1
|
Peng X, Tao H, Xia F, Zhu M, Yang M, Liu K, Hou B, Li X, Li S, He Y, Huan W, Gao F. Molecular design, construction and analgesic mechanism insights into the novel transdermal fusion peptide ANTP-BgNPB. Bioorg Chem 2024; 148:107482. [PMID: 38795582 DOI: 10.1016/j.bioorg.2024.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Toad venom, a traditional Chinese medicine, exhibits remarkable medicinal properties of significant therapeutic value. The peptides present within toad venom possess a wide range of biological functions, yet the neuropeptide B (NPB) and it modification requires further exploration to comprehensively understand its mechanisms of action and potential applications. In this study, a fusion peptide, ANTP-BgNPB, was designed to possess better analgesic properties through the transdermal modification of BgNPB. After optimizing the conditions, the expression of ANTP-BgNPB was successfully induced. The molecular dynamics simulations suggested that the modified protein exhibited improved stability and receptor binding affinity compared to its unmodified form. The analysis of the active site of ANTP-BgNPB and the verification of mutants revealed that GLN3, SER38, and ARG42 were crucial for the protein's recognition and binding with G protein-coupled receptor 7 (GPR7). Moreover, experiments conducted on mice using the hot plate and acetic acid twist body models demonstrated that ANTP-BgNPB was effective in transdermal analgesia. These findings represent significant progress in the development of transdermal delivery medications and could have a significant impact on pain management.
Collapse
Affiliation(s)
- Xinmeng Peng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Han Tao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fengyan Xia
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 313000, China
| | - Mingwei Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Meiyun Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Kexin Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Bowen Hou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xintong Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Suwan Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanling He
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Stab V, Stahl-Hennig C, Ensser A, Richel E, Fraedrich K, Sauermann U, Tippler B, Klein F, Burton DR, Tenbusch M, Überla K. HIV-1 neutralizing antibodies provide sterilizing immunity by blocking infection of the first cells. Cell Rep Med 2023; 4:101201. [PMID: 37804829 PMCID: PMC10591032 DOI: 10.1016/j.xcrm.2023.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 08/25/2023] [Indexed: 10/09/2023]
Abstract
Neutralizing antibodies targeting HIV-1 Env have been shown to protect from systemic infection. To explore whether these antibodies can inhibit infection of the first cells, challenge viruses based on simian immunodeficiency virus (SIV) were developed that use HIV-1 Env for entry into target cells during the first replication cycle, but then switch to SIV Env usage. Antibodies binding to Env of HIV-1, but not SIV, block HIV-1 Env-mediated infection events after rectal exposure of non-human primates to the switching challenge virus. After natural exposure to HIV-1, such a reduction of the number of first infection events should be sufficient to provide sterilizing immunity in the strictest sense in most of the exposed individuals. Since blocking infection of the first cells avoids the formation of latently infected cells and reduces the risk of emergence of antibody-resistant mutants, it may be the best mode of protection.
Collapse
Affiliation(s)
- Viktoria Stab
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Armin Ensser
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elie Richel
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kirsten Fraedrich
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development (CHAVD), IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Yang X, Liu Y, Cui W, Liu M, Wang W. Distinct Gag interaction properties of HIV-1 RNA 5' leader conformers reveal a mechanism for dimeric genome selection. RNA (NEW YORK, N.Y.) 2023; 29:217-227. [PMID: 36384962 PMCID: PMC9891258 DOI: 10.1261/rna.079347.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
During HIV-1 assembly, two copies of viral genomic RNAs (gRNAs) are selectively packaged into new viral particles. This process is mediated by specific interactions between HIV-1 Gag and the packaging signals at the 5' leader (5'L) of viral gRNA. 5'L is able to adopt different conformations, which promotes either gRNA dimerization and packaging or Gag translation. Dimerization and packaging are coupled. Whether the selective packaging of the gRNA dimer is due to favorable interactions between Gag and 5'L in the packaging conformation is not known. Here, using RNAs mimicking the two 5'L conformers, we show that the 5'L conformation dramatically affects Gag-RNA interactions. Compared to the RNA in the translation conformation (5'LT), the RNA in the packaging conformation (5'LP) can bind more Gag molecules. Gag associates with 5'LP faster than it binds to 5'LT, whereas Gag dissociates from 5'LP more slowly. The Gag-5'LP complex is more stable at high salt concentrations. The NC-SP2-p6 region of Gag likely accounts for the faster association and slower dissociation kinetics for the Gag-5'LP interaction and for the higher stability. In summary, our data suggest that conformational changes play an important role in the selection of dimeric genomes, probably by affecting the binding kinetics and stability of the Gag-5'L complex.
