1
|
Jemelkova J, Stuchlova Horynova M, Kosztyu P, Zachova K, Zadrazil J, Galuszkova D, Takahashi K, Novak J, Raska M. GalNAc-T14 may Contribute to Production of Galactose-Deficient Immunoglobulin A1, the Main Autoantigen in IgA Nephropathy. Kidney Int Rep 2023; 8:1068-1075. [PMID: 37180502 PMCID: PMC10166743 DOI: 10.1016/j.ekir.2023.02.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Immunoglobulin A1 (IgA1) with galactose-deficient O-glycans (Gd-IgA1) play a key role in the pathogenesis of IgA nephropathy (IgAN). Mucosal-tissue infections increase IL-6 production and, in patients with IgAN, are often associated with macroscopic hematuria. IgA1-secreting cell lines derived from the circulation of patients with IgAN, compared to those of healthy controls (HCs), produce more IgA1 that has O-glycans with terminal or sialylated N-acetylgalactosamine (GalNAc). GalNAc residues are added to IgA1 hinge region by some of the 20 GalNAc transferases, the O-glycosylation-initiating enzymes. Expression of GALNT2, encoding GalNAc-T2, the main enzyme initiating IgA1 O-glycosylation, is similar in cells derived from patients with IgAN and HCs. In this report, we extend our observations of GALNT14 overexpression in IgA1-producing cell lines from patients with IgAN. Methods GALNT14 expression was analyzed in peripheral blood mononuclear cells (PBMCs) from patients with IgAN and from HCs. Moreover, the effect of GALNT14 overexpression or knock-down on Gd-IgA1 production in Dakiki cells was assessed. Results GALNT14 was overexpressed in PBMCs from patients with IgAN. IL-6 increased GALNT14 expression in PBMCs from patients with IgAN and HCs. We used IgA1-producing cell line Dakiki, a previously reported model of Gd-IgA1-producing cells, and showed that overexpression of GalNAc-T14 enhanced galactose deficiency of IgA1, whereas siRNA-mediated GalNAc-T14 knock-down reduced it. GalNAc-T14 was localized in trans-Golgi network, as expected. Conclusions Overexpression of GALNT14 due to inflammatory signals during mucosal infections may contribute to overproduction of Gd-IgA1 in patients with IgAN.
Collapse
Affiliation(s)
- Jana Jemelkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Milada Stuchlova Horynova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Zachova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Josef Zadrazil
- Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Dana Galuszkova
- Department of Transfusion Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, School of Medicine, Fujita Health University, Nagoya, Aichi, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Immunology, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
2
|
Stewart TJ, Takahashi K, Xu N, Prakash A, Brown R, Raska M, Renfrow MB, Novak J. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology 2020; 31:540-556. [PMID: 33295603 DOI: 10.1093/glycob/cwaa111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022] Open
Abstract
Mucin-type O-glycosylation occurs on many proteins that transit the Golgi apparatus. These glycans impact structure and function of many proteins and have important roles in cellular biosynthetic processes, signaling and differentiation. Although recent technological advances have enhanced our ability to profile glycosylation of glycoproteins, limitations in the understanding of the biosynthesis of these glycan structures remain. Some of these limitations stem from the difficulty to track the biosynthetic process of mucin-type O-glycosylation, especially when glycans occur in dense clusters in repeat regions of proteins, such as the mucins or immunoglobulin A1 (IgA1). Here, we describe a series of nano-liquid chromatography (LC)-mass spectrometry (MS) analyses that demonstrate the range of glycosyltransferase enzymatic activities involved in the biosynthesis of clustered O-glycans on IgA1. By utilizing nano-LC-MS relative quantitation of in vitro reaction products, our results provide unique insights into the biosynthesis of clustered IgA1 O-glycans. We have developed a workflow to determine glycoform-specific apparent rates of a human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltrasnfersase (GalNAc-T EC 2.4.1.41) and demonstrated how pre-existing glycans affect subsequent activity of glycosyltransferases, such as core 1 galactosyltransferase and α2,3- and α2,6-specific sialyltransferases, in successive additions in the biosynthesis of clustered O-glycans. In the context of IgA1, these results have potential to provide insight into the molecular mechanisms implicated in the pathogenesis of IgA nephropathy, an autoimmune renal disease involving aberrant IgA1 O-glycosylation. In a broader sense, these methods and workflows are applicable to the studies of the concerted and competing functions of other glycosyltransferases that initiate and extend mucin-type core 1 clustered O-glycosylation.
