1
|
Haghighi FH, Farsiani H. Is Lactococcus lactis a Suitable Candidate for Use as a Vaccine Delivery System Against Helicobacter pylori? Curr Microbiol 2024; 82:30. [PMID: 39643816 DOI: 10.1007/s00284-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori was described in 1979. This bacterium, which thrives in the harsh conditions of the stomach, is typically acquired during childhood and can remain colonized for life. Approximately, 90% of the global population is affected, and H. pylori is linked to various conditions, including gastritis, peptic ulcers, lymphoproliferative gastric lymphoma, and even gastric cancer. Currently, antibiotics are the primary treatment method, but the associated challenges of antibiotic use have led to the consideration of oral vaccination as a viable preventive measure against this infection. However, the stomach's harsh environment characterized by its acidic conditions and numerous proteolytic enzymes poses significant obstacles to the development and effectiveness of oral vaccines. To address these challenges, researchers have proposed and evaluated several delivery systems. One of the most promising options is the use of probiotics. Among the various probiotics, Lactococcus lactis stands out as a suitable candidate for oral vaccine delivery against H. pylori due to the advancements in genetic engineering that have been applied to it. This review article discusses the limitations of current treatment strategies and rationalizes the shift toward vaccination, particularly oral vaccination for this infection. It also explores the advantages and challenges of using probiotic bacteria, with a focus on L. lactis as a delivery system. Ultimately, despite the existing challenges, L. lactis continues to be recognized as a promising delivery system. Nonetheless, further research is essential to fully assess its effectiveness and address the challenges associated with this approach.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
2
|
Hua X, Li C, Xiao Y, Lu Y, Liu X. Oral administration of recombinant Lactococcus lactis expressing largemouth bass (Micropterus salmoides) IFNa3 protein enhances immune response against largemouth bass virus (LMBV) infection. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109875. [PMID: 39236860 DOI: 10.1016/j.fsi.2024.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Largemouth bass virus (LMBV) is a highly pathogenic pathogen that often causes high mortality of affected largemouth bass and significant financial losses. Type I interferon as an effective and broad spectrum tool has been successfully used for therapeutic or prophylactic treatment some viral infections. However, the implementation of immunotherapies based on interferon administration to combat LMBV infections has not been reported. And Lactic Acid Bacteria (LAB) are a powerful vehicle for expressing cytokines or immunostimulant peptides at the gastrointestinal level after oral administration. In this study, Lactococcus lactis (L. lactis) expression system with lactose as a screening marker was utilized to express the Micropterus salmoides interferon a3 (IFNa3) protein and orally administered to largemouth bass. The genetically engineered strain pNZ8149-Usp45-IFNa3-6His/L. lactis NZ3900 was successfully constructed, and its potential to elicit immune protection response by oral administration was evaluated. After orally administration, the recombinant L. lactis was detected in guts of experimental fish and remained detectable for 72 h. Additionally, IFNa3 was able to enhance the test fish's immune response, as determined by the relatively increased mRNA relative expression of immune-related genes in the liver, spleen, and kidney tissues, including IFN-γ, TNF-α, IL-1β, IL-8, IgM and IgT. Following LMBV challenge, the experiment group of pNZ8149-Usp45-IFNa3-6His/L. lactis NZ3900 exhibited a 70 % survival rate, while survival rate were 15 % in the PBS control group, 45 % in the pNZ8149/L. lactis NZ3900 group. Furthermore, the viral load in the surviving fish was significantly lower than that of the control groups. These findings suggest that oral administration of recombinant L. lactis producing IFNa3 induces largemouth bass immune responses at a systemic level to effective prevent and combat of LMBV infection.
Collapse
Affiliation(s)
- Xiaojing Hua
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Chen Li
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Xueqin Liu
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Niçin RT, Zehir-Şentürk D, Özkan B, Göksungur Y, Şimşek Ö. Optimization of 4,6-α and 4,3-α-Glucanotransferase Production in Lactococcus lactis and Determination of Their Effects on Some Quality Characteristics of Bakery Products. Foods 2024; 13:432. [PMID: 38338567 PMCID: PMC10855804 DOI: 10.3390/foods13030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the production of 4,6-α (4,6-α-GTase) and 4,3-α-glucanotransferase (4,3-α-GTase), expressed previously in Lactococcus lactis, was optimized and these enzymes were used to investigate glycemic index reduction and staling delay in bakery products. HP-SEC analysis showed that the relevant enzymes were able to produce oligosaccharides from potato starch or malto-oligosaccharides. Response Surface Methodology (RSM) was used to optimize enzyme synthesis and the highest enzyme activities of 15.63 ± 1.65 and 19.01 ± 1.75 U/mL were obtained at 1% glucose, pH 6, and 30 °C for 4,6-α-GTase and 4,3-α-GTase enzymes, respectively. SEM analysis showed that both enzymes reduced the size of the starch granules. These enzymes were purified by ultrafiltration and used to produce bread and bun at an enzyme activity of 4 U/g, resulting in a decrease in the specific volume of the bread. It was found that the estimated glycemic index (eGI) of bread formulated with 4,6-α-GTase decreased by 18.01%, and the eGI of bread prepared with 4,3-α-GTase decreased by 13.61%, indicating a potential delay in staling. No significant differences were observed in the sensory properties of the bakery products. This is the first study showing that 4,6-α-GTase and 4,3-α-GTase enzymes have potential in increasing health benefits and improving technological aspects regarding bakery products.
Collapse
Affiliation(s)
- Ramazan Tolga Niçin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul 34220, Turkey;
| | - Duygu Zehir-Şentürk
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160, Turkey; (D.Z.-Ş.); (B.Ö.)
| | - Busenur Özkan
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160, Turkey; (D.Z.-Ş.); (B.Ö.)
| | - Yekta Göksungur
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir 35100, Turkey;
| | - Ömer Şimşek
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
4
|
Javid H, Oryani MA, Akbari S, Amiriani T, Ravanbakhsh S, Rezagholinejad N, Afshari AR, Karimi-Shahri M. L. plantarum and L. lactis as a promising agent in treatment of inflammatory bowel disease and colorectal cancer. Future Microbiol 2023; 18:1197-1209. [PMID: 37882738 DOI: 10.2217/fmb-2023-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
It has been understood for nearly a century that patients with intestinal inflammatory disease (IBD) have a higher risk of developing colorectal cancer (CRC). Recently, two species of lactic acid bacteria, Lactobacillus plantarum and Lactococcus lactis, have been investigated as therapeutic agents for IBD. These bacteria have been shown to survive gastric transit, to adhere and colonize in the intestinal tract of humans and modulate the intestinal microbiota and immune response. L. plantarum and L. lactis might be used as multifunctional drugs for the treatment of IBD and the prevention or treatment of CRC. This article summarizes current knowledge of L. plantarum and L. lactis as therapeutic and preventative agents for IBD and CRC, respectively.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, 917966679, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
| | - Sanaz Akbari
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, 9133736351, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran
| | - Samaneh Ravanbakhsh
- Biology Expert, Plant Sciences, graduate of Golestan University, Gorgan, 4918936316, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, 9691657678, Iran
| |
Collapse
|
5
|
Hwang IC, Valeriano VD, Song JH, Pereira M, Oh JK, Han K, Engstrand L, Kang DK. Mucosal immunization with lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 epitopes on the surface induces humoral and mucosal immune responses in mice. Microb Cell Fact 2023; 22:96. [PMID: 37161468 PMCID: PMC10169176 DOI: 10.1186/s12934-023-02100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Marcela Pereira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
6
|
Chen X, Wu J, Yang F, Zhou M, Wang R, Huang J, Rong Y, Liu J, Wang S. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress. J Adv Res 2023; 45:127-140. [PMID: 35599106 PMCID: PMC10006524 DOI: 10.1016/j.jare.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/14/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Antifreeze peptides regulate the physiological functions of frozen cells and even their apoptosis; however, the mechanisms by which antifreeze peptides regulate these processes remain unclear, although the interactions between cell membranes and ice are well known to be important in this process. OBJECTIVES Our study aims to investigate how antifreeze peptides regulate cell physiological functions during the freezing process. METHODS We investigated the cryoprotective effect of rsfAFP on the physiological functions of S. thermophilus under freezing stress by measuring cellular metabolism activity, intracellular enzyme activity, cell membrane characterization, and cell apoptosis. The mechanism by which rsfAFP impacts S. thermophilus physiological functions under freezing stress was investigated using multispectral techniques and cryo-TEM. RESULTS We show that a recombinant antifreeze peptide (rsfAFP) interacts with the extracellular capsular polysaccharides and peptidoglycan of Streptococcus thermophilus and ice to cover the outer layer of the membrane, forming a dense protective layer that regulates the molecular structure of extracellular ice crystals, which results in reduced extracellular membrane damage, depressed apoptosis and increased intracellular metabolic activity. This interaction mechanism was indicated by the fact that S. thermophilus better maintained its permeability barrier, membrane fluidity, membrane structural integrity, and cytoplasmic membrane potential during freezing stress with rsfAFP treatment. CONCLUSION These results provide new insights into the mechanism by which rsfAFP regulates frozen cellphysiological functionsand apoptosis under freezing stress.
