1
|
Liu X, Li Z, OuYang B, Wang W, Lan D, Wang Y. Lipidomics analysis of rice bran during storage unveils mechanisms behind dynamic changes in functional lipid molecular species. Food Chem 2024; 447:138946. [PMID: 38498952 DOI: 10.1016/j.foodchem.2024.138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
Rice bran, recognized for its rich lipids and health-beneficial bioactive compounds, holds considerable promise in applications such as rice bran oil production. However, its susceptibility to lipid hydrolysis and oxidation during storage presents a significant challenge. In response, we conducted an in-depth metabolic profiling of rice bran over a storage period of 14 days. We focused on the identification of bioactive compounds and functional lipid species (25 acylglycerols and 53 phospholipids), closely tracking their dynamic changes over time. Our findings revealed significant reductions in these lipid molecular species, highlighting the impact of rancidity processes. Furthermore, we identified 19 characteristic lipid markers and elucidated that phospholipid and glycerolipid metabolism were key metabolic pathways involved. By shedding light on the mechanisms driving lipid degradation in stored rice bran, our study significantly advanced the understanding of lipid stability. These information provided valuable insights for countering rancidity and optimizing rice bran preservation strategies.
Collapse
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China..
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
2
|
Liu X, Wang W, Li Z, Xu L, Lan D, Wang Y. Lipidomics analysis unveils the dynamic alterations of lipid degradation in rice bran during storage. Food Res Int 2024; 184:114243. [PMID: 38609222 DOI: 10.1016/j.foodres.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.
Collapse
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Zhong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
3
|
Nivetha N, Asha AD, Krishna GK, Chinnusamy V, Paul S. Rhizobacteria Bacillus spp. mitigate osmotic stress and improve seed germination in mustard by regulating osmolyte and plant hormone signaling. PHYSIOLOGIA PLANTARUM 2024; 176:e14202. [PMID: 38356406 DOI: 10.1111/ppl.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Drought, a widespread abiotic stressor, exerts a profound impact on agriculture, impeding germination and plant growth, and reducing crop yields. In the present investigation, the osmotolerant rhizobacteria Bacillus casamancensis strain MKS-6 and Bacillus sp. strain MRD-17 were assessed for their effects on molecular processes involved in mustard germination under osmotic stress conditions. Enhancement in germination was evidenced by improved germination percentages, plumule and radicle lengths, and seedling vigor upon rhizobacterial inoculation under no stress and osmotic stress conditions. Under osmotic stress, rhizobacteria stimulated the production of gibberellins and reserve hydrolytic enzymes (lipases, isocitrate lyase, and malate synthase), bolstering germination. Furthermore, these rhizobacteria influenced the plant hormones such as gibberellins and abscisic acid (ABA), as well as signalling pathways, thereby promoting germination under osmotic stress. Reduced proline and glycine betaine accumulation, and down-regulation of transcription factors BjDREB1_2 and BjDREB2 (linked to ABA-independent signalling) in rhizobacteria-inoculated seedlings indicated that bacterial treatment mitigated water deficit stress during germination, independently of these pathways. Hence, the advantageous attributes exhibited by these rhizobacterial strains can be effectively harnessed to alleviate drought-induced stress in mustard crops, potentially through the development of targeted bio-formulations.
Collapse
Affiliation(s)
- Nagarajan Nivetha
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Research and Development Division, Sea6 Energy Pvt Ltd., C-CAMP, NCBS-TIFR, Bangalore, India
| | - Arambam Devi Asha
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gopinathan Kumar Krishna
- Department of Plant Physiology, College of Agriculture, KAU, Thrissur, India
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sangeeta Paul
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Bansal S, Sardar S, Sinha K, Bhunia RK, Katoch M, Sonah H, Deshmukh R, Ram H. Identification and molecular characterization of rice bran-specific lipases. PLANT CELL REPORTS 2021; 40:1215-1228. [PMID: 34028583 DOI: 10.1007/s00299-021-02714-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Among the 113 lipases present in rice genome, bran and endosperm-specific lipases were identified and lipase activity for one of the selected lipase gene is demonstrated in yeast. Rice bran is nutritionally superior than endosperm as it has major reservoirs of various minerals, vitamins, essential mineral oils and other bioactive compounds, however it is often under-utilized as a food product due to bran instability after milling. Various hydrolytic enzymes, such as lipases, present in bran causes degradation of the lipids present and are responsible for the bran instability. Here, in this study, we have systematically analyzed the 113 lipase genes present in rice genome, and identified 21 seed-specific lipases. By analyzing the expression of these genes in different seed tissues during seed development, we have identified three bran-specific and three endosperm-specific lipases, and one lipase which expresses in both bran and endosperm tissues. Further analysis of these genes during seed maturation and seed germination revealed that their expression increases during seed maturation and decreases during seed germination. Finally, we have shown the lipase activity for one of the selected genes, LOC_Os05g30900, in heterologous system yeast. The bran-specific lipases identified in this study would be very valuable for engineering designer rice varieties having increased bran stability in post-milling.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Shaswati Sardar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Megha Katoch
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Bhunia RK, Sinha K, Kaur R, Kaur S, Chawla K. A Holistic View of the Genetic Factors Involved in Triggering Hydrolytic and Oxidative Rancidity of Rice Bran Lipids. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1915328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| | - Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Kirti Chawla
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| |
Collapse
|
6
|
Bollinedi H, Singh AK, Singh N, S GK, Bhowmick PK, K K V, M N, R K E. Genetic and genomic approaches to address rapid rancidity of rice bran. Crit Rev Food Sci Nutr 2020; 61:75-84. [PMID: 31997650 DOI: 10.1080/10408398.2020.1718598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rice bran is an invaluable by-product of paddy processing industry. It is rich in minerals, protein, lipids, and crude fiber. In addition, it also possesses compounds with anti-oxidant, anti-allergic, anti-diabetic, and anti-cancer properties. It forms a basis for the extraction of rice bran oil and preparation of various functional foods with health benefits and potential to prevent chronic health issues. Nevertheless, the rapid deterioration of bran upon storage acts as a major limitation in exploiting the full potential of rice bran. In this review, we have discussed three strategies to address rapid rancidity of rice bran and enhance its shelf life and storability vis-a-vis emphasizing the importance of rice bran in terms of its nutritional composition. One strategy is through exploitation of the null mutations in the genes governing lipases and lipoxygenases leading to nonfunctional enzymes (enzyme deficient approach), another strategy is through reducing the PUFA content that is more prone to oxidation (substrate deficient approach) and a third strategy is through enhancing the antioxidant content that effectively terminate the lipid peroxidation by donating the hydrogen atom.