Collapse
Affiliation(s)
- Xin Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mengmeng Liu
- Office of Research Administration, Chongqing Medical University, Chongqing 400016, China
| | - Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Pillai VN, Ali LM, Prabhu SG, Krishnan A, Tariq S, Mustafa F, Rizvi TA. Expression, purification, and functional characterization of soluble recombinant full-length simian immunodeficiency virus (SIV) Pr55 Gag. Heliyon 2023; 9:e12892. [PMID: 36685375 PMCID: PMC9853374 DOI: 10.1016/j.heliyon.2023.e12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The simian immunodeficiency virus (SIV) precursor polypeptide Pr55Gag drives viral assembly and facilitates specific recognition and packaging of the SIV genomic RNA (gRNA) into viral particles. While several studies have tried to elucidate the role of SIV Pr55Gag by expressing its different components independently, studies using full-length SIV Pr55Gag have not been conducted, primarily due to the unavailability of purified and biologically active full-length SIV Pr55Gag. We successfully expressed soluble, full-length SIV Pr55Gag with His6-tag in bacteria and purified it using affinity and gel filtration chromatography. In the process, we identified within Gag, a second in-frame start codon downstream of a putative Shine-Dalgarno-like sequence resulting in an additional truncated form of Gag. Synonymously mutating this sequence allowed expression of full-length Gag in its native form. The purified Gag assembled into virus-like particles (VLPs) in vitro in the presence of nucleic acids, revealing its biological functionality. In vivo experiments also confirmed formation of functional VLPs, and quantitative reverse transcriptase PCR demonstrated efficient packaging of SIV gRNA by these VLPs. The methodology we employed ensured the availability of >95% pure, biologically active, full-length SIV Pr55Gag which should facilitate future studies to understand protein structure and RNA-protein interactions involved during SIV gRNA packaging.
Collapse
Affiliation(s)
- Vineeta N. Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suresha G. Prabhu
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Gilmer O, Mailler E, Paillart JC, Mouhand A, Tisné C, Mak J, Smyth RP, Marquet R, Vivet-Boudou V. Structural maturation of the HIV-1 RNA 5' untranslated region by Pr55 Gag and its maturation products. RNA Biol 2022; 19:191-205. [PMID: 35067194 PMCID: PMC8786341 DOI: 10.1080/15476286.2021.2021677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5ʹ gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.
Collapse
Affiliation(s)
- Orian Gilmer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Elodie Mailler
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| |
Collapse
|
7
|
Ye L, Gribling-Burrer AS, Bohn P, Kibe A, Börtlein C, Ambi UB, Ahmad S, Olguin-Nava M, Smith M, Caliskan N, von Kleist M, Smyth RP. Short- and long-range interactions in the HIV-1 5' UTR regulate genome dimerization and packaging. Nat Struct Mol Biol 2022; 29:306-319. [PMID: 35347312 PMCID: PMC9010304 DOI: 10.1038/s41594-022-00746-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
RNA dimerization is the noncovalent association of two human immunodeficiency virus-1 (HIV-1) genomes. It is a conserved step in the HIV-1 life cycle and assumed to be a prerequisite for binding to the viral structural protein Pr55Gag during genome packaging. Here, we developed functional analysis of RNA structure-sequencing (FARS-seq) to comprehensively identify sequences and structures within the HIV-1 5' untranslated region (UTR) that regulate this critical step. Using FARS-seq, we found nucleotides important for dimerization throughout the HIV-1 5' UTR and identified distinct structural conformations in monomeric and dimeric RNA. In the dimeric RNA, key functional domains, such as stem-loop 1 (SL1), polyadenylation signal (polyA) and primer binding site (PBS), folded into independent structural motifs. In the monomeric RNA, SL1 was reconfigured into long- and short-range base pairings with polyA and PBS, respectively. We show that these interactions disrupt genome packaging, and additionally show that the PBS-SL1 interaction unexpectedly couples the PBS with dimerization and Pr55Gag binding. Altogether, our data provide insights into late stages of HIV-1 life cycle and a mechanistic explanation for the link between RNA dimerization and packaging.
