1
|
Bae JH, Yun SH, Kim MJ, Kim HJ, Sung BH, Kim SI, Sohn JH. Secretome-based screening of fusion partners and their application in recombinant protein secretion in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 106:663-673. [PMID: 34971409 DOI: 10.1007/s00253-021-11750-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
For the efficient production of heterologous proteins in the yeast Saccharomyces cerevisiae, we screened for a novel fusion partner from the yeast secretome. From twenty major proteins identified from the yeast secretome, we selected Scw4p, a cell wall protein with similarity to glucanase, and modified to develop a general fusion partner for the secretory expression of heterologous proteins in yeast. The optimal size of the SCW4 gene to act as an efficient fusion partner was determined by C-terminal truncation analysis; two of the variants, S1 (truncated at codon 115Q) and S2 (truncated at codon 142E), were further used for the secretion of heterologous proteins. When fused with S2, the secretion of three target proteins (hGH, exendin-4, and hPTH) significantly increased. Conserved O-glycosylation sites (Ser/Thr-rich domain) and hydrophilic sequences of S2 were deemed important for the function of S2 as a secretion fusion partner. Approximately 5 g/L of the S2-exendin-4 fusion protein was obtained from fed-batch fermentation. Intact target proteins were easily purified by affinity chromatography after in vitro processing of the fusion partner. This system may be of general application for the secretory production of heterologous proteins in S. cerevisiae. KEY POINTS : • Target proteins were efficiently secreted with their N-terminus fused to Scw4p. • O-glycosylation and hydrophilic stretches in Scw4p were important for protein secretion. • A variant of Scw4p (S2) was successfully applied for the secretory expression of heterologous proteins.
Collapse
Affiliation(s)
- Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sung-Ho Yun
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea.
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Cellapy Bio Inc, Bio-Venture Center 211, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int J Mol Sci 2021; 22:ijms22168411. [PMID: 34445120 PMCID: PMC8395139 DOI: 10.3390/ijms22168411] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Serum albumin physically interacts with fatty acids, small molecules, metal ions, and several other proteins. Binding with a plethora of bioactive substances makes it a critical transport molecule. Albumin also scavenges the reactive oxygen species that are harmful to cell survival. These properties make albumin an excellent choice to promote cell growth and maintain a variety of eukaryotic cells under in vitro culture environment. Furthermore, purified recombinant human serum albumin is mostly free from impurities and modifications, providing a perfect choice as an additive in cell and tissue culture media while avoiding any regulatory constraints. This review discusses key features of human serum albumin implicated in cell growth and survival under in vitro conditions.
Collapse
|
3
|
The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol 2021; 187:24-34. [PMID: 34284054 DOI: 10.1016/j.ijbiomac.2021.07.080] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023]
Abstract
Human serum albumin (HSA)-based therapeutics have attracted tremendous attention in the development of anticancer agents. The versatile properties of HSA make HSA-based therapeutics possess improved pharmacokinetics, extended circulation half-life, enhanced efficacy, reduced toxicity, etc. Generally, the HSA-based therapeutics systems can be divided into four categories, i.e. HSA-drug nanoparticles, HSA-drug conjugates, HSA-binding prodrugs, and HSA-based recombinant fusion proteins: the latter mainly include antibody (domain)- and cytokine- fusion proteins. Advances in this area revealed the advantages of HSA-based systems in the development of tumor site-oriented therapeutics, partly referring to the enhanced penetration and retention (EPR) effect and the intensive macropinocytosis. Accordingly, a variety of technical platforms for the design and preparation of HSA-based therapeutics have been reported. Major strategies and directions for the drug development were discussed; those include (1) Tumor-site oriented drug delivery and enhanced drug retention, (2) Tumor-site prodrug release and activation, (3) Cancer cell bound intensive drug internalization, and (4) Tumor microenvironment (TME) directed immunomodulation. Notably, the multimodal HSA-based approach is promising for the development of tumor-oriented therapeutics for cancer therapy.
Collapse
|
4
|
Construction of Recombinant Human GM-CSF and GM-CSF-ApoA-I Fusion Protein and Evaluation of Their Biological Activity. Pharmaceuticals (Basel) 2021; 14:ph14050459. [PMID: 34068113 PMCID: PMC8152757 DOI: 10.3390/ph14050459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins’ yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units—erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.
Collapse
|
5
|
Xu JF, Yang YS, Jiang AQ, Zhu HL. Detection Methods and Research Progress of Human Serum Albumin. Crit Rev Anal Chem 2020; 52:72-92. [PMID: 32723179 DOI: 10.1080/10408347.2020.1789835] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human serum albumin (HSA) is a biological macromolecule with important physiological functions; abnormal HSA levels are associated with coronary heart disease, multiple myeloma, diabetes, nephropathy, neurometabolic disorders, liver cirrhosis and other diseases. Therefore, accurate and quantitative detection of HAS have extremely important research and application value in biological science, molecular biology, clinical medicine and other fields. As for the detection method of HSA, dye-binding method and immune method are the first to be used, and have been applied in clinical detection. In recent years, many new detection technologies have emerged, such as fluorescent probe detection method, nano-materials for HSA detection, biosensor and so on. Although there are many methods developed recently to detect HSA, comprehensive reviews for HSA detection methods are still rare. Thus, writing this review to fill in the blank is in need. In order to highlight the recent progress in the field of HSA detection, in this review, the methods used to detect HSA are summarized and sorted, the advantages and disadvantages of these detection methods are also listed, then the research progress of small molecular fluorescence probe method is emphatically introduced in this paper. Then, we briefly discussed the challenges and future development directions in this field.
