1
|
Maaroufi H, Potvin M, Cusson M, Levesque RC. Novel antimicrobial anionic cecropins from the spruce budworm feature a poly-L-aspartic acid C-terminus. Proteins 2021; 89:1205-1215. [PMID: 33973678 DOI: 10.1002/prot.26142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023]
Abstract
Cecropins form a family of amphipathic α-helical cationic peptides with broad-spectrum antibacterial properties and potent anticancer activity. The emergence of bacteria and cancer cells showing resistance to cationic antimicrobial peptides (CAMPs) has fostered a search for new, more selective and more effective alternatives to CAMPs. With this goal in mind, we looked for cecropin homologs in the genome and transcriptome of the spruce budworm, Choristoneura fumiferana. Not only did we find paralogs of the conventional cationic cecropins (Cfcec+ ), our screening also led to the identification of previously uncharacterized anionic cecropins (Cfcec- ), featuring a poly-l-aspartic acid C-terminus. Comparative peptide analysis indicated that the C-terminal helix of Cfcec- is amphipathic, unlike that of Cfcec+ , which is hydrophobic. Interestingly, molecular dynamics simulations pointed to the lower conformational flexibility of Cfcec- peptides, relative to that of Cfcec+ . Phylogenetic analysis suggests that the evolution of distinct Cfcec+ and Cfcec- peptides may have resulted from an ancient duplication event within the Lepidoptera. Finally, we found that both anionic and cationic cecropins contain a BH3-like motif (G-[KQR]-[HKQNR]-[IV]-[KQR]) that could interact with Bcl-2, a protein involved in apoptosis; this observation is congruent with previous reports indicating that cecropins induce apoptosis. Altogether, our observations suggest that cecropins may provide templates for the development of new anticancer drugs. We also estimated the antibacterial activity of Cfcec-2 and a ∆Cfce-2 peptide as AMPs by testing directly their ability in inhibiting bacterial growth in a disk diffusion assay and their potential for development of novel therapeutics.
Collapse
Affiliation(s)
- Halim Maaroufi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Canada
| | - Marianne Potvin
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Canada
| | - Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Canada
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS) and Faculté de médecine, Université Laval, Quebec City, Canada
| |
Collapse
|
2
|
Ramos LFC, Rangel JHDO, Andrade GC, Lixa C, de Castilho LVA, Nogueira FCS, Pinheiro AS, Gomes FM, AnoBom CD, Almeida RV, de Oliveira DMP. Identification and recombinant expression of an antimicrobial peptide (cecropin B-like) from soybean pest Anticarsia gemmatalis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200127. [PMID: 33796137 PMCID: PMC7970720 DOI: 10.1590/1678-9199-jvatitd-2020-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT BACKGROUND Insects can be found in numerous diverse environments, being exposed to pathogenic organisms like fungi and bacteria. Once these pathogens cross insect physical barriers, the innate immune system operates through cellular and humoral responses. Antimicrobial peptides are small molecules produced by immune signaling cascades that develop an important and generalist role in insect defenses against a variety of microorganisms. In the present work, a cecropin B-like peptide (AgCecropB) sequence was identified in the velvetbean caterpillar Anticarsia gemmatalis and cloned in a bacterial plasmid vector for further heterologous expression and antimicrobial tests. METHODS AgCecropB sequence (without the signal peptide) was cloned in the plasmid vector pET-M30-MBP and expressed in the Escherichia coli BL21(DE3) expression host. Expression was induced with IPTG and a recombinant peptide was purified using two affinity chromatography steps with Histrap column. The purified peptide was submitted to high-resolution mass spectrometry (HRMS) and structural analyses. Antimicrobial tests were performed using gram-positive (Bacillus thuringiensis) and gram-negative (Burkholderia kururiensis and E. coli) bacteria. RESULTS AgCecropB was expressed in E. coli BL21 (DE3) at 28°C with IPTG 0.5 mM. The recombinant peptide was purified and enriched after purification steps. HRMS confirmed AgCrecropB molecular mass (4.6 kDa) and circular dichroism assay showed α-helix structure in the presence of SDS. AgCrecropB inhibited almost 50% of gram-positive B. thuringiensis bacteria growth. CONCLUSIONS The first cecropin B-like peptide was described in A. gemmatalis and a recombinant peptide was expressed using a bacterial platform. Data confirmed tertiary structure as predicted for the cecropin peptide family. AgCecropB was capable to inhibit B. thuringiensis growth in vitro.