Collapse
Affiliation(s)
- Liqing Ye
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Patrick Bohn
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anuja Kibe
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Charlene Börtlein
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Uddhav B. Ambi
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Shazeb Ahmad
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Marco Olguin-Nava
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Maureen Smith
- grid.13652.330000 0001 0940 3744P5 Systems Medicine of Infectious Disease, Robert Koch-Institute, Berlin, Germany
| | - Neva Caliskan
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany ,grid.8379.50000 0001 1958 8658Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Max von Kleist
- grid.13652.330000 0001 0940 3744P5 Systems Medicine of Infectious Disease, Robert Koch-Institute, Berlin, Germany
| | - Redmond P. Smyth
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany ,grid.8379.50000 0001 1958 8658Faculty of Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Chameettachal A, Vivet-Boudou V, Pitchai F, Pillai V, Ali L, Krishnan A, Bernacchi S, Mustafa F, Marquet R, Rizvi T. A purine loop and the primer binding site are critical for the selective encapsidation of mouse mammary tumor virus genomic RNA by Pr77Gag. Nucleic Acids Res 2021; 49:4668-4688. [PMID: 33836091 PMCID: PMC8096270 DOI: 10.1093/nar/gkab223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Retroviral RNA genome (gRNA) harbors cis-acting sequences that facilitate its specific packaging from a pool of other viral and cellular RNAs by binding with high-affinity to the viral Gag protein during virus assembly. However, the molecular intricacies involved during selective gRNA packaging are poorly understood. Binding and footprinting assays on mouse mammary tumor virus (MMTV) gRNA with purified Pr77Gag along with in cell gRNA packaging study identified two Pr77Gag binding sites constituting critical, non-redundant packaging signals. These included: a purine loop in a bifurcated stem-loop containing the gRNA dimerization initiation site, and the primer binding site (PBS). Despite these sites being present on both unspliced and spliced RNAs, Pr77Gag specifically bound to unspliced RNA, since only that could adopt the native bifurcated stem-loop structure containing looped purines. These results map minimum structural elements required to initiate MMTV gRNA packaging, distinguishing features that are conserved amongst divergent retroviruses from those perhaps unique to MMTV. Unlike purine-rich motifs frequently associated with packaging signals, direct involvement of PBS in gRNA packaging has not been documented in retroviruses. These results enhance our understanding of retroviral gRNA packaging/assembly, making it not only a target for novel therapeutic interventions, but also development of safer gene therapy vectors.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
9
|
Eche S, Gordon ML. Recombinant expression of HIV-1 protease using soluble fusion tags in Escherichia coli: A vital tool for functional characterization of HIV-1 protease. Virus Res 2021; 295:198289. [PMID: 33418026 DOI: 10.1016/j.virusres.2020.198289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
HIV-1 protease expression in the laboratory is demanding because of its high cytotoxicity, making it difficult to express in bacterial expression systems such as Escherichia coli. To overcome these challenges, HIV-1 protease fusion with solubility enhancing tags helps to mitigate its cytotoxic effect and drive its expression as a soluble protein. Therefore, this review focuses on the expression of bioactive HIV-1 protease using solubility-enhancing fusion tags in Escherichia coli and summarises the characteristic features of the different common fusion tags that have been used in the expression of HIV-1 protease. This review will assist researchers with their choice of protein fusion tag for HIV-1 protease expression.