Collapse
Affiliation(s)
- Xu Chen
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mi Zhou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
7
|
Bıyıklı A, Niçin RT, Dertli E, Şimşek Ö. Extracellular recombinant production of 4,6 and 4,3 α-glucanotransferases in Lactococcus lactis. Enzyme Microb Technol 2023; 164:110175. [PMID: 36516732 DOI: 10.1016/j.enzmictec.2022.110175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
4,6 α-Glucanotransferase (4,6-α-GTase) and 4,3 α-glucanotransferases (4,3-α-GTase) produced by Lactic Acid Bacteria (LAB) in the GH70 enzyme family have become important due to their catalytic effect on starch and maltodextrins. Their high level of production is necessary for their application at industrial scale. In this respect, both enzymes were expressed extracellularly using Lactococcus lactis as GRAS host. 4,6-α-GTase and 4,3-α-GTase genes from Limosilactobacillus reuteri E81 and Limosilactobacillus fermentum PFC282 respectively were transformed into the plasmid pLEB124 vector having the signal peptide usp45 under the P45 continuous promoter and successfully expressed in Lactococcus lactis MG1363. Western blot screening showed that the relevant enzymes were able to be successfully secreted extracellularly. The Vmax and Km of 4,6-α-GTase were 2.58 µmol min-1 and 0054 mg min-1 whereas 3369 µmol min-1 and 0032 mg min-1 for 4,3-α-GTase respectively. NMR analysis demonstrated the formation of new bonds within the corresponding enzymes. Also, both enzymes were active on maltose, maltoheptaose, maltohexaose and starch and produced malto-oligosaccarides observed by TLC analysis. In conclusion, this study demonstrated first time the extracellular production of 4,6-α-GTase and 4,3-α-GTase with GRAS status that can be useful for starch retrogradation delay and glycaemic index reduction.
Collapse
Affiliation(s)
- Ayşe Bıyıklı
- Suleyman Demirel University, Engineering Faculty, Department of Food Engineering, Isparta, Turkey.
| | - Ramazan Tolga Niçin
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, İstanbul, Turkey.
| | - Enes Dertli
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, İstanbul, Turkey.
| | - Ömer Şimşek
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, İstanbul, Turkey.
| |
Collapse
|
8
|
Yadav AK, Varikuti SR, Kumar A, Kumar M, Debanth N, Rajkumar H. Expression of heterologous heparan sulphate binding protein of Helicobacter pylori on the surface of Lactobacillus rhamnosus GG. 3 Biotech 2023; 13:19. [PMID: 36568501 PMCID: PMC9768065 DOI: 10.1007/s13205-022-03428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of most commonly found pathogen in the stomach. In spite of emergence of different treatment strategies, H. pylori infection remains difficult to treat. The bioengineered probiotic lactobacilli that could displace H. pylori and simultaneously present immunogenic peptides such as heparan sulphate binding protein (Hsbp) to elicit immune response could emerge as a potential therapeutic agent. The aim of this study was to discover the anti-H. pylori activities and faster exclusion of H. pylori from host cells by the recombinant strain of Lactobacillus expressing the immunogenic Hsbp protein. The results were promising and showed a 65% reduction in H. pylori adhesion after two hours of pre-incubation with recombinant-LGG and HeLa S3 cells, followed by the adhesion of H. pylori pathogen (P < 0.002). Additionally, 36% and 39% reduction were examined in co-incubation and post-incubation with recombinant-LGG, respectively. When challenged with H. pylori, the proinflammatory cytokine expression was also down regulated in recombinant-LGG treated HeLa S3 cells. This promising result provides a new insight of bioengineered probiotic lactobacilli which could displace H. pylori and simultaneously has immunogenic properties thereby may be useful to prevent H. pylori infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03428-4.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Distt., Samba, 181143 Jammu and Kashmir India
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| | - Sudarshan Reddy Varikuti
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, 123031 Haryana India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nabendu Debanth
- Centre for Molecular Biology, Central University of Jammu, Distt., Samba, 181143 Jammu and Kashmir India
| | - Hemalatha Rajkumar
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| |
Collapse
|
9
|
Asai T, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Encouraging Tactics with Genetically Modified Probiotics to Improve Immunity for the Prevention of Immune-Related Diseases including Cardio-Metabolic Disorders. Biomolecules 2022; 13:biom13010010. [PMID: 36671395 PMCID: PMC9855998 DOI: 10.3390/biom13010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.
Collapse
|
10
|
Lactic Acid Bacteria as Mucosal Immunity Enhancers and Antivirals through Oral Delivery. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucosal vaccination offer an advantage over systemic inoculation from the immunological viewpoint. The development of an efficient vaccine is now a priority for emerging diseases such as COVID-19, that was declared a pandemic in 2020 and caused millions of deaths globally. Lactic acid bacteria (LAB) especially Lactobacillus are the vital microbiota of the gut, which is observed as having valuable effects on animals’ and human health. LAB produce lactic acid as the major by-product of carbohydrate degradation and play a significant role in innate immunity enhancement. LAB have significant characteristics to mimic pathogen infections and intrinsically possess adjuvant properties to enhance mucosal immunity. Increasing demand and deliberations are being substantially focused on probiotic organisms that can enhance mucosal immunity against viral diseases. LAB can also strengthen their host’s antiviral defense system by producing antiviral peptides, and releasing metabolites that prevent viral infections and adhesion to mucosal surfaces. From the perspectives of “one health” and the use of probiotics, conventional belief has opened up a new horizon on the use of LAB as antivirals. The major interest of this review is to depict the beneficial use of LAB as antivirals and mucosal immunity enhancers against viral diseases.
Collapse
|
11
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
12
|
Frelet-Barrand A. Lactococcus lactis, an Attractive Cell Factory for the Expression of Functional Membrane Proteins. Biomolecules 2022; 12:180. [PMID: 35204681 PMCID: PMC8961550 DOI: 10.3390/biom12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Membrane proteins play key roles in most crucial cellular processes, ranging from cell-to-cell communication to signaling processes. Despite recent improvements, the expression of functionally folded membrane proteins in sufficient amounts for functional and structural characterization remains a challenge. Indeed, it is still difficult to predict whether a protein can be overproduced in a functional state in some expression system(s), though studies of high-throughput screens have been published in recent years. Prokaryotic expression systems present several advantages over eukaryotic ones. Among them, Lactococcus lactis (L. lactis) has emerged in the last two decades as a good alternative expression system to E. coli. The purpose of this chapter is to describe L. lactis and its tightly inducible system, NICE, for the effective expression of membrane proteins from both prokaryotic and eukaryotic origins.
Collapse
Affiliation(s)
- Annie Frelet-Barrand
- FEMTO-ST Institute, UMR 6174, CNRS, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, CEDEX, 25030 Besançon, France
| |
Collapse
|
13
|
Tsai CJY, Loh JMS, Proft T. PilVax: A Novel Platform for the Development of Mucosal Vaccines. Methods Mol Biol 2022; 2412:399-410. [PMID: 34918257 DOI: 10.1007/978-1-0716-1892-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide vaccines offer an attractive strategy to induce highly specific immune responses while reducing potential side effects. However, peptides are often poorly immunogenic and unstable on their own, requiring the need for potentially toxic adjuvants or expensive chemical coupling. The novel peptide delivery platform PilVax utilizes the rigid pilus structure from Group A Streptococcus (GAS) to stabilize and amplify the peptide, and present it on the surface of the non-pathogenic food-grade bacterium Lactococcus lactis. Upon intranasal immunization, PilVax vaccines have proven to induce peptide-specific systemic and mucosal responses. PilVax provides an alternative method to develop mucosal vaccines that are inexpensive to produce and easy to administer.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Zhang X, Zhang R, Wang J, Sui N, Xu G, Yan H, Zhu Y, Xie Z, Jiang S. Construction of Recombinant Lactococcus lactis Strain Expressing VP1 Fusion Protein of Duck Hepatitis A Virus Type 1 and Evaluation of Its Immune Effect. Vaccines (Basel) 2021; 9:vaccines9121479. [PMID: 34960225 PMCID: PMC8709260 DOI: 10.3390/vaccines9121479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
With the continuous development of duck farming and the increasing breeding density, the incidence of duck hepatitis A virus type 1 (DHAV-1) has been on the rise, seriously endangering the development of duck farming. To reduce the use of antibiotics in duck breeding, susceptibility risks and mortality, and avoid virulence recovery and immune failure risk, this study aims to develop a new type of mucosal immune probiotics and make full use of molecular biology techniques, on the level of genetic engineering, to modify Lactococcus lactis (L. lactis). In this study, a secretory recombinant L. lactis named MG1363-VP1 with an enhanced Green Fluorescent Protein (eGFP) and translation enhancer T7g10L was constructed, which could express the VP1-eGFP fusion protein of DHAV-1. The animal experiment in ducklings was performed to detect the immune response and protection effect of oral microecologics by recombinant L. lactis. The results showed that oral L. lactis MG1363-VP1 significantly induced the body’s humoral immune system and mucosal immune system to produce specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) for DHAV-1 in ducklings, and cytokines including interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon gamma (IFN-γ). The mortality rate was monitored simultaneously by the natural infestation in the process of production and breeding; notably, the ducklings vaccinated with L. lactis MG1363-VP1 were effectively protected against the nature infection of DHAV-1. The recombinant L. lactis MG1363-VP1 constructed in this study provides a new means of preventing and controlling DHAV-1 infection in the future.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Key Laboratory of Animal Microecological Preparations, Taian 271000, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Jingyu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Nana Sui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Hui Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
- Correspondence: ; Tel.: +86-538-8245799
| |
Collapse
|
15
|
Bacteria-Based Microdevices for the Oral Delivery of Macromolecules. Pharmaceutics 2021; 13:pharmaceutics13101610. [PMID: 34683903 PMCID: PMC8537518 DOI: 10.3390/pharmaceutics13101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The oral delivery of macromolecules is quite challenging due to environmental insults and biological barriers encountered along the gastrointestinal (GI) tract. Benefiting from their living characteristics, diverse bacterial species have been engineered as intelligent platforms to deliver various therapeutics. To tackle difficulties in oral delivery, innovative bacteria-based microdevices have been developed by virtue of advancements in synthetic biology and nanotechnology, with aims to overcome the instability and short half-life of macromolecules in the GI tract. In this review, we summarize the main classes of macromolecules that are produced and delivered through the oral ingestion of bacteria and bacterial derivatives. Furtherly, we discuss the engineering strategies and biomedical applications of these living microdevices in disease diagnosis, bioimaging, and treatment. Finally, we highlight the advantages as well as the limitations of these engineered bacteria used as platforms for the oral delivery of macromolecules and also propose their potential for clinical translation. The results summarized in this review article would contribute to the invention of next-generation bacteria-based systems for the oral delivery of macromolecules.
