histone deacetylase HDAC1. These examples demonstrate the power of this technology in enabling the discovery of novel interactions and characterizing cellular localization in eukaryotes, which will together further understanding of human functional proteomics.
Collapse
|
31
|
Saul J, Petritis B, Sau S, Rauf F, Gaskin M, Ober-Reynolds B, Mineyev I, Magee M, Chaput J, Qiu J, LaBaer J. Development of a full-length human protein production pipeline. Protein Sci 2014; 23:1123-35. [PMID: 24806540 DOI: 10.1002/pro.2484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high-throughput (HT) methods, we transferred the genes of 31 full-length proteins into three expression vectors, and expressed the collection as N-terminal HaloTag fusion proteins in Escherichia coli and two commercial cell-free (CF) systems, wheat germ extract (WGE) and HeLa cell extract (HCE). Expression was assessed by labeling the fusion proteins specifically and covalently with a fluorescent HaloTag ligand and detecting its fluorescence on a LabChip(®) GX microfluidic capillary gel electrophoresis instrument. This automated, HT assay provided both qualitative and quantitative assessment of recombinant protein. E. coli was only capable of expressing 20% of the test collection in the supernatant fraction with ≥20 μg yields, whereas CF systems had ≥83% success rates. We purified expressed proteins using an automated HaloTag purification method. We purified 20, 33, and 42% of the test collection from E. coli, WGE, and HCE, respectively, with yields ≥1 μg and ≥90% purity. Based on these observations, we have developed a triage strategy for producing full-length human proteins in these three expression systems.
Collapse
Affiliation(s)
- Justin Saul
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, 85287-6401
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saito N, Ariyoshi W, Okinaga T, Kamegawa M, Matsukizono M, Akebiyama Y, Kitamura C, Nishihara T. Inhibitory effects of ameloblastin on epithelial cell proliferation. Arch Oral Biol 2014; 59:835-40. [PMID: 24859770 DOI: 10.1016/j.archoralbio.2014.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Ameloblastin is an enamel matrix protein expressed in several tissues. Many potential mechanisms have been identified by which ameloblastin functions as an extracellular matrix protein. However, the biological effects of ameloblastin on gingival epithelial cells remain unclear. In the present study, we established a novel system to purify recombinant human ameloblastin and clarified its biological functions in epithelial cells in vitro. DESIGN Recombinant human ameloblastin was isolated from COS-7 cells overexpressing HaloTag-fused human ameloblastin by the HaloTag system and then purified further by reverse-phase high-performance liquid chromatography. SCC-25 cells, derived from human oral squamous cell carcinoma, were treated with recombinant ameloblastin and then cell survival was assessed by a WST-1 assay. Cell cycle analysis was performed by flow cytometry. RESULTS The novel purification system allowed effective recovery of the recombinant ameloblastin proteins at a high purity. Recombinant ameloblastin protein was found to suppress the proliferation of SCC-25 cells. Flow cytometric analysis showed that ameloblastin treatment induced cell cycle arrest G1 phase. CONCLUSIONS We developed a procedure for production of highly purified recombinant human ameloblastin. Biological analyses suggest that ameloblastin induces cell cycle arrest in epithelial cells and regulates the progression of periodontitis.
Collapse
Affiliation(s)
- Noriko Saito
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; Division of Pulp Biology, Operative Dentistry and Endodontics, Department of Cariology and Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Mariko Kamegawa
- Genenet Co., Ltd, 5-22-8, Tanotsu, Higashi-Ku, Fukuoka 813-0034, Japan
| | - Miho Matsukizono
- Genenet Co., Ltd, 5-22-8, Tanotsu, Higashi-Ku, Fukuoka 813-0034, Japan
| | - Yasuo Akebiyama
- Genenet Co., Ltd, 5-22-8, Tanotsu, Higashi-Ku, Fukuoka 813-0034, Japan
| | - Chiaki Kitamura
- Division of Pulp Biology, Operative Dentistry and Endodontics, Department of Cariology and Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
33
|
Pina AS, Lowe CR, Roque ACA. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 2014; 32:366-81. [PMID: 24334194 PMCID: PMC7125906 DOI: 10.1016/j.biotechadv.2013.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 01/05/2023]
Abstract
The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development.