Collapse
Affiliation(s)
- Luís Felipe Costa Ramos
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - João Henrique de Oliveira Rangel
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Guilherme Caldas Andrade
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Livia Vieira Araujo de Castilho
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Alberto Luiz Coimbra Institute of Graduate Studies and Research (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fábio César Sousa Nogueira
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fabio Mendonça Gomes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Cristiane Dinis AnoBom
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Rodrigo Volcan Almeida
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Danielle Maria Perpétua de Oliveira
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Xu B, Fu J, Zhu L, Li Z, Jin M, Wang Y. Overall assessment of antibiotic substitutes for pigs: a set of meta-analyses. J Anim Sci Biotechnol 2021; 12:3. [PMID: 33413687 PMCID: PMC7792336 DOI: 10.1186/s40104-020-00534-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023] Open
Abstract
Background Antibiotic growth promoters are widely used to improve weight gain. However, the abuse of antibiotics can have many negative effects on people. Developing alternatives to antibiotics is an urgent need in livestock production. We aimed to perform a meta-analysis and network meta-analysis (NMA) to investigate the effects of feed additives as potential antibiotic substitutes (ASs) on bacteriostasis, growth performance, intestinal morphology and immunity. Furthermore, the primary, secondary, and tertiary ASs were defined by comparing their results with the results of antibiotics. Results Among 16,309 identified studies, 37 were summarized to study the bacteriostasis effects of feed additives, and 89 were included in the meta-analysis and NMA (10,228 pigs). We summarized 268 associations of 57 interventions with 32 bacteria. The order of bacteriostasis effects was as follows: antimicrobial peptides (AMPs) ≈ antibiotics>organic acids>plant extracts>oligosaccharides. We detected associations of 11 feed additives and 11 outcomes. Compared with a basal diet, plant extract, AMPs, probiotics, microelements, organic acids, bacteriophages, lysozyme, zymin, and oligosaccharides significantly improved growth performance (P < 0.05); organic acids, probiotics, microelements, lysozyme, and AMPs remarkably increased the villus height:crypt depth ratio (V/C) (P < 0.05); and plant extracts, zymin, microelements, probiotics, and organic acids notably improved immunity (P < 0.05). The optimal AMP, bacteriophage, lysozyme, microelements, oligosaccharides, organic acids, plants, plant extracts, probiotics, and zymin doses were 0.100%, 0.150%, 0.012%, 0.010%, 0.050%, 0.750%, 0.20%, 0.040%, 0.180%, and 0.100%, respectively. Compared with antibiotics, all investigated feed additives exhibited no significant difference in effects on growth performance, IgG, and diarrhoea index/rate (P > 0.05); AMPs and microelements significantly increased V/C (P < 0.05); and zymin significantly improved lymphocyte levels (P < 0.05). Furthermore, linear weighting sum models were used to comprehensively estimate the overall impact of each feed additive on pig growth and health. Conclusions Our findings suggest that AMPs and plant extracts can be used as primary ASs for weaned piglets and growing pigs, respectively. Bacteriophages, zymin, plants, probiotics, oligosaccharides, lysozyme, and microelements can be regarded as secondary ASs. Nucleotides and organic acids can be considered as tertiary ASs. Future studies should further assess the alternative effects of combinational feed additives.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Jie Fu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Luoyi Zhu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| |
Collapse
|
4
|
Gao G, Chen J, Chen P, Chen K, Abubakar AS, Yu C, Zhu A. Analysis of BnMTL, a novel metallothionein-like protein in the bast fiber crop Ramie (Boehmeria nivea). FEBS Open Bio 2019; 9:1632-1639. [PMID: 31353835 PMCID: PMC6722885 DOI: 10.1002/2211-5463.12705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Ramie (Boehmeria nivea) is a perennial herb that is highly tolerant of heavy metals. In the present study, we cloned a novel metallothionein-like gene from ramie; this gene, termed BnMTL, encodes a putative 46 amino acid protein with a molecular mass of 4.38 kDa. Analysis using quantitative RT-PCR revealed that cadmium (Cd2+ ) treatment results in elevated expression of BnMTL in the roots. We heterologously overexpressed BnMTL in Escherichia coli cells to examine its binding to Cd2+ and its possible role in homeostasis. Recombinant E. coli cells expressing BnMTL exhibited a high tolerance of Cd2+ stress up to a concentration of 1 mm, and the observed accumulation of Cd2+ was almost eight-fold higher than the control. These results demonstrate that BnMTL (i) is highly expressed in the root following exposure to Cd2+ and (ii) encodes a typical metallothionein-like protein with high cadmium-binding activity.