Collapse
Affiliation(s)
- Simeon Eche
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
10
|
Purification and Functional Characterization of a Biologically Active Full-Length Feline Immunodeficiency Virus (FIV) Pr50 Gag. Viruses 2019; 11:v11080689. [PMID: 31357656 PMCID: PMC6723490 DOI: 10.3390/v11080689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The feline immunodeficiency virus (FIV) full-length Pr50Gag precursor is a key player in the assembly of new viral particles. It is also a critical component of the efficient selection and packaging of two copies of genomic RNA (gRNA) into the newly formed virus particles from a wide pool of cellular and spliced viral RNA. To understand the molecular mechanisms involved during FIV gRNA packaging, we expressed the His6-tagged and untagged recombinant FIV Pr50Gag protein both in eukaryotic and prokaryotic cells. The recombinant Pr50Gag-His6-tag fusion protein was purified from soluble fractions of prokaryotic cultures using immobilized metal affinity chromatography (IMAC). This purified protein was able to assemble in vitro into virus-like particles (VLPs), indicating that it preserved its ability to oligomerize/multimerize. Furthermore, VLPs formed in eukaryotic cells by the FIV full-length Pr50Gag both in the presence and absence of His6-tag could package FIV sub-genomic RNA to similar levels, suggesting that the biological activity of the recombinant full-length Pr50Gag fusion protein was retained in the presence of His6-tag at the carboxy terminus. Successful expression and purification of a biologically active, recombinant full-length Pr50Gag-His6-tag fusion protein will allow study of the intricate RNA-protein interactions involved during FIV gRNA encapsidation.
Collapse
|
11
|
Annealing of ssDNA and compaction of dsDNA by the HIV-1 nucleocapsid and Gag proteins visualized using nanofluidic channels. Q Rev Biophys 2019; 52:e2. [DOI: 10.1017/s0033583518000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The nucleocapsid protein NC is a crucial component in the human immunodeficiency virus type 1 life cycle. It functions both in its processed mature form and as part of the polyprotein Gag that plays a key role in the formation of new viruses. NC can protect nucleic acids (NAs) from degradation by compacting them to a dense coil. Moreover, through its NA chaperone activity, NC can also promote the most stable conformation of NAs. Here, we explore the balance between these activities for NC and Gag by confining DNA–protein complexes in nanochannels. The chaperone activity is visualized as concatemerization and circularization of long DNA via annealing of short single-stranded DNA overhangs. The first ten amino acids of NC are important for the chaperone activity that is almost completely absent for Gag. Gag condenses DNA more efficiently than mature NC, suggesting that additional residues of Gag are involved. Importantly, this is the first single DNA molecule study of full-length Gag and we reveal important differences to the truncated Δ-p6 Gag that has been used before. In addition, the study also highlights how nanochannels can be used to study reactions on ends of long single DNA molecules, which is not trivial with competing single DNA molecule techniques.
Collapse
|
12
|
Pitchai FNN, Ali L, Pillai VN, Chameettachal A, Ashraf SS, Mustafa F, Marquet R, Rizvi TA. Expression, purification, and characterization of biologically active full-length Mason-Pfizer monkey virus (MPMV) Pr78 Gag. Sci Rep 2018; 8:11793. [PMID: 30087395 PMCID: PMC6081465 DOI: 10.1038/s41598-018-30142-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
MPMV precursor polypeptide Pr78Gag orchestrates assembly and packaging of genomic RNA (gRNA) into virus particles. Therefore, we have expressed recombinant full-length Pr78Gag either with or without His6-tag in bacterial as well as eukaryotic cultures and purified the recombinant protein from soluble fractions of the bacterial cultures. The recombinant Pr78Gag protein has the intrinsic ability to assemble in vitro to form virus like particles (VLPs). Consistent with this observation, the recombinant protein could form VLPs in both prokaryotes and eukaryotes. VLPs formed in eukaryotic cells by recombinant Pr78Gag with or without His6-tag can encapsidate MPMV transfer vector RNA, suggesting that the inclusion of the His6-tag to the full-length Pr78Gag did not interfere with its expression or biological function. This study demonstrates the expression and purification of a biologically active, recombinant Pr78Gag, which should pave the way to study RNA-protein interactions involved in the MPMV gRNA packaging process.
Collapse
Affiliation(s)
- Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lizna Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vineeta Narayana Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR, 9002, Strasbourg, France.
