1
|
Yu J, Mao X, Yang X, Zhao G, Li S. New Transferrin Receptor-Targeted Peptide-Doxorubicin Conjugates: Synthesis and In Vitro Antitumor Activity. Molecules 2024; 29:1758. [PMID: 38675578 PMCID: PMC11052316 DOI: 10.3390/molecules29081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug doxorubicin (DOX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. However, peptide ligands composed of natural L-configuration amino acids have the defects of easy enzymatic degradation and insufficient biological stability. In this study, two new PDCs (LT7-SS-DOX and DT7-SS-DOX) were designed and synthesized by conjugating a transferrin receptor (TfR) peptide ligand LT7 (HAIYPRH) and its retro-inverso analog DT7 (hrpyiah), respectively, with DOX via a disulfide bond linker. Both conjugates exhibited targeted antiproliferative effects on TfR overexpressed tumor cells and little toxicity to TfR low-expressed normal cells compared with free DOX. Moreover, the DT7-SS-DOX conjugate possessed higher serum stability, more sustained reduction-triggered drug release characteristics, and stronger in vitro antiproliferative activity as compared to LT7-SS-DOX. In conclusion, the coupling of antitumor drugs with the DT7 peptide ligand can be used as a promising strategy for the further development of stable and efficient PDCs with the potential to facilitate TfR-targeted drug delivery.
Collapse
Affiliation(s)
- Jiale Yu
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde 067000, China; (J.Y.); (X.M.); (G.Z.)
| | - Xiaoxia Mao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde 067000, China; (J.Y.); (X.M.); (G.Z.)
| | - Xue Yang
- School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China;
| | - Guiqin Zhao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde 067000, China; (J.Y.); (X.M.); (G.Z.)
| | - Songtao Li
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde 067000, China; (J.Y.); (X.M.); (G.Z.)
| |
Collapse
|
2
|
Zhou M, Yao Y, Ma S, Zou M, Chen Y, Cai S, Zhao F, Wu H, Xiao F, Abudushalamu G, Fan X, Wu G. Dual-targeted and dual-sensitive self-assembled protein nanocarrier delivering hVEGI-192 for triple-negative breast cancer. Int J Biol Macromol 2023:125475. [PMID: 37353129 DOI: 10.1016/j.ijbiomac.2023.125475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Breast cancer is a highly prevalent malignancy worldwide among women with an increasing incidence in recent years. Triple-negative breast cancer (TNBC), a specific type of breast cancer, occurs primarily in young women and exhibits large tumor size, high clinical stage, and extremely poor prognosis with a high rate of lymph node, liver, and lung metastases. TNBC is insensitive to endocrine therapy and trastuzumab treatment, and there is an urgent need for effective therapeutics and treatment guidelines. However, investigations into antiangiogenic agents for the treatment of TNBC are ongoing. In this study, we successfully engineered a self-assembled protein nanocarrier TfRBP9-hVEGI-192-ELP fusion protein (TVEFP) to deliver the therapeutic protein, human vascular endothelial growth inhibitor (hVEGI-192). This was found to be effective in inhibiting tumor angiogenesis in vivo. The protein nanocarrier effectively inhibited the progression of TNBC in vivo and showed the behavior of self-assembly, thermoresponsiveness, enzyme stimulation-responsiveness, tumor-targeting, biocompatibility, and biodegradability. Near-infrared imaging studies showed that fluorescent dye-stained TVEFP effectively aggregated at the tumor site. The TVEFP nanocarrier significantly expands the application of the therapeutic protein hVEGI-192 and improves the imaging and biotherapeutic effects in TNBC, chiefly based on anti-angiogenesis effects.
