1
|
Lorenz R, Bertinetti D, Herberg FW. cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Handb Exp Pharmacol 2017; 238:105-122. [PMID: 27885524 DOI: 10.1007/164_2015_36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cAMP-dependent protein kinase (PKA) and the cGMP-dependent protein kinase (PKG) are homologous enzymes with different binding and activation specificities for cyclic nucleotides. Both enzymes harbor conserved cyclic nucleotide-binding (CNB) domains. Differences in amino acid composition of these CNB domains mediate cyclic nucleotide selectivity in PKA and PKG, respectively. Recently, the presence of the noncanonical cyclic nucleotides cCMP and cUMP in eukaryotic cells has been proven, while the existence of cellular cIMP and cXMP remains unclear. It was shown that the main effectors of cyclic nucleotide signaling, PKA and PKG, can be activated by each of these noncanonical cyclic nucleotides. With unique effector proteins still missing, such cross-activation effects might have physiological relevance. Therefore, we approach PKA and PKG as cyclic nucleotide effectors in this chapter. The focus of this chapter is the general cyclic nucleotide-binding properties of both kinases as well as the selectivity for cAMP or cGMP, respectively. Furthermore, we discuss the binding affinities and activation potencies of noncanonical cyclic nucleotides.
Collapse
Affiliation(s)
- Robin Lorenz
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| |
Collapse
|
2
|
Lu J, Yao I, Shimojo M, Katano T, Uchida H, Setou M, Ito S. Identification of nitrated tyrosine residues of protein kinase G-Iα by mass spectrometry. Anal Bioanal Chem 2014; 406:1387-96. [PMID: 24452741 DOI: 10.1007/s00216-013-7535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/29/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
The nitration of tyrosine to 3-nitrotyrosine is an oxidative modification of tyrosine by nitric oxide and is associated with many diseases, and targeting of protein kinase G (PKG)-I represents a potential therapeutic strategy for pulmonary hypertension and chronic pain. The direct assignment of tyrosine residues of PKG-I has remained to be made due to the low sensitivity of the current proteomic approach. In order to assign modified tyrosine residues of PKG-I, we nitrated purified PKG-Iα expressed in insect Sf9 cells by use of peroxynitrite in vitro and analyzed the trypsin-digested fragments by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Among the 21 tyrosine residues of PKG-Iα, 16 tyrosine residues were assigned in 13 fragments; and six tyrosine residues were nitrated, those at Y71, Y141, Y212, Y336, Y345, and Y567, in the peroxynitrite-treated sample. Single mutation of tyrosine residues at Y71, Y212, and Y336 to phenylalanine significantly reduced the nitration of PKG-Iα; and four mutations at Y71, Y141, Y212, and Y336 (Y4F mutant) reduced it additively. PKG-Iα activity was inhibited by peroxynitrite in a concentration-dependent manner from 30 μM to 1 mM, and this inhibition was attenuated in the Y4F mutant. These results demonstrated that PKG-Iα was nitrated at multiple tyrosine residues and that its activity was reduced by nitration of these residues.