Collapse
Affiliation(s)
- Ana Sofia Pina
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; IBET-Instituto de Biologia Experimental Tecnológica, Oeiras, Portugal
| | - Christopher R Lowe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, CB2 1QT Cambridge, UK
| | - Ana Cecília A Roque
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
34
|
Danckert L, Hoppe S, Bier FF, von Nickisch-Rosenegk M. Rapid identification of novel antigens of Salmonella Enteritidis by microarray-based immunoscreening. Mikrochim Acta 2014; 181:1707-1714. [PMID: 25253911 PMCID: PMC4167438 DOI: 10.1007/s00604-014-1197-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/30/2014] [Indexed: 01/13/2023]
Abstract
We report on an approach to rapidly screen thousands of Salmonella Enteritidis proteins with the goal of identifying novel immunodominant proteins. We used a microarray-based system that warrants high throughput and easy handling. Seven immunogenic candidates were selected after screening. Comparative analyses by ELISA and microarrays manifested their immunodominant character. The large repetitive protein (SEN4030) that plays a role as a putative adhesin in initial cell surface interaction and is highly specific to Salmonella is considered to be the most suitable protein for a diagnostic approach. The results further demonstrate that the strategy applied herein is convenient for specifically identifying immunogenic proteins of pathogenic microorganisms. Consequently, it enables a sound assessment of promising candidates for diagnostic applications and vaccine development. Moreover, the elucidation of immunogenic proteins may assist in unveiling unknown virulence-associated factors, thus furthering the understanding of the underlying pathogenicity of Salmonella in general, and of S. Enteritidis, one of the most frequently detected serovars of this pathogen, in particular. FigureThe microarray-based approach was aimed at identifying novel immunodominant proteins of S. Enteritidis. Seven antigens were revealed by screening a cDNA expression library. SEN4030, a large repetitive protein specific for salmonella, is considered an optimal candidate for future applications.
Collapse
Affiliation(s)
- Lena Danckert
- Fraunhofer IBMT, Am Mühlenberg 13., 14476 Potsdam, Germany
| | | | - Frank F. Bier
- Fraunhofer IBMT, Am Mühlenberg 13., 14476 Potsdam, Germany
| | | |
Collapse
|
35
|
Application of HaloTag technology to expression and purification of cannabinoid receptor CB2. Protein Expr Purif 2013; 89:62-72. [PMID: 23470778 DOI: 10.1016/j.pep.2013.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/22/2022]
Abstract
Expression of milligram quantities of functional, stable G protein-coupled receptors (GPCR) for high-resolution structural studies remains a challenging task. The goal of this work was to evaluate the usefulness of the HaloTag system (Promega) for expression and purification of the human cannabinoid receptor CB(2), an important target for development of drugs for treatment of immune disorders, inflammation, and pain. Here we investigated expression in Escherichia coli cells of the integral membrane receptor CB(2) as a fusion with the 34 kDa HaloTag at N- or C-terminal location, either in the presence or in the absence of the N-terminal maltose-binding protein (MBP). The CB(2) was flanked at both ends by the tobacco etch virus (TEV) protease cleavage sites to allow for subsequent removal of expression partners. Expression by induction with either IPTG (in E. coli BL21(DE3) cell cultures) or by auto-induction (in E. coli KRX cells) were compared. While the N-terminal location of the HaloTag resulted in high levels of expression of the fusion CB(2), the recombinant receptor was not functional. However, when the HaloTag was placed in the C-terminal location, a fully active receptor was produced irrespective of induction method or bacterial strain used. For purification, the fusion protein was captured onto HaloLink resin in the presence of detergents. Treatment with specific TEV protease released the CB(2) upon washing. To our knowledge, this study represents the first example of expression, surface immobilization and purification of a functional GPCR using HaloTag technology.
Collapse
|
36
|
Isolation of intracellular protein--DNA complexes using HaloCHIP, an antibody-free alternative to chromatin immunoprecipitation. Methods Mol Biol 2013; 977:111-24. [PMID: 23436357 DOI: 10.1007/978-1-62703-284-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mapping of protein binding sites within the genome has been significantly advanced by microarray and sequencing technologies, yet the method traditionally used to isolate protein-DNA complexes, chromatin immunoprecipitation, has remained dependent of the use of antibodies. Furthermore, cross-linking is commonly used to trap protein-DNA complexes and the challenge of using antibodies has come in recognition of the cross-linked epitopes, sometimes limiting the success of the approach. Here we present a method, HaloCHIP, which utilizes a HaloTag protein fusion and corresponding interaction resin, HaloLink, for capture of cross-linked protein-DNA complexes directly from a cellular lysate. This process alleviates the need for using an antibody, yields the DNA fragments bound to a particular protein of interest, and allows for a variety of downstream analyses such as PCR, qPCR, microarrays, and sequencing.