Collapse
Affiliation(s)
- Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Mingyuan Zou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shijie Cai
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Huina Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Feng Xiao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - GuliNazhaer Abudushalamu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaobo Fan
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Laboratory Medcine, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
3
|
Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv 2022; 19:685-705. [PMID: 35698794 DOI: 10.1080/17425247.2022.2083106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Compared to normal cells, malignant cancer cells require more iron for their growth and rapid proliferation, which can be supplied by a high expression level of transferrin receptor (TfR). It is well known that the expression of TfR on the tumor cells is considerably higher than that of normal cells, which makes TfR an attractive target in cancer therapy. AREAS COVERED In this review, the primary focus is on the role of TfR as a valuable tool for cancer-targeted drug delivery, followed by the full coverage of available TfR ligands and their conjugation chemistry to the surface of liposomes. Finally, the most recent studies investigating the potential of TfR-targeted liposomes as promising drug delivery vehicles to different cancer cells are highlighted with emphasis on their improvement possibilities to become a part of future cancer medicines. EXPERT OPINION Liposomes as a valuable class of nanocarriers have gained much attention toward cancer therapy. From all the studies that have exploited the therapeutic and diagnostic potential of TfR on cancer cells, it can be realized that the systematic assessment of TfR ligands applied for liposomal targeted delivery has yet to be entirely accomplished.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Mahdinloo
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Wang F, Wu P, Qin S, Deng Y, Han P, Li X, Fan C, Xu Y. Curcin C inhibit osteosarcoma cell line U2OS proliferation by ROS induced apoptosis, autophagy and cell cycle arrest through activating JNK signal pathway. Int J Biol Macromol 2022; 195:433-439. [PMID: 34896468 DOI: 10.1016/j.ijbiomac.2021.11.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Osteosarcoma is a kind of primary bone malignant tumors. Its cure rate has been stagnant in the past decade years. Curcin C belongs to type I ribosome inactivating proteins, extracted from the cotyledons of post-germinated Jatropha curcas seeds. It can inhibit the proliferation of several tumor lines including U2OS cells with extraordinary efficiency. The treated U2OS cells were arrested in both S and G2/M phase, showed typical apoptosis morphological characteristic, formed autophagosomes and increase the ratio of LC3II to LC3I. Meanwhile, the level of ROS in the treated cells was found increasing significantly, with the change of mitochondrial membrane potential and decreased antioxidant enzyme activities. The application of ROS scavenger NAC not only significantly inhibited the toxicity of Curcin C but also prevented the happen of apoptosis and autophagy to some extent. These results suggested that Curcin C may function through ROS pathway. In addition, the Curcin C treatment could activate JNK and inhibit ERK signal pathway. Sp600125, an inhibitor of JNK signaling pathway, can prevent subsequent apoptosis and autophagy events, suggesting that JNK pathway was at least one of the pathways of Curcin C action. Moreover, the relevant including antagonistic among autophagy, apoptosis and cell cycle arresting induced by Curcin C also was found. In summary, it can be speculated that Curcin C may induce S, G2/M phase arrest, apoptosis and autophagy of human osteosarcoma U2OS cells through activating JNK signal pathway and blocking ERK signal pathway by promoting ROS accumulation in cell, thus finally reflected in the effect of inhibiting tumor cell proliferation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peng Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Siying Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yushan Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pan Han
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caixin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Transferrin Receptor Targeted Cellular Delivery of Doxorubicin Via a Reduction-Responsive Peptide-Drug Conjugate. Pharm Res 2019; 36:168. [DOI: 10.1007/s11095-019-2688-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
|
6
|
Li S, Zhao H, Fan Y, Zhao G, Wang R, Wen F, Wang J, Wang X, Wang Y, Gao Y. Design, synthesis, and in vitro antitumor activity of a transferrin receptor-targeted peptide-doxorubicin conjugate. Chem Biol Drug Des 2019; 95:58-65. [PMID: 31452330 DOI: 10.1111/cbdd.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 12/21/2022]
Abstract
In this study, a peptide-drug conjugate was designed and synthesized by connecting a transferrin receptor (TfR)-targeted binding peptide analog BP9a (CAHLHNRS) with doxorubicin (DOX) through N-succinimidyl-3-maleimidopropionate (SMP) as the cross-linker. Confocal laser scanning microscopy results indicated that free DOX mainly accumulated in the nuclei of both TfR overexpressed HepG2 hepatoma cells and L-O2 normal liver cells expressing low level of TfR; most of the BP9a-DOX conjugate displayed cytoplasmic location, and its cellular uptake by HepG2 cells was obviously reduced by TfR blockage test. Nevertheless, the cellular uptake of this conjugate by L-O2 cells was much less than that of free DOX. Meanwhile, the BP9a-DOX conjugate exhibited lower in vitro antiproliferative activity against HepG2 cells than free DOX, but its cytotoxic effect on L-O2 cells was decreased compared with that of free DOX. These results suggest that BP9a could be applied as a potential TfR-targeted peptide vector for selective drug delivery.