Collapse
Affiliation(s)
- Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, KAUL 524, Birmingham, AL 35294, USA
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Aichi, Toyoake 470-1192, Japan.,Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| | - Nuo Xu
- Department of Management, Information Systems & Quantitative Methods, 710 13th Street South, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amol Prakash
- Optys Tech Corporation, Shrewsbury, MA 01545, USA
| | - Rhubell Brown
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Immunology, Palacky University and University Hospital, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, KAUL 524, Birmingham, AL 35294, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Abstract
IgA nephropathy, the most common primary glomerulonephritis in the world and a frequent cause of end-stage renal disease, is characterized by typical mesangial deposits of IgA1, as described by Berger and Hinglaise in 1968. Since then, it has been discovered that aberrant IgA1 O-glycosylation is involved in disease pathogenesis. Progress in glycomic, genomic, clinical, analytical, and biochemical studies has shown autoimmune features of IgA nephropathy. The autoimmune character of the disease is explained by a multihit pathogenesis model, wherein overproduction of aberrantly glycosylated IgA1, galactose-deficient in some O-glycans, by IgA1-secreting cells leads to increased levels of circulatory galactose-deficient IgA1. These glycoforms induce production of autoantibodies that subsequently bind hinge-region of galactose-deficient IgA1 molecules, resulting in the formation of nephritogenic immune complexes. Some of these complexes deposit in the kidney, activate mesangial cells, and incite glomerular injury. Thus, galactose-deficient IgA1 is central to the disease process. In this article, we review studies concerning IgA1 O-glycosylation that have contributed to the current understanding of the role of IgA1 in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL..
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Bruce A Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Arend P. ABO (histo) blood group phenotype development and human reproduction as they relate to ancestral IgM formation: A hypothesis. Immunobiology 2016; 221:116-27. [DOI: 10.1016/j.imbio.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/18/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
5
|
Lauber J, Handrick R, Leptihn S, Dürre P, Gaisser S. Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli. Microb Cell Fact 2015; 14:3. [PMID: 25582753 PMCID: PMC4299809 DOI: 10.1186/s12934-014-0186-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recombinant protein-based therapeutics have become indispensable for the treatment of many diseases. They are produced using well-established expression systems based on bacteria, yeast, insect and mammalian cells. The majority of therapeutic proteins are glycoproteins and therefore the post-translational attachment of sugar residues is required. The development of an engineered Escherichia coli-based expression system for production of human glycoproteins could potentially lead to increased yields, as well as significant decreases in processing time and costs. RESULTS This work describes the expression of functional human-derived glycosyltransferase UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAcT2) in a recombinant E. coli strain. For expression, a codon-optimised gene encoding amino acids 52-571 of GalNAcT2 lacking the transmembrane N-terminal domain was inserted into a pET-23 derived vector encoding a polyhistidine-tag which was translationally fused to the N-terminus of the glycosyltransferase (HisDapGalNAcT2). The glycosyltransferase was produced in E. coli using a recently published expression system. Soluble HisDapGalNAcT2 produced in SHuffle® T7 host cells was purified using nickel affinity chromatography and was subsequently analysed by size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and circular dichroism spectroscopy to determine molecular mass, folding state and thermal transitions of the protein. The activity of purified HisDapGalNAcT2 was monitored using a colorimetric assay based on the release of phosphate during transfer of glycosyl residues to a model acceptor peptide or, alternatively, to the granulocyte-colony stimulating growth factor (G-CSF). Modifications were assessed by Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry analysis (MALDI-TOF-MS) and Electrospray Mass Spectrometry analysis (ESI-MS). The results clearly indicate the glycosylation of the acceptor peptide and of G-CSF. CONCLUSION In the present work, we isolated a human-derived glycosyltransferase by expressing soluble HisDapGalNAcT2 in E. coli. The functional activity of the enzyme was shown in vitro. Further investigations are needed to assess the potential of in vivo glycosylation in E. coli.
Collapse
Affiliation(s)
- Jennifer Lauber
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.
| | - René Handrick
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.
| | - Sebastian Leptihn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Stuttgart, Germany.