Collapse
Affiliation(s)
- Jingshan Lu
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Wang L, Pasha Z, Wang S, Li N, Feng Y, Lu G, Millard RW, Ashraf M. Protein kinase G1 α overexpression increases stem cell survival and cardiac function after myocardial infarction. PLoS One 2013; 8:e60087. [PMID: 23536905 PMCID: PMC3607603 DOI: 10.1371/journal.pone.0060087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/23/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α) could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs) contributing to regeneration of the ischemic heart. METHODS AND RESULTS MSCs from male rats were transduced with adenoviral vector encoding for PKG1α ((PKG1α)MSCs).Controls included native MSCs ((Nat)MSCs) and MSCs transduced with an empty vector ((Null)MSCs). PKG1α activity was increased approximately 20, 5 and 16 fold respectively in (PKG1α)MSCs. (PKG1α)MSCs showed improved survival under oxygen and glucose deprivation (OGD) which was evidenced by lower LDH release, caspase-3/7 activity and number of positive TUNEL cells. Anti-apoptotic proteins pAkt, pGSK3β, and Bcl-2 were significantly increased in (PKG1α)MSCs compared to (Nat)MSCs and (Null)MSCs. Higher release of multiple prosurvival and angiogenic factors such as HGF, bFGF, SDF-1 and Ang-1 was observed in (PKG1α)MSCs before and after OGD. In a female rat model of acute myocardial infarction, (PKG1α)MSCs group showed higher survival compared with (Null)MSCs group at 3 and 7 days after transplantation as determined by TUNEL staining and sry-gene quantitation by real-time PCR. Increased anti-apoptotic proteins and paracrine factors in vitro were also identified. Immunostaining for cardiac troponin I combined with GFP showed increased myogenic differentiation of (PKG1α)MSCs. At 4 weeks after transplantation, compared to DMEM group and (Null)MSCs group, (PKG1α)MSCs group showed increased blood vessel density in infarct and peri-infarct areas (62.5±7.7; 68.8±7.3 per microscopic view, p<0.05) and attenuated infarct size (27.2±2.5%, p<0.01). Heart function indices including ejection fraction (52.1±2.2%, p<0.01) and fractional shortening (24.8%±1.3%, p<0.01) were improved significantly in (PKG1α)MSCs group. CONCLUSION Overexpression of PKG1α transgene could be a powerful approach to improve MSCs survival and their angiomyogenic potential in the infarcted heart.
Collapse
Affiliation(s)
- Linlin Wang
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Zeeshan Pasha
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Shuyun Wang
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ning Li
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yuliang Feng
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Gang Lu
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ronald W. Millard
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Muhammad Ashraf
- Laboratory Medicine, Department of Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
4
|
Sharma S, Barton J, Rafikov R, Aggarwal S, Kuo HC, Oishi PE, Datar SA, Fineman JR, Black SM. Chronic inhibition of PPAR-γ signaling induces endothelial dysfunction in the juvenile lamb. Pulm Pharmacol Ther 2012; 26:271-80. [PMID: 23257346 DOI: 10.1016/j.pupt.2012.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/21/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023]
Abstract
We have recently shown that the development of endothelial dysfunction in lambs with increased pulmonary blood flow (PBF) correlates with a decrease in peroxisome proliferator activated receptor-γ (PPAR-γ) signaling. Thus, in this study we determined if the loss of PPAR-γ signaling is necessary and sufficient to induce endothelial dysfunction by exposing lambs with normal PBF to the PPAR-γ antagonist, GW9662. Two-weeks of exposure to GW9662 significantly decreased both PPAR-γ protein and activity. In addition, although eNOS protein and nitric oxide metabolites (NO(x)) were significantly increased, endothelial dependent pulmonary vasodilation in response to acetylcholine was attenuated, indicative of endothelial dysfunction. To elucidate whether downstream mediators of vasodilation were impaired we examined soluble guanylate cyclase (sGC)-α and β subunit protein, cGMP levels, and phosphodiesterase 5 (PDE5) protein and activity, but we found no significant changes. However, we found that peroxynitrite levels were significantly increased in GW9662-treated lambs and this correlated with a significant increase in protein kinase G-1α (PKG-1α) nitration and a reduction in PKG activity. Peroxynitrite is formed by the interaction of NO with superoxide and we found that there was a significant increase in superoxide generation in GW9662-treated lambs. Further, we identified dysfunctional mitochondria as the primary source of the increased superoxide. Finally, we found that the mitochondrial dysfunction was due to a disruption in carnitine metabolism. We conclude that loss of PPAR-γ signaling is sufficient to induce endothelial dysfunction confirming its important role in maintaining a healthy vasculature.
Collapse
Affiliation(s)
- Shruti Sharma
- Vascular Biology Center, Georgia Health Sciences University, 1459 Laney Walker Blvd, CB3210B, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|