Collapse
Affiliation(s)
- Gang Gao
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Jikang Chen
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Ping Chen
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Kunmei Chen
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Aminu Shehu Abubakar
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Chunming Yu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Aiguo Zhu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| |
Collapse
|
5
|
Liu WT, Tu WC, Lin CH, Yang UC, Chen CC. Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticle. Sci Rep 2017; 7:16395. [PMID: 29180688 PMCID: PMC5703890 DOI: 10.1038/s41598-017-16625-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
In this study, we found a mosquito antimicrobial peptide (AMP), Aedes aegypti cecropin B (Aacec B), was expressed constitutively in pupae. Knockdown in the pupae of Aacec B using double-stranded RNA (dsRNA) resulted in high mortality, the emergence of deformed adults and an impairment of pharate adult cuticle formation with fewer lamellae being deposited and the helicoidal pattern of the chitin microfibrils being disorganized. Simultaneous injection of Aacec B dsRNA and Aacec B peptide into pupae significantly reduced this mortality and no deformed adults then emerged. The expression levels of Ae. aegypti prophenoloxidase (AaPPO) 3 and AaPPO 4 were significantly reduced in the Aacec B knockdown pupae. Exogenous Aacec B peptide significantly enhanced the transcription of AaPPO 3 in pupae. Knockdown of AaPPO 3 in pupae caused effects similar to Aacec B-knockdown. The Aacec B peptide could be detected in both the cytoplasm and nuclei of pupal cells and was able to bind to the TTGG(A/C)A motif in AaPPO 3 DNA both in vitro and in vivo. These findings suggest that Aacec B plays a crucial role in pharate adult cuticle formation via the regulation of AaPPO 3 gene expression in pupae.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Cheng-Chen Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
6
|
Fang SL, Wang L, Fang Q, Chen C, Zhao XS, Qian C, Wei GQ, Zhu BJ, Liu CL. Characterization and functional study of a Cecropin-like peptide from the Chinese oak silkworm, Antheraea pernyi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21368. [PMID: 28008655 DOI: 10.1002/arch.21368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In present study, a Cecropin-like peptide from Antheraea pernyi (ApCec) was cloned and characterized. The full-length ApCec cDNA encoded a protein with 64 amino acids including a putative 22-amino-acid signal peptide, a 4-amino-acid propeptide, and a 38-amino-acid mature peptide. ApCec gene was highly expressed in Malpighian tubules of A. pernyi after induction for 24 h by Escherichia coli in PBS. Pro-ApCec (including propeptide and mature peptide) and M-ApCec (just mature peptide) were synthesized chemically and analyzed by HPLC and mass spectroscopy. The antibacterial activity of M-ApCec is more potent than pro-ApCec against E. coli K12 or B. subtilus in both minimum inhibitory concentration and inhibition zone assays. Hemolytic assay results showed M-ApCec possessed a low cytotoxicity to mammalian cells. The secondary structure of M-ApCec forms α-helical structure, shown by circular dichroism spectroscopy. Transmission electron microscopy analysis suggested that M-ApCec killed bacteria by disrupting bacterial cell membrane integrity. Our results indicate ApCec may play an important role in defending from pathogenic bacteria in A. pernyi, and it may be as a potential candidate for applications in antibacterial drug development and agriculture.
Collapse
Affiliation(s)
- Shao-Liang Fang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Chen
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiao-San Zhao
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Cen Qian
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Guo-Qing Wei
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Bao-Jian Zhu
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chao-Liang Liu
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
7
|
Xu XX, Zhang YQ, Freed S, Yu J, Gao YF, Wang S, Ouyang LN, Ju WY, Jin FL. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:790-800. [PMID: 27443911 DOI: 10.1017/s0007485316000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insect defensins, are cationic peptides that play an important role in immunity against microbial infection. In the present study, an anionic defensin from Plutella xylostella, (designated as PxDef) was first cloned and characterized. Amino acid sequence analysis showed that the mature peptide owned characteristic six-cysteine motifs with predicted isoelectric point of 5.57, indicating an anionic defensin. Quantitative real-time polymerase chain reaction analysis showed that PxDef was significantly induced in epidermis, fat body, midgut and hemocytes after injection of heat-inactivated Bacillus thuringiensis, while such an induction was delayed by the injection of live B. thuringiensis in the 4th instar larvae of P. xylostella. Knocking down the expression of nuclear transcription factor Dorsal in P. xylostella by RNA interference significantly decreased the mRNA level of PxDef, and increased the sensitivity of P. xylostella larvae to the infection by live B. thuringiensis. The purified recombinant mature peptide (PxDef) showed higher activity against Gram-positive bacteria, with the minimum inhibition concentrations of 1.6 and 2.6 µM against B. thuringiensis and Bacillus subtilis, respectively. To our knowledge, this is the first report about an anionic PxDef, which may play an important role in the immune system of P. xylostella against B. thuringiensis.