Collapse
|
37
|
Urh M, Rosenberg M. HaloTag, a Platform Technology for Protein Analysis. CURRENT CHEMICAL GENOMICS 2012; 6:72-8. [PMID: 23213345 PMCID: PMC3480824 DOI: 10.2174/1875397301206010072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 01/01/2023]
Abstract
Understanding protein function and interaction is central to the elucidation of biological processes. Systematic analysis of protein interactions have shown that the eukaryotic proteome is highly interconnected and that biological function frequently depends on the orchestrated action of many proteins. Perturbation of these functions or interactions can lead to various disease states and pharmacologic intervention can result in corrective therapies. The fact that proteins rarely act in isolation, but rather comprise complex machines that stably and/or transiently interact with many different partners at different times, demands the need for robust tools that allow comprehensive global analyses of these events. Here we describe a powerful protein fusion technology, the HaloTag platform, and how it enables the study of many facets of protein biology by offering a broad choice of applications. We review the development of the key aspects of the technology and it's performance in both in vitro and in vivo applications. In particular, we focus on HaloTag's multifunctional utility in protein imaging, protein isolation and display, and in the study of protein complexes and interactions. We demonstrate it's potential to help elucidate important facets of proteomic biology across complex biological systems at the biochemical, cell-based and whole animal level.
Collapse
|
38
|
Encell LP, Friedman Ohana R, Zimmerman K, Otto P, Vidugiris G, Wood MG, Los GV, McDougall MG, Zimprich C, Karassina N, Learish RD, Hurst R, Hartnett J, Wheeler S, Stecha P, English J, Zhao K, Mendez J, Benink HA, Murphy N, Daniels DL, Slater MR, Urh M, Darzins A, Klaubert DH, Bulleit RF, Wood KV. Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. CURRENT CHEMICAL GENOMICS 2012; 6:55-71. [PMID: 23248739 PMCID: PMC3520037 DOI: 10.2174/1875397301206010055] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/04/2012] [Accepted: 04/16/2012] [Indexed: 11/22/2022]
Abstract
Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins.
Collapse
|
39
|
N Peterson S, Kwon K. The HaloTag: Improving Soluble Expression and Applications in Protein Functional Analysis. CURRENT CHEMICAL GENOMICS 2012; 6:8-17. [PMID: 23115610 PMCID: PMC3480702 DOI: 10.2174/1875397301206010008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 12/22/2022]
Abstract
Technological and methodological advances have been critical for the rapidly evolving field of proteomics. The development of fusion tag systems is essential for purification and analysis of recombinant proteins. The HaloTag is a 34 KDa monomeric protein derived from a bacterial haloalkane dehalogenase. The majority of fusion tags in use today utilize a reversible binding interaction with a specific ligand. The HaloTag system is unique in that it forms a covalent linkage to its chloroalkane ligand. This linkage permits attachment of the HaloTag to a variety of functional reporters, which can be used to label and immobilize recombinant proteins. The success rate for HaloTag expression of soluble proteins is very high and comparable to maltose binding protein (MBP) tag. Furthermore, cleavage of the HaloTag does not result in protein insolubility that often is observed with the MBP tag. In the present report, we describe applications of the HaloTag system in our ongoing investigation of protein-protein interactions of the Y. pestis Type 3 secretion system on a custom protein microarray. We also describe the utilization of affinity purification/mass spectroscopy (AP/MS) to evaluate the utility of the Halo Tag system to characterize DNA binding activity and protein specificity.