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
| | - Sabine Gaisser
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.
| |
Collapse
|
6
|
Stuchlova Horynova M, Vrablikova A, Stewart TJ, Takahashi K, Czernekova L, Yamada K, Suzuki H, Julian BA, Renfrow MB, Novak J, Raska M. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant 2014; 30:234-8. [PMID: 25281698 DOI: 10.1093/ndt/gfu308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Galactose-deficient O-glycans in the hinge region (HR) of immunoglobulin A1 (IgA1) play a key role in the pathogenesis of IgA nephropathy (IgAN). O-Glycans of circulatory IgA1 consist of N-acetylgalactosamine (GalNAc) with a β1,3-linked galactose; both sugars may be sialylated. In patients with IgAN, α2,6-sialylated GalNAc is a frequent form of the galactose-deficient O-glycans. Prior analyses of IgA1-producing cells had indicated that α2,6-sialyltransferase II (ST6GalNAc-II) is likely responsible for sialylation of GalNAc of galactose-deficient IgA1, but direct evidence is missing. METHODS We produced a secreted variant of recombinant human ST6GalNAc-II and an IgA1 fragment comprised of Cα1-HR-Cα2. This IgA1 fragment and a synthetic HR peptide with enzymatically attached GalNAc residues served as acceptors. ST6GalNAc-II activity was assessed in vitro and the attachment of sialic acid to these acceptors was detected by lectin blot and mass spectrometry. RESULTS ST6GalNAc-II was active with both acceptors. High-resolution mass spectrometry analysis revealed that up to three sialic acid residues were added to the GalNAc residues of the HR glycopeptide. CONCLUSIONS Our data provide direct evidence that ST6GalNAc-II can sialylate GalNAc of galactose-deficient IgA1. As serum levels of galactose-deficient IgA1 with sialylated glycoforms are increased in IgAN patients, our data explain the corresponding part of the biosynthetic pathway.
Collapse
Affiliation(s)
- Milada Stuchlova Horynova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77515, Czech Republic Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alena Vrablikova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77515, Czech Republic Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kazuo Takahashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Lydie Czernekova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77515, Czech Republic Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Koshi Yamada
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Bruce A Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77515, Czech Republic Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Hemopexin-dependent heme uptake via endocytosis regulates the Bach1 transcription repressor and heme oxygenase gene activation. Biochim Biophys Acta Gen Subj 2014; 1840:2351-60. [DOI: 10.1016/j.bbagen.2014.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 12/30/2022]
|
8
|
Takahashi K, Raska M, Stuchlova Horynova M, Hall SD, Poulsen K, Kilian M, Hiki Y, Yuzawa Y, Moldoveanu Z, Julian BA, Renfrow MB, Novak J. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One 2014; 9:e99026. [PMID: 24918438 PMCID: PMC4053367 DOI: 10.1371/journal.pone.0099026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022] Open
Abstract
Patients with IgA nephropathy (IgAN) have elevated circulating levels of IgA1 with some O-glycans consisting of galactose (Gal)-deficient N-acetylgalactosamine (GalNAc) with or without N-acetylneuraminic acid (NeuAc). We have analyzed O-glycosylation heterogeneity of naturally asialo-IgA1 (Ale) myeloma protein that mimics Gal-deficient IgA1 (Gd-IgA1) of patients with IgAN, except that IgA1 O-glycans of IgAN patients are frequently sialylated. Specifically, serum IgA1 of healthy controls has more α2,3-sialylated O-glycans (NeuAc attached to Gal) than α2,6-sialylated O-glycans (NeuAc attached to GalNAc). As IgA1-producing cells from IgAN patients have an increased activity of α2,6-sialyltransferase (ST6GalNAc), we hypothesize that such activity may promote premature sialylation of GalNAc and, thus, production of Gd-IgA1, as sialylation of GalNAc prevents subsequent Gal attachment. Distribution of NeuAc in IgA1 O-glycans may play an important role in the pathogenesis of IgAN. To better understand biological functions of NeuAc in IgA1, we established protocols for enzymatic sialylation leading to α2,3- or α2,6-sialylation of IgA1 O-glycans. Sialylation of Gal-deficient asialo-IgA1 (Ale) myeloma protein by an ST6GalNAc enzyme generated sialylated IgA1 that mimics the Gal-deficient IgA1 glycoforms in patients with IgAN, characterized by α2,6-sialylated Gal-deficient GalNAc. In contrast, sialylation of the same myeloma protein by an α2,3-sialyltransferase yielded IgA1 typical for healthy controls, characterized by α2,3-sialylated Gal. The GalNAc-specific lectin from Helix aspersa (HAA) is used to measure levels of Gd-IgA1. We assessed HAA binding to IgA1 sialylated at Gal or GalNAc. As expected, α2,6-sialylation of IgA1 markedly decreased reactivity with HAA. Notably, α2,3-sialylation also decreased reactivity with HAA. Neuraminidase treatment recovered the original HAA reactivity in both instances. These results suggest that binding of a GalNAc-specific lectin is modulated by sialylation of GalNAc as well as Gal in the clustered IgA1 O-glycans. Thus, enzymatic sialylation offers a useful model to test the role of NeuAc in reactivities of the clustered O-glycans with lectins.