| | - Tahir Aziz Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
13
|
Dubois N, Khoo KK, Ghossein S, Seissler T, Wolff P, McKinstry WJ, Mak J, Paillart JC, Marquet R, Bernacchi S. The C-terminal p6 domain of the HIV-1 Pr55 Gag precursor is required for specific binding to the genomic RNA. RNA Biol 2018; 15:923-936. [PMID: 29954247 DOI: 10.1080/15476286.2018.1481696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Pr55Gag precursor specifically selects the HIV-1 genomic RNA (gRNA) from a large excess of cellular and partially or fully spliced viral RNAs and drives the virus assembly at the plasma membrane. During these processes, the NC domain of Pr55Gag interacts with the gRNA, while its C-terminal p6 domain binds cellular and viral factors and orchestrates viral particle release. Gag∆p6 is a truncated form of Pr55Gag lacking the p6 domain usually used as a default surrogate for wild type Pr55Gag for in vitro analysis. With recent advance in production of full-length recombinant Pr55Gag, here, we tested whether the p6 domain also contributes to the RNA binding specificity of Pr55Gag by systematically comparing binding of Pr55Gag and Gag∆p6 to a panel of viral and cellular RNAs. Unexpectedly, our fluorescence data reveal that the p6 domain is absolutely required for specific binding of Pr55Gag to the HIV-1 gRNA. Its deletion resulted not only in a decreased affinity for gRNA, but also in an increased affinity for spliced viral and cellular RNAs. In contrast Gag∆p6 displayed a similar affinity for all tested RNAs. Removal of the C-terminal His-tag from Pr55Gag and Gag∆p6 uniformly increased the Kd values of the RNA-protein complexes by ~ 2.5 fold but did not affect the binding specificities of these proteins. Altogether, our results demonstrate a novel role of the p6 domain in the specificity of Pr55Gag-RNA interactions, and strongly suggest that the p6 domain contributes to the discrimination of HIV-1 gRNA from cellular and spliced viral mRNAs, which is necessary for its selective encapsidation.
Collapse
Affiliation(s)
- Noé Dubois
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Keith K Khoo
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Shannon Ghossein
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Tanja Seissler
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Philippe Wolff
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France.,d Plateforme protéomique Strasbourg-Esplanade, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | | | - Johnson Mak
- b School of Medicine , Deakin University , Geelong , Australia.,e Institute for Glycomics, Griffith University , Southport , Australia
| | - Jean-Christophe Paillart
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Roland Marquet
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Serena Bernacchi
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
14
|
Intrastructural Help: Harnessing T Helper Cells Induced by Licensed Vaccines for Improvement of HIV Env Antibody Responses to Virus-Like Particle Vaccines. J Virol 2018; 92:JVI.00141-18. [PMID: 29743369 PMCID: PMC6026751 DOI: 10.1128/jvi.00141-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/05/2018] [Indexed: 11/21/2022] Open
Abstract
Induction of persistent antibody responses by vaccination is generally thought to depend on efficient help by T follicular helper cells. Since the T helper cell response to HIV Env may not be optimal, we explored the possibility of improving the HIV Env antibody response to virus-like particle (VLP) vaccines by recruiting T helper cells induced by commonly used licensed vaccines to provide help for Env-specific B cells. B cells specific for the surface protein of a VLP can internalize the entire VLP and thus present peptides derived from the surface and core proteins on their major histocompatibility complex class II (MHC-II) molecules. This allows T helper cells specific for the core protein to provide intrastructural help for B cells recognizing the surface protein. Consistently, priming mice with an adjuvanted Gag protein vaccine enhanced the HIV Env antibody response to subsequent booster immunizations with HIV VLPs. To harness T helper cells induced by the licensed Tetanolpur vaccines, HIV VLPs that contained T helper cell epitopes of tetanus toxoid were generated. Tetanol-immunized mice raised stronger antibody responses to immunizations with VLPs containing tetanus toxoid T helper cell epitopes but not to VLPs lacking these epitopes. Depending on the priming immunization, the IgG subtype response to HIV Env after the VLP immunization could also be modified. Thus, harnessing T helper cells induced by other vaccines appears to be a promising approach to improve the HIV Env antibody response to VLP vaccines. IMPORTANCE Induction of HIV Env antibodies at sufficient levels with optimal Fc effector functions for durable protection remains a challenge. Efficient T cell help may be essential to induce such a desirable antibody response. Here, we provide proof of concept that T helper cells induced by a licensed vaccine can be harnessed to provide help for HIV Env-specific B cells and to modulate the Env-specific IgG subtype response.