Collapse
Affiliation(s)
- Haritha Bollinedi
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - A K Singh
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Neha Singh
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Gopala Krishnan S
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Prolay K Bhowmick
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Vinod K K
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Nagarajan M
- ICAR - IARI and Genetics Research Centre, Aduthurai, Tamil Nadu, India
| | - Ellur R K
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| |
Collapse
|
7
|
Indoxyl Acetate as a Substrate for Analysis of Lipase Activity. Int J Anal Chem 2019; 2019:8538340. [PMID: 31885593 PMCID: PMC6914949 DOI: 10.1155/2019/8538340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
Lipases play a crucial role in metabolism of microbes, fungi, plants, and animals, and in analytical chemistry, they are often used in detection of fats and triglycerides. Determination of lipase activity is also important in toxicology, when lipase activity can be both increased and decreased by organophosphates and other pesticides and in medicine for diagnosis of heart diseases. The standard method for lipase activity determination is based on cleaving ester bonds in lipase buffer containing Tween. Our aim was to find a method with faster and more sensitive response. It is known that acetylcholinesterase belongs to the same group of hydrolases enzymes as lipases and it cleaves indoxyl acetate, so we assume indoxyl acetate could report a similar reaction with lipase. Our method is based on indoxyl acetate as a substrate for lipase, where indoxyl acetate is cleaved by lipase to indoxyl and acetate moiety and blue indigo is created. The method was optimized for different times and amount of enzyme and compared with the standard Tween assay. The calibration curve measured in reaction time 20 minutes with 10 μl of lipase exhibited the best analytical parameters, and it showed Michaelis-Menten response with the Michaelis-Menten constant equal to 8.72 mmol/l. The indoxyl acetate-based method showed faster and more sensitive response than the standard method for lipase activity determination, so it has great potential in biosensor construction and it could be used in industry, medicine, toxicology, and common practice where the activity of lipases is need to be measured.
Collapse
|
8
|
Chen CC, Gao GJ, Kao AL, Tsai CT, Tsai ZC. Two novel lipases purified from rice bran displaying lipolytic and esterification activities. Int J Biol Macromol 2019; 139:298-306. [DOI: 10.1016/j.ijbiomac.2019.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/01/2022]
|
9
|
Chen MH, Bergman CJ, McClung AM. Hydrolytic rancidity and its association with phenolics in rice bran. Food Chem 2019; 285:485-491. [PMID: 30797374 DOI: 10.1016/j.foodchem.2019.01.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Whole grain rice, which has the bran layer intact, contains more nutrients and health beneficial compounds than its milled rice equivalent. Its consumption is associated with a reduction in the risk of developing several chronic diseases. However, the bran contains non-starch lipids deposited along with the lipid degrading enzymes, lipase and lipoxygenase, resulting in a relatively short shelf life for whole grain rice. We studied the genotypic diversity of lipase induced hydrolytic rancidity (HR) level in the bran of 134 diverse genotypes and found more than a 15-fold variation. Among the genotypes, those with red or brown bran had lower HR than the purple, light brown and white brans. Total phenolic content and anthocyanins were negatively correlated with the HR in purple brans suggesting their inhibitory effect on lipase during bran storage. In conclusion, low HR genotypes could be used as breeding materials to improve the storage stability of whole grain rice.
Collapse
Affiliation(s)
- Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR 72160, USA.
| | - Christine J Bergman
- Food & Beverage and Event Management Dept., University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| | - Anna M McClung
- Dale Bumpers National Rice Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR 72160, USA.
| |
Collapse
|
10
|
Chauhan M, Yennamalli RM, Garlapati VK. Biochemical characterization and molecular modeling of a unique lipase from Staphylococcus arlettaeJPBW-1. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mamta Chauhan
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| | - Ragothaman M. Yennamalli
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| |
Collapse
|
11
|
Tiwari GJ, Chiang MY, De Silva JR, Song BK, Lau YL, Rahman S. Lipase genes expressed in rice bran: LOC_Os11g43510 encodes a novel rice lipase. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Genes involved in the accumulation of starch and lipids in wheat and rice: characterization using molecular and cytogenetic techniques. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Virtual Screening and Molecular Dynamics Simulations from a Bank of Molecules of the Amazon Region Against Functional NS3-4A Protease-Helicase Enzyme of Hepatitis C Virus. Appl Biochem Biotechnol 2015; 176:1709-21. [DOI: 10.1007/s12010-015-1672-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
|
14
|
An insight into plant lipase research – challenges encountered. Protein Expr Purif 2014; 95:13-21. [DOI: 10.1016/j.pep.2013.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022]
|
15
|
Purification, distribution, and characterization activity of lipase from oat seeds (Avena sativa L.). ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13765-013-3119-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|