Collapse
|
16
|
Purification and radioiodination of 2, 4 di-tertiary- butyl phenol extracted from Lactococcus lactis subsp. lactis CAU: 3138-GM2 and its application on myeloma cells. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Lee SH, Beck BR, Hwang SH, Song SK. Feeding olive flounder (Paralichthys olivaceus) with Lactococcus lactis BFE920 expressing the fusion antigen of Vibrio OmpK and FlaB provides protection against multiple Vibrio pathogens: A universal vaccine effect. FISH & SHELLFISH IMMUNOLOGY 2021; 114:253-262. [PMID: 33979691 DOI: 10.1016/j.fsi.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Vibriosis, an illness caused by the Vibrio bacteria species, results in significant economic loss in olive flounder farms. Here we present a novel anti-Vibrio feed vaccine protecting multiple strains of Vibrio pathogens, a universal vaccine effect. The vaccine was generated by engineering Lactococcus lactis BFE920 to express the fusion antigens of Vibrio outer membrane protein K (OmpK) and flagellin B subunit (FlaB). These antigen genes are highly conserved among Vibrio species. Olive flounder (7.1 ± 0.8 g and 140 ± 10 g) were fed the vaccine adsorbed to a regular feed (1 × 107 CFU/g) for one week with a 1-week interval, repeating three times (a triple boost). The vaccinated fish increased the significant levels of antigen-specific antibodies, T cell numbers (CD4-1, CD4-2, and CD8α), cytokine production (T-bet and IFN-γ), and innate immune responses (TLR5M, IL-1β, and IL-12p40). Also, the survival rates of adult and juvenile fish fed the vaccine were significantly elevated when challenged with V. anguillarum, V. alginolyticus, and V. harveyi. In addition, weight gain rate and feed conversion ratio were improved in vaccinated fish. The feed vaccine protected multiple Vibrio pathogens, a universal vaccine effect, by activating innate and adaptive immune responses. This oral vaccine may be developed as an anti-Vibrio vaccine to protect against a broad spectrum of Vibrio pathogens.
Collapse
Affiliation(s)
- Soon Ho Lee
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Bo Ram Beck
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seok-Hong Hwang
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea.
| |
Collapse
|
18
|
Afchangi A, Latifi T, Jalilvand S, Marashi SM, Shoja Z. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch Virol 2021; 166:995-1006. [PMID: 33533975 DOI: 10.1007/s00705-021-04964-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Due to the lower efficacy of currently approved live attenuated rotavirus (RV) vaccines in developing countries, a new approach to the development of safe mucosally administered live bacterial vectors is being considered, using probiotic bacteria as an efficient delivery platform for heterologous RV antigens. Lactic acid bacteria (LAB), which are considered food-grade bacteria and normal microbiota, have been utilized throughout history as probiotics and developed since the 1990s as a delivery system for recombinant heterologous proteins. Over the last decade, LAB have frequently been used as a platform for the delivery of various RV antigens to the mucosa. Given the appropriate safety profile for neonates and providing the benefits of probiotics, recombinant LAB-based vaccines could potentially address the need for a subunit RV vaccine. The present review focuses mainly on different recombinant LAB vaccine constructs for RV and their potential as an alternative recombinant vaccine against RV disease.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
19
|
Plasmid Replicons for the Production of Pharmaceutical-Grade pDNA, Proteins and Antigens by Lactococcus lactis Cell Factories. Int J Mol Sci 2021; 22:ijms22031379. [PMID: 33573129 PMCID: PMC7866527 DOI: 10.3390/ijms22031379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Lactococcus lactis bacterium found in different natural environments is traditionally associated with the fermented food industry. But recently, its applications have been spreading to the pharmaceutical industry, which has exploited its probiotic characteristics and is moving towards its use as cell factories for the production of added-value recombinant proteins and plasmid DNA (pDNA) for DNA vaccination, as a safer and industrially profitable alternative to the traditional Escherichia coli host. Additionally, due to its food-grade and generally recognized safe status, there have been an increasing number of studies about its use in live mucosal vaccination. In this review, we critically systematize the plasmid replicons available for the production of pharmaceutical-grade pDNA and recombinant proteins by L. lactis. A plasmid vector is an easily customized component when the goal is to engineer bacteria in order to produce a heterologous compound in industrially significant amounts, as an alternative to genomic DNA modifications. The additional burden to the cell depends on plasmid copy number and on the expression level, targeting location and type of protein expressed. For live mucosal vaccination applications, besides the presence of the necessary regulatory sequences, it is imperative that cells produce the antigen of interest in sufficient yields. The cell wall anchored antigens had shown more promising results in live mucosal vaccination studies, when compared with intracellular or secreted antigens. On the other side, engineering L. lactis to express membrane proteins, especially if they have a eukaryotic background, increases the overall cellular burden. The different alternative replicons for live mucosal vaccination, using L. lactis as the DNA vaccine carrier or the antigen producer, are critically reviewed, as a starting platform to choose or engineer the best vector for each application.
Collapse
|
20
|
Protective Immunity Against Enterotoxigenic Escherichia coli by Oral Vaccination of Engineered Lactococcus lactis. Curr Microbiol 2021; 78:3464-3473. [PMID: 34264362 PMCID: PMC8280578 DOI: 10.1007/s00284-021-02601-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in children globally, and thus suitable vaccines are desired. Antigen display on lactic acid bacteria is a reliable approach for efficient oral vaccination and preventing bowel diseases. To develop an oral vaccine against ETEC, the gene of the binding domain from heat-labile toxin (LTB), a key ETEC virulence factor, was codon-optimized and cloned into a construct containing a signal peptide and an anchor for display on L. lactis. Bioinformatics analysis showed a codon adaptation index of 0.95 for the codon-optimized gene. Cell surface expression of LTB was confirmed by transmission electron microscopy and blotting. White New Zealand rabbits were immunized per os (PO) with the recombinant L. lactis, and the antibody titers were assayed with ELISA. In vitro neutralization assay was performed using mouse adrenal tumor cells and rabbit ileal loop test was performed as the in vivo assay. ELISA results indicated that oral administration of the engineered L. lactis elicited a significant production of IgA in the intestine. In vitro neutralization assay showed that the effect of the toxin could be neutralized with 500 µg/ml of IgG isolated from the oral vaccine group. Furthermore, the dose of ETEC causing fluid accumulation in the ileal loop test showed a tenfold increase in rabbits immunized with either recombinant L. lactis or LTB protein compared to other groups. Our results imply that recombinant L. lactis could potentially be an effective live oral vaccine against ETEC toxicity.
Collapse
|
21
|
Batista VL, da Silva TF, de Jesus LCL, Tapia-Costa AP, Drumond MM, Azevedo V, Mancha-Agresti P. Lactic Acid Bacteria as Delivery Vehicle for Therapeutics Applications. Methods Mol Biol 2021; 2183:447-459. [PMID: 32959259 DOI: 10.1007/978-1-0716-0795-4_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactic acid bacteria comprise a large group of Gram-positive organisms capable of converting sugar into lactic acid. They have been studied due to their therapeutic potential on the mucosal surface. Among the species, Lactococcus lactis is considered the model bacterium and it has been explored as an important vehicle for providing therapeutic molecules and antigens in the mucosa. They can be genetically engineered to produce a variety of molecules as well as deliver heterologous DNA and protein. DNA vaccines consist of the administration of a bacterial plasmid under the control of a eukaryotic promoter encoding the antigen of interest. The resulting proteins are capable of stimulating the immune system, becoming a promising technique for immunization against a variety of tumors and infection diseases and having several advantages compared to conventional nucleic acid delivery methods (such as bioballistic delivery, electroporation, and intramuscular administration).