Collapse
|
15
|
Biochemical and Functional Characterization of Mouse Mammary Tumor Virus Full-Length Pr77 Gag Expressed in Prokaryotic and Eukaryotic Cells. Viruses 2018; 10:v10060334. [PMID: 29912170 PMCID: PMC6024702 DOI: 10.3390/v10060334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) Pr77Gag polypeptide is an essential retroviral structural protein without which infectious viral particles cannot be formed. This process requires specific recognition and packaging of dimerized genomic RNA (gRNA) by Gag during virus assembly. Most of the previous work on retroviral assembly has used either the nucleocapsid portion of Gag, or other truncated Gag derivatives—not the natural substrate for virus assembly. In order to understand the molecular mechanism of MMTV gRNA packaging process, we expressed and purified full-length recombinant Pr77Gag-His6-tag fusion protein from soluble fractions of bacterial cultures. We show that the purified Pr77Gag-His6-tag protein retained the ability to assemble virus-like particles (VLPs) in vitro with morphologically similar immature intracellular particles. The recombinant proteins (with and without His6-tag) could both be expressed in prokaryotic and eukaryotic cells and had the ability to form VLPs in vivo. Most importantly, the recombinant Pr77Gag-His6-tag fusion proteins capable of making VLPs in eukaryotic cells were competent for packaging sub-genomic MMTV RNAs. The successful expression and purification of a biologically active, full-length MMTV Pr77Gag should lay down the foundation towards performing RNA–protein interaction(s), especially for structure-function studies and towards understanding molecular intricacies during MMTV gRNA packaging and assembly processes.
Collapse
|
16
|
Su CTT, Kwoh CK, Verma CS, Gan SKE. Modeling the full length HIV-1 Gag polyprotein reveals the role of its p6 subunit in viral maturation and the effect of non-cleavage site mutations in protease drug resistance. J Biomol Struct Dyn 2017; 36:4366-4377. [PMID: 29237328 DOI: 10.1080/07391102.2017.1417160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HIV polyprotein Gag is increasingly found to contribute to protease inhibitor resistance. Despite its role in viral maturation and in developing drug resistance, there remain gaps in the knowledge of the role of certain Gag subunits (e.g. p6), and that of non-cleavage mutations in drug resistance. As p6 is flexible, it poses a problem for structural experiments, and is hence often omitted in experimental Gag structural studies. Nonetheless, as p6 is an indispensable component for viral assembly and maturation, we have modeled the full length Gag structure based on several experimentally determined constraints and studied its structural dynamics. Our findings suggest that p6 can mechanistically modulate Gag conformations. In addition, the full length Gag model reveals that allosteric communication between the non-cleavage site mutations and the first Gag cleavage site could possibly result in protease drug resistance, particularly in the absence of mutations in Gag cleavage sites. Our study provides a mechanistic understanding to the structural dynamics of HIV-1 Gag, and also proposes p6 as a possible drug target in anti-HIV therapy.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore
| | - Chee-Keong Kwoh
- b School of Computer Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Chandra Shekhar Verma
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore
| | - Samuel Ken-En Gan
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore.,c p53 Laboratory , Agency for Science, Technology, and Research (A*STAR) , Singapore 138648 , Singapore
| |
Collapse
|
17
|
Tanwar HS, Khoo KK, Garvey M, Waddington L, Leis A, Hijnen M, Velkov T, Dumsday GJ, McKinstry WJ, Mak J. The thermodynamics of Pr55Gag-RNA interaction regulate the assembly of HIV. PLoS Pathog 2017; 13:e1006221. [PMID: 28222188 PMCID: PMC5336307 DOI: 10.1371/journal.ppat.1006221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/03/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
The interactions that occur during HIV Pr55Gag oligomerization and genomic RNA packaging are essential elements that facilitate HIV assembly. However, mechanistic details of these interactions are not clearly defined. Here, we overcome previous limitations in producing large quantities of full-length recombinant Pr55Gag that is required for isothermal titration calorimetry (ITC) studies, and we have revealed the thermodynamic properties of HIV assembly for the first time. Thermodynamic analysis showed that the binding between RNA and HIV Pr55Gag is an energetically favourable reaction (ΔG<0) that is further enhanced by the oligomerization of Pr55Gag. The change in enthalpy (ΔH) widens sequentially from: (1) Pr55Gag-Psi RNA binding during HIV genome selection; to (2) Pr55Gag-Guanosine Uridine (GU)-containing RNA binding in cytoplasm/plasma membrane; and then to (3) Pr55Gag-Adenosine(A)-containing RNA binding in immature HIV. These data imply the stepwise increments of heat being released during HIV biogenesis may help to facilitate the process of viral assembly. By mimicking the interactions