Collapse
Affiliation(s)
- X-X Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - Y-Q Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - S Freed
- Department of Entomology,Faculty of Agricultural Sciences and Technology,Bahauddin Zakariya University,Multan 60800,Pakistan
| | - J Yu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - Y-F Gao
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - S Wang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - L-N Ouyang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - W-Y Ju
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - F-L Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| |
Collapse
|
8
|
Zhou J, Kong L, Fang N, Mao B, Ai H. Synthesis and Functional Characterization of MAF-1A Peptide Derived From the Larvae of Housefly, Musca domestica (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1467-1472. [PMID: 27838615 DOI: 10.1093/jme/tjw110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
The Musca domestica antifungal peptide-1A (MAF-1A peptide) from housefly larvae was synthesized by solid-phase synthesis technique, and antiviral, antioxidant, and antifungal properties were evaluated in this study. Present results indicated that it could significantly inhibit the infection of influenza virus H1N1, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), and Bombyx mori nuclear polyhydrosis virus (BmNPV), which displayed excellent virucidal activities. Antioxidant results demonstrated that the MAF-1A peptide had effective scavenging activity for hydroxyl and superoxide radicals, which were similar to that of ascorbic acid. Besides, antifungal results showed that it can also significantly inhibit the growth of four fungi, and the half inhibitory concentrations (IC50) values were ∼59.3, 84.2, 144.9, and 48.5 μg/ml, respectively, highlighting an important role of MAF-1A peptide in the defense of M domestica against pathogenic microorganisms. These results revealed that the MAF-1A peptide from housefly larvae has great potential as a natural ingredient for the exploitation of antiviral and antifungal therapeutic agents, avoiding abuse of chemical agents and environmental pollution.
Collapse
Affiliation(s)
- Jing Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (; ; ; ; )
| | - Lina Kong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (; ; ; ; )
| | - Nainai Fang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (; ; ; ; )
| | - Bin Mao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (; ; ; ; )
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (; ; ; ; )
| |
Collapse
|
9
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
10
|
Ouyang L, Xu X, Freed S, Gao Y, Yu J, Wang S, Ju W, Zhang Y, Jin F. Cecropins from Plutella xylostella and Their Interaction with Metarhizium anisopliae. PLoS One 2015; 10:e0142451. [PMID: 26544076 PMCID: PMC4636316 DOI: 10.1371/journal.pone.0142451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
Cecropins are the most potent induced peptides to resist invading microorganisms. In the present study, two full length cDNA encoding cecropin2 (Px-cec2) and cecropin3 (Px-cec3) were obtained from P. xylostella by integrated analysis of genome and transcriptome data. qRT-PCR analysis revealed the high levels of transcripts of Px-cecs (Px-cec1, Px-cec2 and Px-cec3) in epidermis, fat body and hemocytes after 24, 30 and 36 h induction of Metarhizium anisopliae, respectively. Silencing of Spätzle and Dorsal separately caused the low expression of cecropins in the fat body, epidermis and hemocytes, and made the P.xylostella larvae more susceptible to M. anisopliae. Antimicrobial assays demonstrated that the purified recombinant cecropins, i.e., Px-cec1, Px-cec2 and Px-cec3, exerted a broad spectrum of antimicrobial activity against fungi, as well as Gram-positive and Gram-negative bacteria. Especially, Px-cecs showed higher activity against M. anisopliae than another selected fungi isolates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that cecropins exerted the vital morphological alterations to the spores of M. anisopliae. Based on our results, cecropins played an imperative role in resisting infection of M. anisopliae, which will provide the foundation of biological control of insect pests by using cecorpins as a target in the future.
Collapse
Affiliation(s)
- Lina Ouyang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Shoaib Freed
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Yanfu Gao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jing Yu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Shuang Wang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Wenyan Ju
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Yuqing Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
11
|
Park SI, An HS, Chang BS, Yoe SM. Expression, cDNA cloning, and characterization of the antibacterial peptide cecropin D fromAgrius convolvuli. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.769465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|