Collapse
Affiliation(s)
- Viviane Lima Batista
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Tales Fernando da Silva
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luis Cláudio Lima de Jesus
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Tapia-Costa
- Biomedical Science Institute (ICBM), Catholic of Cuyo University, San Juan, CP, Argentina
| | - Mariana Martins Drumond
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, Federal Center for Technological Education of Minas Gerais (CEFET/MG), Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
- Biomedical Science Institute (ICBM), Catholic of Cuyo University, San Juan, CP, Argentina.
| |
Collapse
|
22
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Zurita-Turk M, Mendes Souza B, Prósperi de Castro C, Bastos Pereira V, Pecini da Cunha V, Melo Preisser T, Caetano de Faria AM, Carmona Cara Machado D, Miyoshi A. Attenuation of intestinal inflammation in IL-10 deficient mice by a plasmid carrying Lactococcus lactis strain. BMC Biotechnol 2020; 20:38. [PMID: 32703192 PMCID: PMC7379781 DOI: 10.1186/s12896-020-00631-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are intestinal disorders characterized by inflammation in the gastrointestinal tract (GIT) and to date, no efficient treatments exist. Interleukin-10 (IL-10), one of the most important anti-inflammatory cytokines of the immune response, has been under study due to its potential for IBD therapy; however, systemic treatments lead to undesirable side effects and oral administration is limited due to its quick degradation. To avoid these bottlenecks, we previously engineered an invasive Lactococcus lactis (L. lactis) strain capable of delivering, directly to host cells, a eukaryotic DNA expression vector coding for IL-10 of Mus musculus (pValac:il-10) that diminished inflammation in two induced mouse models of intestinal inflammation. Thus, the aim of this study was to analyze its therapeutic effect in the IL-10-deficient mouse model (IL-10-/-) that spontaneously and gradually develops an inflammation that modifies the immune system and resembles Crohn's disease (CD) in humans, and evaluate if it would also diminish and/or prevent the onset of this disease. RESULTS Oral administration of L. lactis MG1363 FnBPA+ (pValac:il-10) to IL-10-/- mice not only led to IL-10 production by these, but consequently also diminished the severe development of the disease, with animals showing lower macroscopic scores and histological damages, increased IL-10 levels and tendency to lower pro-inflammatory cytokine levels. CONCLUSIONS The results of this study, together with the previously published ones using this DNA delivery-based strategy, show that it is capable of creating and maintaining an anti-inflammatory environment in the GIT and thus effectively diminish the onset of inflammation in various mouse models.
Collapse
Affiliation(s)
- Meritxell Zurita-Turk
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Av. Antônio Carlos, 6627, Pampulha, 31, Belo Horizonte, MG, 270-901, Brazil.
| | - Bianca Mendes Souza
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Av. Antônio Carlos, 6627, Pampulha, 31, Belo Horizonte, MG, 270-901, Brazil
| | - Camila Prósperi de Castro
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Av. Antônio Carlos, 6627, Pampulha, 31, Belo Horizonte, MG, 270-901, Brazil
| | - Vanessa Bastos Pereira
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Av. Antônio Carlos, 6627, Pampulha, 31, Belo Horizonte, MG, 270-901, Brazil
| | - Vanessa Pecini da Cunha
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Av. Antônio Carlos, 6627, Pampulha, 31, Belo Horizonte, MG, 270-901, Brazil
| | - Tatiane Melo Preisser
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Av. Antônio Carlos, 6627, Pampulha, 31, Belo Horizonte, MG, 270-901, Brazil
| | - Ana Maria Caetano de Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Carmona Cara Machado
- Laboratório de Alergia e Inflamação, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Miyoshi
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerai, Av. Antônio Carlos, 6627, Pampulha, 31, Belo Horizonte, MG, 270-901, Brazil
| |
Collapse
|
24
|
Pritam M, Singh G, Swaroop S, Singh AK, Pandey B, Singh SP. A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. Int J Biol Macromol 2020; 158:159-179. [PMID: 32360460 PMCID: PMC7189201 DOI: 10.1016/j.ijbiomac.2020.04.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Suchit Swaroop
- Experimental & Public Health Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | | |
Collapse
|
25
|
Alessi AM, Gray V, Farquharson FM, Flores-López A, Shaw S, Stead D, Wegmann U, Shearman C, Gasson M, Collie-Duguid ESR, Flint HJ, Louis P. β-Glucan is a major growth substrate for human gut bacteria related to Coprococcus eutactus. Environ Microbiol 2020; 22:2150-2164. [PMID: 32141148 DOI: 10.1111/1462-2920.14977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
A clone encoding carboxymethyl cellulase activity was isolated during functional screening of a human gut metagenomic library using Lactococcus lactis MG1363 as heterologous host. The insert carried a glycoside hydrolase family 9 (GH9) catalytic domain with sequence similarity to a gene from Coprococcus eutactus ART55/1. Genome surveys indicated a limited distribution of GH9 domains among dominant human colonic anaerobes. Genomes of C. eutactus-related strains harboured two GH9-encoding and four GH5-encoding genes, but the strains did not appear to degrade cellulose. Instead, they grew well on β-glucans and one of the strains also grew on galactomannan, galactan, glucomannan and starch. Coprococcus comes and Coprococcus catus strains did not harbour GH9 genes and were not able to grow on β-glucans. Gene expression and proteomic analysis of C. eutactus ART55/1 grown on cellobiose, β-glucan and lichenan revealed similar changes in expression in comparison to glucose. On β-glucan and lichenan only, one of the four GH5 genes was strongly upregulated. Growth on glucomannan led to a transcriptional response of many genes, in particular a strong upregulation of glycoside hydrolases involved in mannan degradation. Thus, β-glucans are a major growth substrate for species related to C. eutactus, with glucomannan and galactans alternative substrates for some strains.
Collapse
Affiliation(s)
- Anna M Alessi
- University of Aberdeen, Rowett Institute, Aberdeen, UK.,Institute of Food Research, Norwich, UK
| | - Victoria Gray
- University of Aberdeen, Rowett Institute, Aberdeen, UK.,University of Aberdeen, Centre for Genome-Enabled Biology and Medicine, Aberdeen, UK
| | | | | | - Sophie Shaw
- University of Aberdeen, Centre for Genome-Enabled Biology and Medicine, Aberdeen, UK
| | - David Stead
- University of Aberdeen, Rowett Institute, Aberdeen, UK
| | - Udo Wegmann
- Institute of Food Research, Norwich, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | | | | | - Harry J Flint
- University of Aberdeen, Rowett Institute, Aberdeen, UK
| | - Petra Louis
- University of Aberdeen, Rowett Institute, Aberdeen, UK
| |
Collapse
|
26
|
Garza-Morales R, Rendon BE, Malik MT, Garza-Cabrales JE, Aucouturier A, Bermúdez-Humarán LG, McMasters KM, McNally LR, Gomez-Gutierrez JG. Targeting Melanoma Hypoxia with the Food-Grade Lactic Acid Bacterium Lactococcus Lactis. Cancers (Basel) 2020; 12:cancers12020438. [PMID: 32069844 PMCID: PMC7072195 DOI: 10.3390/cancers12020438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Hypoxia is a feature of the tumor microenvironment that reduces efficacy of immuno- and chemotherapies, resulting in poor clinical outcomes. Lactococcus lactis is a facultative anaerobic gram-positive lactic acid bacterium (LAB) that is Generally Recognized as Safe (GRAS). Recently, the use of LAB as a delivery vehicle has emerged as an alternative strategy to deliver therapeutic molecules; therefore, we investigated whether L. lactis can target and localize within melanoma hypoxic niches. To simulate hypoxic conditions in vitro, melanoma cells A2058, A375 and MeWo were cultured in a chamber with a gas mixture of 5% CO2, 94% N2 and 1% O2. Among the cell lines tested, MeWo cells displayed greater survival rates when compared to A2058 and A375 cells. Co-cultures of L. lactis expressing GFP or mCherry and MeWo cells revealed that L. lactis efficiently express the transgenes under hypoxic conditions. Moreover, multispectral optoacoustic tomography (MSOT), and near infrared (NIR) imaging of tumor-bearing BALB/c mice revealed that the intravenous injection of either L. lactis expressing β-galactosidase (β-gal) or infrared fluorescent protein (IRFP713) results in the establishment of the recombinant bacteria within tumor hypoxic niches. Overall, our data suggest that L. lactis represents an alternative strategy to target and deliver therapeutic molecules into the tumor hypoxic microenvironment.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Beatriz E. Rendon
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Mohammad Tariq Malik
- Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Jeannete E. Garza-Cabrales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Anne Aucouturier
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Luis G. Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Kelly M. McMasters
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Lacey R. McNally
- Department of Bioengineering, Stephenson Cancer Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Jorge G. Gomez-Gutierrez
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
- Correspondence: ; Tel.: +1-(502)-852-5745
| |
Collapse
|
27
|
Recombinant Lactococcus lactis Expressing Ling Zhi 8 Protein Ameliorates Nonalcoholic Fatty Liver and Early Atherogenesis in Cholesterol-Fed Rabbits. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3495682. [PMID: 32047809 PMCID: PMC7007749 DOI: 10.1155/2020/3495682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is an inflammatory disease characterized by lipid deposits in the subendothelial space leading to severe inflammation. Nonalcoholic fatty liver disease (NAFLD) shares several risk factors with atherosclerosis, including dyslipidemia, type 2 diabetes mellitus, and metabolic syndrome, all of which lead to lipid deposition in the liver causing inflammation and fibrosis. Several clinical trials have shown that certain Chinese herbal medicines with anti-inflammatory effects can be used as adjuvant therapy to prevent the development of cardiovascular events and liver disease. Ling Zhi 8 (LZ8) is an immunomodulatory protein isolated from a medicinal mushroom and has been well documented to possess a broad range of pharmacological properties. This study aimed to evaluate the protective effects of recombinant Lactococcus lactis expressing LZ8 protein on NAFLD and atherogenesis in a cholesterol-fed rabbit model. Twelve rabbits were divided into three groups and fed with syrup only, L. lactis vehicle, or recombinant L. lactis-LZ8 once a day on weekdays for five weeks, respectively. The gene expression of IL-1β in the aorta was significantly suppressed after oral administration of L. lactis-LZ8. Moreover, in hematoxylin and eosin staining of the aorta, the intima-medial thickness was decreased, and foam cells were significantly reduced in the subendothelial space. LZ8 also inhibited the expression of IL-1β in the liver, decreased fat droplet deposits and infiltration of inflammatory cells, and improved liver function by decreasing liver enzymes in an animal model. Our results suggest that the Lactococcus-expressing LZ8 appears to be a promising medicine for improving both NAFLD and early atherogenesis owing to its anti-inflammatory effect. Furthermore, it is available as a low-cost food-grade product.