Collapse
Affiliation(s)
- Scott N Peterson
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, USA
| | | |
Collapse
|
40
|
Ose R, Oharaa O, Nagase T. Galectin-1 and Galectin-3 Mediate Protocadherin-24-Dependent Membrane Localization of β-catenin in Colon Cancer Cell Line HCT116. CURRENT CHEMICAL GENOMICS 2012; 6:18-26. [PMID: 23115611 PMCID: PMC3480823 DOI: 10.2174/1875397301206010018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/21/2022]
Abstract
Protocadherin-24 (PCDH24) is linked to the suppression of tumor growth and the inhibition of cell proliferation in the colon cancer cell line HCT116. We previously observed that β-catenin is localized to the plasma membrane when PCDH24 is expressed in these cells, but the molecular mechanisms by which PCDH24 induces the membrane localization of β-catenin remain largely unknown. To clarify these mechanisms, we identified molecules that interact with ectopically expressed PCDH24 in HCT116 cells using a HaloTag® pull-down assay. We found that galectin-1 and galectin-3 physically interact with PCDH24 and are retained at the plasma membrane in association with PCDH24 expression. A luciferase-based pull-down assay using HaloTag-fused galectins revealed that an intracellular region of PCDH24 (amino acids 1186–1280) is essential for this interaction. Furthermore, the over-expression of galectin-1 or -3, or the depletion of endogenous galectins by small interfering RNA modulates β-catenin translocation. We also revealed that the retention of galectin-1 and -3 at the plasma membrane results in the inactivation of PI3K activity. From these findings, we propose a model in which the galectin-anchoring activity of PCDH24 leads to the suppression of β-catenin signaling by the localization of β-catenin at the plasma membrane in PCDH24-expressing HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Rui Ose
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan ; Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | |
Collapse
|
41
|
Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J. Haloalkane dehalogenases: Biotechnological applications. Biotechnol J 2012; 8:32-45. [DOI: 10.1002/biot.201100486] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/30/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
|
42
|
Ishikawa H, Meng F, Kondo N, Iwamoto A, Matsuda Z. Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Protein Eng Des Sel 2012; 25:813-20. [PMID: 22942393 DOI: 10.1093/protein/gzs051] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Split reporter proteins capable of self-association and reactivation have applications in biomedical research, but designing these proteins, especially the selection of appropriate split points, has been somewhat arbitrary. We describe a new methodology to facilitate generating split proteins using split GFP as a self-association module. We first inserted the entire GFP module at one of several candidate split points in the protein of interest, and chose clones that retained the GFP signal and high activity relative to the original protein. Once such chimeric clones were identified, a final pair of split proteins was generated by splitting the GFP-inserted chimera within the GFP domain. Applying this strategy to Renilla reniformis luciferase, we identified a new split point that gave 10 times more activity than the previous split point. The process of membrane fusion was monitored with high sensitivity using a new pair of split reporter proteins. We also successfully identified new split points for HaloTag protein and firefly luciferase, generating pairs of self-associating split proteins that recovered the functions of both GFP and the original protein. This simple method of screening will facilitate the designing of split proteins that are capable of self-association through the split GFP domains.
Collapse
Affiliation(s)
- Hirohito Ishikawa
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
43
|
Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol J 2012; 7:620-34. [DOI: 10.1002/biot.201100155] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
|
44
|
Daniels DL, Méndez J, Mosley AL, Ramisetty SR, Murphy N, Benink H, Wood KV, Urh M, Washburn MP. Examining the complexity of human RNA polymerase complexes using HaloTag technology coupled to label free quantitative proteomics. J Proteome Res 2012; 11:564-75. [PMID: 22149079 DOI: 10.1021/pr200459c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Efficient determination of protein interactions and cellular localization remains a challenge in higher order eukaryotes and creates a need for robust technologies for functional proteomics studies. To address this, the HaloTag technology was developed for highly efficient and rapid isolation of intracellular complexes and correlative in vivo cellular imaging. Here we demonstrate the strength of this technology by simultaneous capture of human eukaryotic RNA polymerases (RNAP) I, II, and III using a shared subunit, POLR2H, fused to the HaloTag. Affinity purifications showed successful isolation, as determined using quantitative proteomics, of all RNAP core subunits, even at expression levels near endogenous. Transient known RNAP II interacting partners were identified as well as three previously uncharacterized interactors. These interactions were validated and further functionally characterized using cellular imaging. The multiple capabilities of the HaloTag technology demonstrate the ability to efficiently isolate highly challenging multiprotein complexes, discover new interactions, and characterize cellular localization.
Collapse
Affiliation(s)
- Danette L Daniels
- Promega Corporation , 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 2011; 55:29-37. [DOI: 10.1016/j.ymeth.2011.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/31/2011] [Accepted: 08/01/2011] [Indexed: 12/31/2022] Open
|