Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity.
Pharm Res 2016;
33:2218-2228. [PMID:
27251414 DOI:
10.1007/s11095-016-1959-4]
[Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/27/2016] [Indexed: 02/01/2023]
Abstract
PURPOSE
To investigate the applicability of fusion biotoxins combining pore-forming toxins (PFTs) and ribosome-inactivating proteins (RIPs) for the anti-cancer treatment.
METHODS
Membrane active PFTs tend to destabilize cell membranes of tumor cells, but lack a warhead inducing significant cause of cell death. Cell-impermeable RIPs possess a powerful warhead, yet not able to enter the tumor cells. To address these challenges for anti-tumor effects, we introduced a fusion strategy of conjugating melittin (a PFT) and gelonin (a type 1 RIP) via chemical and recombinant methods, followed by in vitro assays and in vivo animal studies.
RESULTS
In vitro characterization results confirmed that the chimeric gelonin-melittin fusion proteins retained equivalent intrinsic activity to that of unmodified gelonin in inhibiting protein translation. However, chemically conjugated gelonin-melittin (cGel-Mel) and recombinant chimeric gelonin-melittin fusion (rGel-Mel) exhibited greater cell uptake, yielding a significantly enhanced cytotoxic activity over treatment of gelonin, melittin or physical mixture of gelonin and melittin. Remarkably, cGel-Mel and rGel-Mel displayed 32- and 10-fold lower IC50 than gelonin in the cell lines. The superior anti-tumor efficacy of multivalent cGel-Mel to monovalent rGel-Mel suggested that valency could be a crucial factor for the extent of melittin-mediated cell uptake. Tumoricidal effects observed from animal studies were in good accordance with our findings from the cellular assays.
CONCLUSIONS
This study successfully demonstrated that fusion of biotoxins could provide a simple yet effective way to synergistically augment their anti-tumor activity.
Collapse