Collapse
|
28
|
Mucosal delivery of live Lactococcus lactis expressing functionally active JlpA antigen induces potent local immune response and prevent enteric colonization of Campylobacter jejuni in chickens. Vaccine 2020; 38:1630-1642. [PMID: 31932136 DOI: 10.1016/j.vaccine.2019.12.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/23/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Successful colonization of the mucosal epithelial cells is the key early step for Campylobacter jejuni (C. jejuni) pathogenesis in humans. A set of Surface Exposed Colonization Proteins (SECPs) are known to take leading role in bacterial adhesion and subsequent host pathogenesis. Among the major SECPs, the constitutively expressed C. jejuni surface lipoprotein Jejuni lipoprotein A (JlpA), interacts with intestinal heat shock protein 90α (Hsp90α) and contributes in disease progression by triggering pro-inflammatory responses via activation of NF-κB and p38 MAP kinase pathways. In addition to its ability to express on the surface, high sequence conservation of JlpA protein among different Campylobacter spp make it a suitable vaccine target against C. jejuni. Given that chickens are the primary source for C. jejuni infection in humans and persistent cecal colonization significantly contribute in pathogen transmission, we explicitly used chickens as a model to test the immune-protective efficacy of JlpA protein. Taking into account that gastro-intestinal tract is the major site for C. jejuni colonization, we chose to use mucosal (intragastric) route as mode for JlpA antigen delivery. To deliver JlpA via mucosal route, we engineered a food grade Lactic acid producing bacteria, Lactococcus lactis (L. lactis) to express functionally active JlpA protein in the surface. Further, we demonstrated its ability to substantially improve the antigen specific local immune responses in the intestine along with significant immune-protection against enteric colonization of C. jejuni in chickens.
Collapse
|
29
|
Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis 2020; 14:e0007939. [PMID: 31899767 PMCID: PMC6941807 DOI: 10.1371/journal.pntd.0007939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous leishmaniasisis a vector-borne disease transmitted by Leishmania infected sand flies. PpSP15 is an immunogenic salivary protein from the sand fly Phlebotomus papatasi. Immunization with PpSP15 was shown to protect against Leishmania major infection. Lactococcus lactis is a safe non-pathogenic delivery system that can be used to express antigens in situ. Here, the codon-optimized Ppsp15-egfp gene was cloned in pNZ8121 vector downstream of the PrtP signal peptide that is responsible for expression and secretion of the protein on the cell wall. Expression of PpSP15-EGFP recombinant protein was monitored by immunofluorescence, flow cytometry and Western blot. Also, expression of protein in cell wall compartment was verified using whole cell ELISA, Western blot and TEM microscopy. BALB/c mice were immunized three times with recombinant L. lactis-PpSP15-EGFPcwa, and the immune responses were followed up, at short-term (ST, 2 weeks) and long-term (LT, 6 months) periods. BALB/c mice were challenged with L. major plus P. papatasi Salivary Gland Homogenate. Evaluation of footpad thickness and parasite burden showed a delay in the development of the disease and significantly decreased parasite numbers in PpSP15 vaccinated animals as compared to control group. In addition, immunized mice showed Th1 type immune responses. Importantly, immunization with L. lactis-PpSP15-EGFPcwa stimulated the long-term memory in mice which lasted for at least 6 months.
Collapse
Affiliation(s)
- Elaheh Davarpanah
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Aliramaei MR, Khorasgani MR, Rahmani MR, Zarkesh Esfahani SH, Emamzadeh R. Expression of Helicobacter pylori CagL gene in Lactococcus lactis MG1363 and evaluation of its immunogenicity as an oral vaccine in mice. Microb Pathog 2019; 142:103926. [PMID: 31838174 DOI: 10.1016/j.micpath.2019.103926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 12/11/2019] [Indexed: 01/15/2023]
Abstract
Helicobacter pylori is a gram negative pathogen which commonly colonizes in the human gastric mucosa from early childhood and persists throughout life. CagL is a 27-kDa protein that is located at the tip of T4SS pili and highly conserved among pathogenic H. pylori strains. Lactic acid bacteria especially Lactococcus lactis (L. lactis) could serve as an antigen-delivering vehicle for the development of edible vaccine. In this study H. pylori CagL gene was cloned in pAMJ2008 vector and transferred to Lactococcus lactis MG1363 as the host for CagL antigen production. This recombinant bacterium was orally subjected to mice, and the immune response to CagL was evaluated by ELISA. Intracellular expression of CagL protein was confirmed by Western blot analysis. Mucosal immunization of mice with the recombinant L. lactis significantly stimulated CagL-Specific antibodies: IgA, IgG, cytokine IL-17 and IFN-γ. Moreover, the specific anti-CagL IgA response was detected in the feces of immunized mice. These results indicate that CagL of H. pylori was successfully expressed in L. lactis and the recombinant bacteria can be potentially used as an edible vaccine against H. pylori infection.
Collapse
Affiliation(s)
| | | | - Mohammad Reza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | | | - Rahman Emamzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
31
|
Koko I, Song AAL, Masarudin MJ, Abdul Rahim R. Engineering integrative vectors based on phage site-specific recombination mechanism for Lactococcus lactis. BMC Biotechnol 2019; 19:82. [PMID: 31775775 PMCID: PMC6882331 DOI: 10.1186/s12896-019-0575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/07/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Site-specific integration system allows foreign DNA to be integrated into the specific site of the host genome, enabling stable expression of heterologous protein. In this study, integrative vectors for secretion and surface display of proteins were constructed based on a lactococcal phage TP901-1 integrating system. RESULTS The constructed integration system comprises of a lactococcal promoter (PnisA or P170), phage attachment site (attP) from bacteriophage TP901-1, a signal peptide (USP45 or SPK1) for translocation of the target protein, and a PrtP344 anchor domain in the case of the integrative vectors for surface display. There were eight successfully constructed integrative vectors with each having a different combination of promoter and signal peptide; pS1, pS2, pS3 and pS4 for secretion, and pSD1, pSD2, pSD3 and pSD4 for surface display of desired protein. The integration of the vectors into the host genome was assisted by a helper vector harbouring the integrase gene. A nuclease gene was used as a reporter and was successfully integrated into the L. lactis genome and Nuc was secreted or displayed as expected. The signal peptide SPK1 was observed to be superior to USP45-LEISSTCDA fusion in the secretion of Nuc. As for the surface display integrative vector, all systems developed were comparable with the exception of the combination of P170 promoter with USP45 signal peptide which gave very low signals in whole cell ELISA. CONCLUSION The engineered synthetic integrative vectors have the potential to be used for secretion or surface display of heterologous protein production in lactococcal expression system for research or industrial purposes, especially in live vaccine delivery.