Collapse
Affiliation(s)
- Kazuo Takahashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Milada Stuchlova Horynova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Stacy D. Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Knud Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yoshiyuki Hiki
- Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew B. Renfrow
- UAB Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
9
|
Arend P. Complementary innate (anti-A-specific) IgM emerging from ontogenic O-GalNAc-transferase depletion: (Innate IgM complementarity residing in ancestral antigen completeness). Immunobiology 2014; 219:285-91. [PMID: 24290972 DOI: 10.1016/j.imbio.2013.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
The murine and the human genome have global properties in common. So the murine anti-A-specific complementary IgM and related human innate isoagglutinin represent developmental, 2-mercaptoethanol-sensitive, complement-binding glycoproteins, which do not arise from any measurable environmentally-induced or auto- immune response. The murine anti-A certainly originates from a cell surface- or cell adhesion molecule, which in the course of germ cell development becomes devoid of O-GalNAc-transferase and is released into the circulation. In human sera the enzyme occurs exclusively in those of blood group A- and AB subjects, while in group O(H) an identically encoded protein lets expect an opposite function and appears in conjunction with a complementary anti-A reactive glycoprotein. Since O-glycosylations rule the carbohydrate metabolism in growth and reproduction processes, we propose that the ancestral histo-(blood)-group A molecule arises in the course of O-GalNAc-glycosylations of glycolipids and protein envelops at progenitor cell surfaces. Germ cell development postulates embryonic stem cell fidelity, which is characterised by persistent production of α-linked O-GalNAc-glycans. They are determined by the A-allele within the human, "complete" histo (blood) group AB(O) structure that in early ontogeny is hypothesised to be synthesised independently from the final phenotype. The structure either passes "completely" through the germline, in transferase-secreting mature tissues becoming the "complete" phenotype AB, or disappears in exhaustive glycotransferase depletion from the differentiating cell surfaces and leaves behind the "incomplete" blood group O-phenotype, which has released a transferase- and O-glycan-depleted, complementary glycoprotein (IgM) into the circulation. The process implies, that in humans the different blood phenotypes evolve from a "complete" AB(O) molecular complex in a distinct enzymatic and/or complement cascade suggesting O-glycanase involvements. While the murine and human oocyte zona pellucida express identical O-glycans, the human phenotype O might be explainable by the kinetics of the murine ovarian O-GalNAc glycan synthesis and the complementary anti-A released in parallel. The maturing murine ovary may provide insight into encoding of the physiologically superior α-linked GalNAc ancestral epitope that becomes essential in reproduction as well as in tissue renewal events. According to recent reports, O-GalNAc-transferase-determined blood group A suggests superiority in human female fertility and was called even "protective". So the minor fertility of blood-group-O females may reside in a critical timing in developmental shifting of enzyme functions affecting the formation of GalNAc-determined hormone receptors on the way to maturation. Experiments that had inserted an oocyte genome into a somatic one to generate pluripotent stem cells, might elucidate a developmental dilemma by testing oocytes from different blood group AB donors donors. Perhaps they will unmask the molecular basis of an evolutionary trend, while stem cell generation itself capitalises on the enzymatically-advantaged, lineage-maintaining (histo) blood group A-allele, which guaranties ancestral functional completeness.
Collapse
Affiliation(s)
- Peter Arend
- Gastroenterology Research Laboratory, Department of Medicine, University of Iowa College of Medicine, Iowa City, IA, USA(1); Research Laboratories, Chemie Grünenthal GmbH, 52062 Aachen, Germany.
| |
Collapse
|
10
|
Mestecky J, Raska M, Julian BA, Gharavi AG, Renfrow MB, Moldoveanu Z, Novak L, Matousovic K, Novak J. IgA nephropathy: molecular mechanisms of the disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:217-40. [PMID: 23092188 DOI: 10.1146/annurev-pathol-011110-130216] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of molecular and cellular interactions involved in the pathogenesis of IgA nephropathy have revealed the autoimmune nature of this most common primary glomerulonephritis. In patients with this disease, altered glycan structures in the unique hinge region of the heavy chains of IgA1 molecules lead to the exposure of antigenic determinants, which are recognized by naturally occurring antiglycan antibodies of the IgG and/or IgA1 isotype. As a result, nephritogenic immune complexes form in the circulation and deposit in the glomerular mesangium. Deposited immune complexes induce proliferation of resident mesangial cells, increased production of extracellular matrix proteins and cytokines, and ultimately loss of glomerular function. Structural elucidation of the nature of these immune complexes and their biological activity should provide a rational basis for an effective, immunologically mediated inhibition of the formation of nephritogenic immune complexes that could be used as a disease-specific therapeutic approach.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|