Collapse
Affiliation(s)
- Songtao Li
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Hongling Zhao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Yanfang Fan
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Guiqin Zhao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Ruxing Wang
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Fuyu Wen
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Jianping Wang
- Department of Immunology, Chengde Medical University, Chengde, China
| | - Xiaohui Wang
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Yu Wang
- Department of Traumatic Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yang Gao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| |
Collapse
|
7
|
Pizzo E, Di Maro A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J Biomed Sci 2016; 23:54. [PMID: 27439918 PMCID: PMC4955249 DOI: 10.1186/s12929-016-0272-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes (3.2.2.22) that possess N-glycosilase activity that irreversibly inhibits protein synthesis. RIPs have been found in plants, fungi, algae, and bacteria; their biological role is still under investigation, even if it has been recognized their role in plant defence against predators and viruses. Nevertheless, several studies on these toxins have been performed to evaluate their applicability in the biomedical field making RIPs selectively toxic towards target cells. Indeed, these molecules are extensively used to produce chimeric biomolecules, such as immunotoxins or protein/peptides conjugates. However, to date, clinical use of most of these bioconiujates has been limited by toxicity and immunogenicity. More recently, material sciences have provided a wide range of nanomaterials to be used as excellent vehicles for toxin-delivery, since they are characterized by improved stability, solubility, and in vivo pharmacokinetics. This review discusses progresses in the development of RIPs bioconjugates, with particular attention to the recent use of nanomaterials, whose appropriate design opens up a broad range of different possibilities to the use of RIPs in novel therapeutic approaches in human diseases.
Collapse
Affiliation(s)
- Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
8
|
Patiño T, Soriano J, Amirthalingam E, Durán S, González-Campo A, Duch M, Ibáñez E, Barrios L, Plaza JA, Pérez-García L, Nogués C. Polysilicon-chromium-gold intracellular chips for multi-functional biomedical applications. NANOSCALE 2016; 8:8773-8783. [PMID: 27064355 DOI: 10.1039/c5nr09022a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of micro- and nanosystems for their use in biomedicine is a continuously growing field. One of the major goals of such platforms is to combine multiple functions in a single entity. However, achieving the design of an efficient and safe micro- or nanoplatform has shown to be strongly influenced by its interaction with the biological systems, where particle features or cell types play a critical role. In this work, the feasibility of using multi-material pSi-Cr-Au intracellular chips (MMICCs) for multifunctional applications by characterizing their interactions with two different cell lines, one tumorigenic and one non-tumorigenic, in terms of biocompatibility, internalization and intracellular fate, has been explored. Moreover, the impact of MMICCs on the induction of an inflammatory response has been assessed by evaluating TNFα, IL1b, IL6, and IL10 human inflammatory cytokines secretion by macrophages. Results show that MMICCs are biocompatible and their internalization efficiency is strongly dependent on the cell type. Finally as a proof-of-concept, MMICCs have been dually functionalized with transferrin and pHrodo™ Red, SE to target cancer cells and detect intracellular pH, respectively. In conclusion, MMICCs can be used as multi-functional devices due to their high biocompatibility, non-inflammatory properties and the ability of developing multiple functions.
Collapse
Affiliation(s)
- Tania Patiño
- Unitat de Biologia Cellular, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jaramillo-Quintero LP, Contis Montes de Oca A, Romero Rojas A, Rojas-Hernández S, Campos-Rodríguez R, Martínez-Ayala AL. Cytotoxic effect of the immunotoxin constructed of the ribosome-inactivating protein curcin and the monoclonal antibody against Her2 receptor on tumor cells. Biosci Biotechnol Biochem 2015; 79:896-906. [PMID: 25704287 DOI: 10.1080/09168451.2015.1006572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The toxicity of the curcin on cancer cells allows to consider this protein as the toxic component of an immunotoxin directed to Her2, which is associated with cancer. Reductive amination was proposed to conjugate curcin and an anti-Her2; the binding was tested using Polyacrylamide gel electrophoresis, western blot, and immunocytochemistry. The in vitro cytotoxicity of curcin and the immunotoxin was assessed on breast cancer cell lines SK-BR-3 (Her2(+)) and MDA-MB-231 (Her2(-)). IC50 values for curcin were 15.5 ± 8.3 and 18.6 ± 2.4 μg/mL, respectively, statistically equivalent (p < 0.05). While to the immunotoxin was 2.2 ± 0.08 for SK-BR-3 and 147.6 ± 2.5 μg/mL for MDA-MB-231. These values showed that the immunotoxin was seven times more toxic to the SK-BR-3 than curcin and eight times less toxic to the MDA-MB-231. The immunotoxin composed of curcin and an antibody against Her2 and constructed by reductive amination could be a therapeutic candidate against Her2(+) cancer.
Collapse
|
10
|
Mohamed MS, Veeranarayanan S, Minegishi H, Sakamoto Y, Shimane Y, Nagaoka Y, Aki A, Poulose AC, Echigo A, Yoshida Y, Maekawa T, Kumar DS. Cytological and Subcellular Response of Cells Exposed to the Type-1 RIP Curcin and its Hemocompatibility Analysis. Sci Rep 2014. [DOI: 10.1038/srep05747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
Wang JJ, Huang SW. Research Progress on Novel Carrier-modified Methods and Evaluation of Active Targeting Antitumor Preparation. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|