Collapse
Affiliation(s)
- Innanurdiani Koko
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Chancellory, Universiti Teknikal Malaysia, 76100 Durian Tunggal, Melaka, Malaysia
| |
Collapse
|
32
|
Zhao L, Tang X, Sheng X, Xing J, Zhan W. Surface display of hirame novirhabdovirus (HIRRV) G protein in Lactococcus lactis and its immune protection in flounder (Paralichthys olivaceus). Microb Cell Fact 2019; 18:142. [PMID: 31434565 PMCID: PMC6704618 DOI: 10.1186/s12934-019-1195-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Background Hirame novirhabdovirus (HIRRV) can infect a wide range of marine and freshwater fish, causing huge economic losses to aquaculture industry. Vaccine development, especially oral vaccine, has become an effective and convenient way to control aquatic infectious diseases. HIRRV glycoprotein (G), an immunogenic viral protein is a potential vaccine candidate for prevention of the disease. Here, we aimed to construct a recombinant Lactococcus lactis strain expressing HIRRV-G on the cell surface as an oral vaccine to prevent HIRRV. Results Glycoprotein gene of HIRRV was successfully cloned and expressed in L. lactis NZ9000 in a surface-displayed form, yielding Ll:pSLC-G. An approximately 81 kDa recombinant G protein (containing LysM anchoring motif) was confirmed by SDS-PAGE, western blotting and mass spectrometry analysis. The surface-displayed G protein was also verified by immunofluorescence and flow cytometry assays. Furthermore, to evaluate the potential of Ll:pSLC-G as oral vaccine candidate, flounders were continuously fed with commercial diet pellets coated with 1.0 × 109 cfu/g of induced Ll:pSLC-G for 1 week. Four weeks later, booster vaccination was performed with the same procedure. Compared with the controls, Ll:pSLC-G elicited significantly higher levels of specific IgM against HIRRV in flounder gut mucus at the second week and in serum at the fourth week (p < 0.05). Meanwhile, oral immunization with Ll:pSLC-G could provide 60.7% protection against HIRRV infection and a significantly lower virus load was detected than the controls on the third day post-challenge (p < 0.01). Moreover, on the first day post 1-week feeding, approximately 104–105 recombinant L. lactis cells were detected in every gram of foregut, midgut and hindgut of flounder, which were mainly localized at the bottom of gut mucus layer; and on day 21, 102–103L. lactis cells could still be recovered. Conclusions HIRRV-G protein was successfully expressed on the surface of L. lactis cells, which could trigger mucosal and humoral immune response of flounder and provide considerable immune protection against HIRRV. It suggests that genetically engineered L. lactis expressing G protein can be employed as a promising oral vaccine against HIRRV infection.
Collapse
Affiliation(s)
- Lining Zhao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
33
|
Duarte SOD, Martins MC, Andrade SM, Prazeres DMF, Monteiro GA. Plasmid Copy Number of pTRKH3 in Lactococcus lactis is Increased by Modification of the repDE Ribosome-Binding Site. Biotechnol J 2019; 14:e1800587. [PMID: 31009171 DOI: 10.1002/biot.201800587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/02/2019] [Indexed: 01/08/2023]
Abstract
Plasmids for DNA vaccination are exclusively produced in the Gram-negative Escherichia coli. One important drawback of this system is the presence of lipopolysaccharides. The generally recognized as safe Lactococcus lactis (L. lactis) would constitute a safer alternative for plasmid production. A key requirement for the establishment of a cost-effective L. lactis-based plasmid manufacturing is the availability of high-copy number plasmids. Unfortunately, the highest copy number reported in Gram-positive bacteria for the pAMβ1 replicon is around 100 copies. The purpose of this work is to engineer the repDE ribosome-binding site (RBS) of the pTRKH3 plasmid by site-directed mutagenesis in order to increase the plasmid copy number in L. lactis LMG19460 cells. The pTRKH3-b mutant is the most promising candidate, achieving 215 copies of plasmid per chromosome, a 3.5-fold increase when compared to the nonmodified pTRKH3, probably due to a stronger RBS sequence, a messenger RNA secondary structure that promotes the RepDE expression, an ideal intermediate amount of transcriptional repressors and the presence of a duplicated region that added an additional RBS sequence and one new in-frame start codon. pTRKH3-b is a promising high-copy number shuttle plasmid that will contribute to turn lactic acid bacteria into a safer and economically viable alternative as DNA vaccines producers.
Collapse
Affiliation(s)
- Sofia O D Duarte
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Maria C Martins
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Sílvia M Andrade
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Duarte M F Prazeres
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Gabriel A Monteiro
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| |
Collapse
|
34
|
Tagliavia M, Nicosia A. Advanced Strategies for Food-Grade Protein Production: A New E. coli/Lactic Acid Bacteria Shuttle Vector for Improved Cloning and Food-Grade Expression. Microorganisms 2019; 7:microorganisms7050116. [PMID: 31035573 PMCID: PMC6560424 DOI: 10.3390/microorganisms7050116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Food-grade production of recombinant proteins in Gram-positive bacteria, especially in LAB (i.e., Lactococcus, Lactobacillus, and Streptococcus), is of great interest in the areas of recombinant enzyme production, industrial food fermentation, gene and metabolic engineering, as well as antigen delivery for oral vaccination. Food-grade expression relies on hosts generally considered as safe organisms and on clone selection not dependent on antibiotic markers, which limit the overall DNA manipulation workflow, as it can be carried out only in the expression host and not in E. coli. Moreover, many commercial expression vectors lack useful elements for protein purification. We constructed a “shuttle” vector containing a removable selective marker, which allows feasible cloning steps in E. coli and subsequent protein expression in LAB. In fact, the cassette can be easily excised from the selected recombinant plasmid, and the resulting marker-free vector transformed into the final LAB host. Further useful elements, as improved MCS, 6xHis-Tag, and thrombin cleavage site sequences were introduced. The resulting vector allows easy cloning in E. coli, can be quickly converted in a food-grade expression vector and harbors additional elements for improved recombinant protein purification. Overall, such features make the new vector an improved tool for food-grade expression.
Collapse
Affiliation(s)
- Marcello Tagliavia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| | - Aldo Nicosia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| |
Collapse
|
35
|
Bohlul E, Hasanlou F, Taromchi AH, Nadri S. TRAIL-expressing recombinant Lactococcus lactis induces apoptosis in human colon adenocarcinoma SW480 and HCT116 cells. J Appl Microbiol 2019; 126:1558-1567. [PMID: 30815963 DOI: 10.1111/jam.14237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Abstract
AIMS We investigated the ability of Lactococcus lactis, a species generally regarded as safe, to express tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. The expressed protein was either cell wall anchored or secreted, and it was assessed whether this could induce apoptosis in human colon adenocarcinoma cell lines SW480 and HCT116. METHODS AND RESULTS Constructs were designed to produce either secreted or cell wall-anchored forms of human TRAIL cloned into pNZ7021 expression vector. The expression by L. lactis was confirmed by Western blotting and immunofluorescence. Induction of cell death was evaluated by coculturing transformants producing either form of TRAIL protein with the two cell lines followed by MTT assay. Gene expression of apoptosis genes, Bax and Bcl2, was assessed by qPCR. The viability of SW480 and HCT116 cells treated with recombinant L. lactis was significantly reduced. A significant change was observed in the ratio of Bax/Bcl2 expression in HCT116 cells only following treatment with the supernatant of recombinant L. lactis containing secreted TRAIL. CONCLUSION Recombinant L. lactis producing TRAIL protein can induce apoptosis in human colon adenocarcinoma cell lines SW480 and HCT116. SIGNIFICANCE AND IMPACT OF THE STUDY The use of recombinant probiotics that produce anticancer compounds is a promising option for combating cancer cells.
Collapse
Affiliation(s)
- E Bohlul
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - F Hasanlou
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - A H Taromchi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - S Nadri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
36
|
Mohseni AH, Razavilar V, Keyvani H, Razavi MR, Khavari-Nejad RA. Oral immunization with recombinant Lactococcus lactis NZ9000 expressing human papillomavirus type 16 E7 antigen and evaluation of its immune effects in female C57BL/6 mice. J Med Virol 2018; 91:296-307. [PMID: 30192395 DOI: 10.1002/jmv.25303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/12/2018] [Accepted: 08/20/2018] [Indexed: 01/21/2023]
Abstract
The ORFs of both native and codon-optimized E7 genes were successfully fused to SPusp45 signal peptide and expressed by a nisin-controlled gene expression system in the NZ9000 strains of Lactococcus lactis. Recombinant strains were confirmed by Western blot analysis. To measure immune responses against the E7 antigen, specific-pathogen-free C57BL/6 mice were inoculated with L lactis harboring pNZ8123-rE7 by oral gavage. Then, specific antibodies and cytokines were measured by enzyme-linked immunosorbent assay and enzyme-linked immunospot assay, respectively. Oral administration of L lactis strains expressing rE7 elicited the highest levels of E7-specific antibody and greatest numbers of E7-specific CD4+ T helper and CD8+ T cell precursors. Our outcomes indicated that the HPV-16 E7 specific IL-2- and IFN-γ-secreting T cells in antigen-stimulated splenocytes and intestinal mucosal lymphocytes were significantly higher than the control groups. Our data also demonstrated that mice vaccinated with recombinant L lactis were able to generate potent protective effects against challenge with the E7-expressing tumor cell line (TC-1). Moreover, L lactis containing pNZ8123-HPV16-optiE7 showed strong therapeutic antitumor effects against established tumors in vivo. These findings demonstrate that recombinant L lactis induce both humoral and cellular immune responses in mice and are therefore recommended for therapeutic treatments in humans after oral administration.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vadood Razavilar
- Department of Food Hygiene, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ramazan Ali Khavari-Nejad
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
37
|
Tanhaieian A, Sekhavati MH, Ahmadi FS, Mamarabadi M. Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: Its safety and molecular modeling evaluation. Microb Pathog 2018; 125:51-59. [PMID: 30208331 DOI: 10.1016/j.micpath.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/10/2023]
Abstract
Over the last decade, global increase in antibiotic consumption is a major concern in the word. Antimicrobial peptides (AMPs) known as potential alternative and were considered as a safe antimicrobial agent. However, current approaches for production and purification of AMPs are costly and time-consuming. Here we show that heterologous expression of a chimeric peptide was successfully developed in Lactococcus lactis as a safe and cost-effective recombinant protein expression platform. Minimum inhibitory concentrations (MICs) of His-tag purified peptide was determined against a broad spectrum of human pathogenic bacteria consistence of Gram-positive, Gram-negative and resistance strains in deferent range from 7.24 ± 0.4 to 156.24 ± 3.0 μg/mL. Furthermore, our results showed that the peptide was not toxic to HEK and HeLa cells and even at concentrations as high as 250 μg/mL exhibited minimal hemolysis against RBCs. Additional characteristics such as thermal, protease and 50% human plasma stability were determined for cLFchimera. Molecular modeling analysis demonstrated that fusion of His-tag to the C-terminal of chimeric peptide increased peptide stability during 10 ns simulation in water. Overall, the chimeric peptide has a considerable antibacterial activity with low hemolysis, low or none in toxicity and good temperature resistance and also high stability in serum. We anticipate the established expression system could be developed and used more effectively in probiotic strains in future studies.