Collapse
Affiliation(s)
- Jian-Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123:979-990. [DOI: 10.1016/j.ijbiomac.2018.11.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
|
7
|
Zhang H, Jia E, Xia W, Lu C, Zhu W. VEGF165b mutant with a prolonged half-life and enhanced anti-tumor potency in a mouse model. J Biotechnol 2018; 284:84-90. [DOI: 10.1016/j.jbiotec.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 01/26/2023]
|
8
|
Zhu W, Gong G, Pan J, Han S, Zhang W, Hu Y, Xie L. High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expr Purif 2018. [DOI: 10.1016/j.pep.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Wan A, Xu D, Liu K, Peng L, Cai Y, Chen Y, He Y, Yang J, Jin J, Li H. Efficient expression of stable recombinant human insulin-like growth factor-1 fusion with human serum albumin in Chinese hamster ovary cells. Prep Biochem Biotechnol 2017; 47:678-686. [PMID: 28281882 DOI: 10.1080/10826068.2017.1303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) plays a crucial role in cell development, differentiation, and metabolism, and has been a potential therapeutic agent for many diseases. Chinese hamster ovary (CHO) cells are widely used for production of recombinant therapeutic proteins, but the expression level of IGF-1 in CHO cells is very low (1,500 µg/L) and the half-life of IGF-1 in blood circulation is only 4.5 min according to previous studies. Therefore, IGF-1 was fused to long-circulating serum protein human serum albumin (HSA) and expressed in CHO cells. After 8-day fed-batch culture, the expression level of HSA-IGF-1 reached 100 mg/L. The fusion protein HSA-IGF-1 was purified with a recovery of 35% using a two-step chromatographic procedure. According to bioactivity assay, the purified HSA-IGF-1 could stimulate the proliferation of NIH3T3 cells in a dose-dependent fashion and promote the cell-cycle progression. Besides this, HSA-IGF-1 could bind to IGF-1 receptor on cell membrane and activate the intracellular PI3K/AKT signaling pathway. Our study suggested that HSA fusion technology carried out in CHO cells not only provided bioactivity in HSA-IGF-1 for further research but also offered a beneficial strategy to produce other similar cytokines in CHO cells.
Collapse
Affiliation(s)
- Aini Wan
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , China
| | - Dongsheng Xu
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Kedong Liu
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Lin Peng
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , China
| | - Yanfei Cai
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Yun Chen
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Yang He
- c Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Jianfeng Yang
- d Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease , Soochow University , Suzhou , China
| | - Jian Jin
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Huazhong Li
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , China
| |
Collapse
|
10
|
Wan A, Miao Y, Peng L, Cai Y, Chen Y, He Y, Yang J, Jin J, Li H. Binding and biologic characterization of recombinant human serum albumin-eTGFBR2 fusion protein expressed in CHO cells. Bioengineered 2017; 8:600-612. [PMID: 28281868 DOI: 10.1080/21655979.2017.1292186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) signaling is involved in cell metabolism, growth, differentiation, carcinoma invasion and fibrosis development, which suggests TGF-β1 can be treated as a therapeutic target extensively. Because TGF-β1 receptor type α(TGFBR2) is the directed and essential mediator for TGF-β1 signals, the extracellular domain of TGFBR2 (eTGFBR2), binding partner for TGF-β1, has been produced in a series of expression systems to inhibit TGF-β1 signaling. However, eTGFBR2 is unstable with a short half-life predominantly because of enzymatic degradation and kidney clearance. In this study, a fusion protein consisting of human eTGFBR2 fused at the C-terminal of human serum albumin (HSA) was stably and highly expressed in Chinese Hamster Ovary (CHO) cells. The high and stable expression sub-clones with Ig kappa signal peptide were selected by Western blot analysis and used for suspension culture. After fed-batch culture over 8 d, the expression level of HSA-eTGFBR2 reached 180 mg/L. The fusion protein was then purified from culture medium using a 2-step chromatographic procedure that resulted in 39% recovery rate. The TGF-β1 binding assay revealed that HSA-eTGFBR2 could bind to TGF-β1 with the affinity constant (KD of 1.42 × 10-8 M) as determined by the ForteBio Octet System. In addition, our data suggested that HSA-eTGFBR2 exhibited a TGF-β1 neutralizing activity and maintained a long-term activity more than eTGFBR2. It concluded that the overexpressing CHO cell line supplied sufficient recombinant human HSA-eTGFBR2 for further research and other applications.