Collapse
Affiliation(s)
- Abass Tanhaieian
- Plant Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | | | | | - Mojtaba Mamarabadi
- Plant Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|
38
|
Temprana CF, Argüelles MH, Gutierrez NM, Barril PA, Esteban LE, Silvestre D, Mandile MG, Glikmann G, Castello AA. Rotavirus VP6 protein mucosally delivered by cell wall-derived particles from Lactococcus lactis induces protection against infection in a murine model. PLoS One 2018; 13:e0203700. [PMID: 30192869 PMCID: PMC6128627 DOI: 10.1371/journal.pone.0203700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 01/21/2023] Open
Abstract
Rotaviruses are the primary cause of acute gastroenteritis in children worldwide. Although the implementation of live attenuated vaccines has reduced the number of rotavirus-associated deaths, variance in their effectiveness has been reported in different countries. This fact, among other concerns, leads to continuous efforts for the development of new generation of vaccines against rotavirus.In this work, we describe the obtention of cell wall-derived particles from a recombinant Lactococcus lactis expressing a cell wall-anchored version of the rotavirus VP6 protein. After confirming by SDS-PAGE, Western blot, flow cytometry and electronic immunomicroscopy that these particles were carrying the VP6 protein, their immunogenic potential was evaluated in adult BALB/c mice. For that, mucosal immunizations (oral or intranasal), with or without the dmLT [(double mutant Escherichia coli heat labile toxin LT(R192G/L211A)] adjuvant were performed. The results showed that these cell wall-derived particles were able to generate anti-rotavirus IgG and IgA antibodies only when administered intranasally, whether the adjuvant was present or not. However, the presence of dmLT was necessary to confer protection against rotavirus infection, which was evidenced by a 79.5 percent viral shedding reduction.In summary, this work describes the production of cell wall-derived particles which were able to induce a protective immune response after intranasal immunization. Further studies are needed to characterize the immune response elicited by these particles as well as to determine their potential as an alternative to the use of live L. lactis for mucosal antigen delivery.
Collapse
Affiliation(s)
- C. Facundo Temprana
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| | - Marcelo H. Argüelles
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolás M. Gutierrez
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Patricia A. Barril
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.)–CONICET, Centenario, Neuquén, Argentina
| | - Laura E. Esteban
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Dalila Silvestre
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Marcelo G. Mandile
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Alejandro A. Castello
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| |
Collapse
|
39
|
Škrlec K, Ručman R, Jarc E, Sikirić P, Švajger U, Petan T, Perišić Nanut M, Štrukelj B, Berlec A. Engineering recombinant Lactococcus lactis as a delivery vehicle for BPC-157 peptide with antioxidant activities. Appl Microbiol Biotechnol 2018; 102:10103-10117. [PMID: 30191288 DOI: 10.1007/s00253-018-9333-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Lactic acid bacteria (LAB) are attractive hosts for the expression of heterologous proteins and can be engineered to deliver therapeutic proteins or peptides to mucosal surfaces. The gastric stable pentadecapeptide BPC-157 is able to prevent and treat gastrointestinal inflammation by reducing the production of reactive oxygen species (ROS). In this study, we used LAB Lactococcus lactis as a vector to deliver BPC-157 by surface display and trypsin shedding or by secretion to the growth medium. Surface display of BPC-157 was achieved by fusing it with basic membrane protein A (BmpA) or with the peptidoglycan binding domain of AcmA and Usp45 secretion signal. While the expression of BmpA-fusion proteins was higher than that of AcmA/Usp45-fusion protein, the surface display ability of BPC-157 was approximately 14-fold higher with AcmA/Usp45-fusion protein. Release of BPC-157 from the bacterial surface or from isolated fusion proteins by trypsinization was demonstrated with anti-BPC-157 antibodies or by mass spectrometry. The concentration of BPC-157 delivered by surface display via AcmA/Usp45-fusion was 30 ng/ml. This increased to 117 ng/ml by Usp45 signal-mediated secretion, making the latter the most effective lactococcal delivery approach for BPC-157. Secreted BPC-157 significantly decreased ROS production in 149BR fibroblast cell model, suggesting its potential benefit in the treatment of intestinal inflammations. Additionally, a comparison of different modes of small peptide delivery by L. lactis, performed in the present study, will facilitate the future use of L. lactis as peptide delivery vehicle.
Collapse
Affiliation(s)
- Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Predrag Sikirić
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
40
|
de Castro CP, Drumond MM, Batista VL, Nunes A, Mancha-Agresti P, Azevedo V. Vector Development Timeline for Mucosal Vaccination and Treatment of Disease Using Lactococcus lactis and Design Approaches of Next Generation Food Grade Plasmids. Front Microbiol 2018; 9:1805. [PMID: 30154762 PMCID: PMC6102412 DOI: 10.3389/fmicb.2018.01805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Lactococcus lactis has been used historically in fermentation and food preservation processes as it is considered safe for human consumption (GRAS—Generally Recognized As Safe). Nowadays, in addition to its wide use in the food industry, L. lactis has been used as a bioreactor for the production of molecules of medical interest, as well as vectors for DNA delivery. These applications are possible due to the development of promising genetic tools over the past few decades, such as gene expression, protein targeting systems, and vaccine plasmids. Thus, this review presents some of these genetic tools and their evolution, which allow us to envision new biotechnological and therapeutic uses of L. lactis. Constitutive and inductive expression systems will be discussed, many of which have been used successfully for heterologous production of different proteins, tested on animal models. In addition, advances in the construction of new plasmids to be used as potential DNA vaccines, delivered by this microorganism, will also be viewed. Finally, we will focus on the scene of gene expression systems known as “food-grade systems” based on inducing compounds and safe selection markers, which eliminate the need for the use of compounds harmful to humans or animal health and potential future prospects for their applications.
Collapse
Affiliation(s)
- Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Nunes
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
41
|
Wu H, Song S, Tian K, Zhou D, Wang B, Liu J, Zhu H, Qiao J. A novel small RNA S042 increases acid tolerance in Lactococcus lactis F44. Biochem Biophys Res Commun 2018; 500:544-549. [DOI: 10.1016/j.bbrc.2018.04.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 11/25/2022]
|
42
|
Torkashvand A, Bahrami F, Adib M, Ajdary S. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis. Microb Pathog 2018; 120:155-160. [PMID: 29738814 PMCID: PMC7125623 DOI: 10.1016/j.micpath.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023]
Abstract
We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Lactococcus lactis was used for expression of fusion protein from Bordetella pertussis. BALB/c mice were immunized via oral or intranasal routes with recombinant L. lactis. Strong mucosal and Th1 systemic immune responses were developed. L. lactis is a suitable vehicle for expression and delivery of B. pertussis fusion protein.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13169-43551, Islamic Republic of Iran
| | - Minoo Adib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13169-43551, Islamic Republic of Iran.
| |
Collapse
|
43
|
LeCureux JS, Dean GA. Lactobacillus Mucosal Vaccine Vectors: Immune Responses against Bacterial and Viral Antigens. mSphere 2018; 3:e00061-18. [PMID: 29769376 PMCID: PMC5956152 DOI: 10.1128/msphere.00061-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria (LAB) have been utilized since the 1990s for therapeutic heterologous gene expression. The ability of LAB to elicit an immune response against expressed foreign antigens has led to their exploration as potential mucosal vaccine candidates. LAB vaccine vectors offer many attractive advantages: simple, noninvasive administration (usually oral or intranasal), the acceptance and stability of genetic modifications, relatively low cost, and the highest level of safety possible. Experimentation using LAB of the genus Lactobacillus has become popular in recent years due to their ability to elicit strong systemic and mucosal immune responses. This article reviews Lactobacillus vaccine constructs, including Lactobacillus species, antigen expression, model organisms, and in vivo immune responses, with a primary focus on viral and bacterial antigens.
Collapse
Affiliation(s)
- Jonathan S LeCureux
- Department of Natural and Applied Sciences, Evangel University, Springfield, Missouri, USA
| | - Gregg A Dean
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
44
|
Yurina V. Live Bacterial Vectors-A Promising DNA Vaccine Delivery System. Med Sci (Basel) 2018; 6:E27. [PMID: 29570602 PMCID: PMC6024733 DOI: 10.3390/medsci6020027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccination is one of the most successful immunology applications that has considerably improved human health. The DNA vaccine is a new vaccine being developed since the early 1990s. Although the DNA vaccine is promising, no human DNA vaccine has been approved to date. The main problem facing DNA vaccine efficacy is the lack of a DNA vaccine delivery system. Several studies explored this limitation. One of the best DNA vaccine delivery systems uses a live bacterial vector as the carrier. The live bacterial vector induces a robust immune response due to its natural characteristics that are recognized by the immune system. Moreover, the route of administration used by the live bacterial vector is through the mucosal route that beneficially induces both mucosal and systemic immune responses. The mucosal route is not invasive, making the vaccine easy to administer, increasing the patient's acceptance. Lactic acid bacterium is one of the most promising bacteria used as a live bacterial vector. However, some other attenuated pathogenic bacteria, such as Salmonella spp. and Shigella spp., have been used as DNA vaccine carriers. Numerous studies showed that live bacterial vectors are a promising candidate to deliver DNA vaccines.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, East Java 65145, Malang, Indonesia.
| |
Collapse
|
45
|
Cook DP, Gysemans C, Mathieu C. Lactococcus lactis As a Versatile Vehicle for Tolerogenic Immunotherapy. Front Immunol 2018; 8:1961. [PMID: 29387056 PMCID: PMC5776164 DOI: 10.3389/fimmu.2017.01961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Genetically modified Lactococcus lactis bacteria have been engineered as a tool to deliver bioactive proteins to mucosal tissues as a means to exert both local and systemic effects. They have an excellent safety profile, the result of years of human consumption in the food industry, as well as a lack of toxicity and immunogenicity. Also, containment strategies have been developed to promote further application as clinical protein-based therapeutics. Here, we review technological advancements made to enhanced the potential of L. lactis as live biofactories and discuss some examples of tolerogenic immunotherapies mediated by mucosal drug delivery via L. lactis. Additionally, we highlight their use to induce mucosal tolerance by targeted autoantigen delivery to the intestine as an approach to reverse autoimmune type 1 diabetes.
Collapse
Affiliation(s)
- Dana P Cook
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Lim PY, Tan LL, Ow DSW, Wong FT. A propeptide toolbox for secretion optimization of Flavobacterium meningosepticum endopeptidase in Lactococcus lactis. Microb Cell Fact 2017; 16:221. [PMID: 29207979 PMCID: PMC5715515 DOI: 10.1186/s12934-017-0836-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Background Lactic acid bacteria are a family of “generally regarded as safe” organisms traditionally used for food fermentation. In recent years, they have started to emerge as potential chassis for heterologous protein production. And more recently, due to their beneficial properties in the gut, they have been examined as potential candidates for mucosal delivery vectors, especially for acid-sensitive enzymes. One such application would be the delivery of gluten-digesting endopeptidases for the treatment of celiac disease. To facilitate these applications, an efficient recombinant protein expression toolbox is required, especially for recombinant protein secretion. While current tools for enhancing protein secretion consist mainly of signal peptides, secretion propeptides have also been observed to play a crucial role for protein secretion and improved yields. Results To expand the propeptide library for secretion optimization, we have mined and characterized three naturally occurring propeptides from the sequenced genomes of 109 Lactococcus species. These newly-mined propeptides were introduced after the N-terminal USP45 secretion signal to characterize and compare their effects on the secretion of Escherichia coli thioredoxin (TRX) and Flavobacterium meningosepticum prolyl endopeptidase (Fm PEP) in Lactococcus lactis NZ9000. All three propeptides, along with the positive control LEISSTCDA, improved volumetric secretion yields by 1.4–2.3-folds. However, enhancement of secretion yield is dependent on protein of interest. For TRX, the optimal combination of USP45 signal peptide and LEISSTCDA produced a 2.3-fold increase in secretion yields. Whilst for Fm PEP, propeptide 1 with USP45 signal peptide improved volumetric secretion yields by 2.2-fold compared to a 1.4-fold increase by LEISSTCDA. Similar trends in Fm PEP activity and protein yield also demonstrated minimal effect of the negative charged propeptides on PEP activity and thus folding. Conclusions Overall, we have characterized three new propeptides for use in L. lactis secretion optimization. From success of these propeptides for improvement of secretion yields, we anticipate this collection to be valuable to heterologous protein secretion optimisation in lactic acid bacteria. We have also demonstrated for the first time, secretion of Fm PEP in L. lactis for potential use as a therapy agent in celiac disease. Electronic supplementary material The online version of this article (10.1186/s12934-017-0836-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Yu Lim
- Microbial Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Lee Ling Tan
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| | - Fong T Wong
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
47
|
Ferreira AK, Mambelli LI, Pillai SY. Intervening in disease through genetically-modified bacteria. Best Pract Res Clin Gastroenterol 2017; 31:693-697. [PMID: 29566913 DOI: 10.1016/j.bpg.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 01/31/2023]
Abstract
The comprehension of the molecular basis of different diseases is rapidly being dissected as a consequence of advancing technology. Consequently, proteins with potential therapeutic usefulness, including cytokines and signaling molecules have been identified in the last decades. However, their clinical use is hampered by disadvantageous functional and economic considerations. One of the most important of these considerations is targeted topical delivery and also the synthesis of such proteins, which for intravenous use requires rigorous purification whereas proteins often do not withstand digestive degradation and thus cannot be applied per os. Recently, the idea of using genetically modified bacteria has emerged as an attempt to evade these important barriers. Using such bacteria can deliver therapeutic proteins or other molecules at place of disease, especially when disease is at a mucosal surface. Further, whereas intravenously applied therapeutic proteins require expensive methodology in order to become endotoxin-free, this is not necessary for local application of therapeutic proteins in the intestine. In addition, once created further propagation of genetically modified bacteria is both cheap and requires relatively little in conditioning with respect to transport of the medication, making such organisms also suitable for combating disease in developing countries with poor infrastructure. Although first human trials with such bacteria were already performed more as a decade ago, the recent revolution in our understanding of the role of human gut microbiome in health and diseases has unleashed a revolution in this field resulting in a plethora of potential novel prophylactic and therapeutic intervention against disease onset and development employing such organisms. Today, the engineering of human microbiome for health benefits and related applications now chances many aspects of biology, nanotechnology and chemistry. Here, we review genetically modified bacteria methodology as possible carriers of drug delivering and provided the origin and inspirations for new drug delivery systems.
Collapse
Affiliation(s)
- Adilson K Ferreira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Alchemy, Innovation, Research & Development, CIETEC/IPEN, University of Sao Paulo, Sao Paulo, Brazil
| | - Lisley I Mambelli
- Alchemy, Innovation, Research & Development, CIETEC/IPEN, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
48
|
Nisin-induced expression of recombinant T cell epitopes of major Japanese cedar pollen allergens in Lactococcus lactis. Appl Microbiol Biotechnol 2017; 102:261-268. [DOI: 10.1007/s00253-017-8579-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 11/28/2022]
|
49
|
A Lactococcus lactis expression vector set with multiple affinity tags to facilitate isolation and direct labeling of heterologous secreted proteins. Appl Microbiol Biotechnol 2017; 101:8139-8149. [PMID: 28971274 PMCID: PMC5656699 DOI: 10.1007/s00253-017-8524-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
The gram-positive bacterium Lactococcus lactis is a useful host for extracellular protein production. A main advantage of L. lactis over other bacterial expression systems is that lactococcal cells display low levels of autolysis and proteolysis. Previously, we developed a set of vectors for nisin-inducible extracellular production of N- or C-terminally hexa-histidine (His6)-tagged proteins. The present study was aimed at expanding our portfolio of L. lactis expression vectors for protein purification and site-specific labeling. Specifically, we present two new groups of vectors allowing N- or C-terminal provision of proteins with a Strep-tag II or AVI-tag. Vectors for AVI-tagging encode an additional His6-tag for protein purification. Another set of vectors allows removal of N-terminal Strep- or His6-tags from expressed proteins with the tobacco etch virus protease. Two possible applications of the developed vectors are presented. First, we show that Strep-tagged LytM of Staphylococcus aureus in the growth medium of L. lactis can be directly bound to microtiter plates coated with an affinity reagent and used for enzyme-linked immunosorbent assays. Second, we show that the AVI-tagged Sle1 protein from S. aureus produced in L. lactis can be directly biotinylated and fluorescently labeled. The fluorescently labeled Sle1 was successfully applied for S. aureus re-binding studies, allowing subcellular localization by fluorescence microscopy. In conclusion, we have developed a set of expression vectors that enhances the versatility of L. lactis as a system for production of proteins with tags that can be used for affinity purification and site-specific protein labeling.
Collapse
|
50
|
Landry BP, Tabor JJ. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0020-2017. [PMID: 29052539 PMCID: PMC11687543 DOI: 10.1128/microbiolspec.bad-0020-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria in vivo, researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota in situ. Here, we develop a standard approach for engineering "smart probiotics," which both diagnose and treat disease, as well as "diagnostic gut bacteria" and "drug factory probiotics," which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.
Collapse
Affiliation(s)
- Brian P Landry
- Department of Bioengineering, Rice University, Houston, TX 77030
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Biosciences, Rice University, Houston, TX 77030
| |
Collapse
|