Collapse
Affiliation(s)
- Aini Wan
- a The Key Laboratory of Industrial Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Yana Miao
- b Laboratory of Molecular Pharmacology , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , China
| | - Lin Peng
- a The Key Laboratory of Industrial Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Yanfei Cai
- b Laboratory of Molecular Pharmacology , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , China
| | - Yun Chen
- b Laboratory of Molecular Pharmacology , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , China
| | - Yang He
- c Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Jianfeng Yang
- d Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease, Soochow University , Suzhou , China
| | - Jian Jin
- b Laboratory of Molecular Pharmacology , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , China
| | - Huazhong Li
- a The Key Laboratory of Industrial Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| |
Collapse
|
11
|
Guan B, Chen F, Su S, Duan Z, Chen Y, Li H, Jin J. Effects of co-overexpression of secretion helper factors on the secretion of a HSA fusion protein (IL2-HSA) in pichia pastoris. Yeast 2016; 33:587-600. [PMID: 27532278 DOI: 10.1002/yea.3183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 11/12/2022] Open
Abstract
Pichia pastoris is generally considered as an expression host for heterologous proteins with the coding gene under control of the alcohol oxidase 1 (AOX1) promoter. The secretion of heterologous proteins in P. pastoris can be potentially affected by many factors. Based on our previous results, the secretion levels of human albumin (HSA) fusion protein IL2-HSA were only around 500 mg/L or less in fermentor cultures, which decreased more than 50% compared with that of HSA (>1 g/L). In this study, we selected five potential secretion helper factors, in which Ero1, Pdi1 and Kar2 were involved in protein folding and Sec1 and Sly1 were involved in vesicle trafficking. We evaluated the possible effects of individual overexpression of these secretion helper factors on the secretion of IL2-HSA in P. pastoris. Constitutive overexpression of the five selected secretion factors did not have an obvious negative effect on cell growth of the IL2-HSA secreting strain. Individual co-overexpression of Ero1, Kar2, Pdi1, Sec1 and Sly1 improved the secretion level of IL2-HSA to ~2.3-, 1.9-, 2.2-, 2.5- and 1.9-fold that in the control strain respectively in shake flasks. We evaluated the changes in mRNA and protein levels of the intracellular IL2-HSA, as well as the secretion helper factor genes in the co-overexpressing strains. Our results indicated that manipulating the expression level of ER resident protein Pdi1, Ero1, Kar2 and SM protein Sec1 and Sly1 could improve the secretion level of IL2-HSA fusion protein in P. pastoris, which provided new candidates for combinatorial engineering in future study. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bo Guan
- School of Food Science, Shihezi University, Shihezi, China
| | - Fengxiang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuai Su
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zuoying Duan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Chen
- Laboratory of Drug Design axnd Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Huazhong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Jin
- Laboratory of Drug Design axnd Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Zhao YY, Li YG, Yan BQ, Liu ZZ, Qin GT, Sun YJ. Expression of vascular endothelial growth factor 165b in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:355-361. [DOI: 10.11569/wcjd.v24.i3.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of vascular endothelial growth factor 165b (VEGF165b) in hepatocellular carcinoma (HCC), and to investigate the relationship between VEGF165b and HCC.
METHODS: Expression of VEGF165b protein in 28 HCC specimens and 30 normal liver tissue specimens was detected by immunohistochemistry. The expression of VEGF165 and VEGF165b mRNAs was detected by RT-PCR. The expression of VEGF165, VEGF165b, FAK and P-Akt proteins in HCC and normal liver tissues was detected by Western blot.
RESULTS: The positive rate of VEGF165b protein expression in normal liver tissues was significantly higher than that in HCC tissues [96.67% (29/30) vs 21.4% (6/28), P < 0.05]. VEGF165b mRNA and protein expression in HCC tissues was significantly lower than that in normal liver tissues (P < 0.01). The expression of VEGF165 mRNA and protein in HCC tissues was significantly higher than that in normal liver tissues (P < 0.01). The expression of FAK and P-Akt proteins in HCC tissues was significantly higher than that in normal liver tissues (P < 0.01).
CONCLUSION: The expression of VEGF165b in HCC tissues is significantly lower than that in normal liver tissues, and the expression of VEGF165, FAK and P-Akt in HCC tissues is significantly higher than that in normal liver tissues. These findings suggest that VEGF165b may be related to the occurrence and development of HCC possibly by inhibiting the expression of VEGF165, FAK and P-Akt and their effects on angiogenesis and tumor growth.
Collapse
|
13
|
Li F, Meng F, Jin Q, Sun C, Li Y, Li H, Jin S. Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis. Neural Regen Res 2014; 9:851-6. [PMID: 25206900 PMCID: PMC4146252 DOI: 10.4103/1673-5374.131611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2014] [Indexed: 11/11/2022] Open
Abstract
Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion protein was expressed in Pichia pastoris. The affinity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immunofluorescence staining. The ability of the fusion protein to block myasthenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for specific immunosuppressive therapy of myasthenia gravis.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Fanping Meng
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Changyuan Sun
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Yingxin Li
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Honghua Li
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Songzhu Jin
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|