between A-containing RNA and oligomeric Pr55Gag in immature HIV, it was noted that a p6 domain truncated Pr50Gag Δp6 is less efficient than full-length Pr55Gag in this thermodynamic process. These data suggest a potential unknown role of p6 in Pr55Gag-Pr55Gag oligomerization and/or Pr55Gag-RNA interaction during HIV assembly. Our data provide direct evidence on how nucleic acid sequences and the oligomeric state of Pr55Gag regulate HIV assembly. Formation of any virus particle will require energy, yet the precise biophysical properties that drive the formation of HIV particles remain undefined. Isothermal titration calorimetry (ITC) is a biophysical technique that is the gold standard to reveal parameters governing biochemical and biophysical reaction. However, ITC requires large amount of proteins for analysis. As large quantities of full-length recombinant HIV Pr55Gag proteins have not been available in the past 30 years due to technical limitation, a comprehensive thermodynamic analysis of full-length HIV Pr55Gag has not been possible. Here, we have generated sufficient amount of full-length recombinant HIV Pr55Gag protein for isothermal titration calorimetry analysis. Our analyses have shown that the major interactions amongst HIV proteins and RNA sequences during viral assembly are energetically favourable reactions. In other words, HIV Pr55Gag proteins and viral RNA have evolved to overcome the energy barrier for virus formation by utilising energy obtained from protein-RNA interactions in order to facilitate the viral assembly process. Furthermore, HIV also use the oligomeric states of HIV Pr55Gag proteins and the RNA sequences as means to regulate the viral assembly process.
Collapse
Affiliation(s)
- Hanumant S. Tanwar
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Keith K. Khoo
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Megan Garvey
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | | | - Andrew Leis
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | | | - Tony Velkov
- Monash Institute of Pharmaceutical Science, Parkville, Victoria, Australia
| | | | | | - Johnson Mak
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
- * E-mail:
| |
Collapse
|
18
|
Reversible aggregation of HIV-1 Gag proteins mediated by nucleic acids. Biochem Biophys Res Commun 2016; 482:1437-1442. [PMID: 27965093 DOI: 10.1016/j.bbrc.2016.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022]
Abstract
HIV-1 Gag protein is the major structural protein for the assembly of virion particles. Although studies have been carried out using partially purified Gag proteins to investigate the mechanisms of viral particle assembly, the outcomes of an assembly reaction remain controversial. Here we have developed an improved procedure for purification of several untagged retroviral Gag proteins from E. coli to more than 95% purity and characterized Gag assembly in solution. We found that HIV-1 Gag proteins can undergo nucleic acid-dependent aggregation with several unexpected features: (1) they form spherical particles that are as large as microns in diameter; (2) the size of the aggregates vary with the molar ratio between nucleic acids and proteins, with the average size of these particles reaching maximal at a molar ratio of 1:2 between nucleic acids and proteins; and (3) these particles can be efficiently disassembled simply upon addition of excess nucleic acids into the solution, suggesting the presence of an ordered assembly. Single-stranded DNA oligos that are 10 nucleotides or shorter do not support the formation of these particles. Furthermore, the matrix domain of the Gag protein dramatically facilitates the formation of these aggregates. These studies uncover a previously uncharacterized pathway of HIV Gag assembly in vitro, and have implications for HIV-1 Gag assembly and pathogenesis in vivo.
Collapse
|
19
|
Bernacchi S, Abd El-Wahab EW, Dubois N, Hijnen M, Smyth RP, Mak J, Marquet R, Paillart JC. HIV-1 Pr55 Gag binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biol 2016; 14:90-103. [PMID: 27841704 DOI: 10.1080/15476286.2016.1256533] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The HIV-1 Pr55Gag precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55Gag and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55Gag specifically associate with the 5' region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55Gag binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55Gag. Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55Gag recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55Gag among a variety of svRNAs, all harboring SL1 in their first common exon.
Collapse
Affiliation(s)
- Serena Bernacchi
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ekram W Abd El-Wahab
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Noé Dubois
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Marcel Hijnen
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia
| | - Redmond P Smyth
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Johnson Mak
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia.,d School of Medicine, Faculty of Health, Deakin University , Geelong , Victoria , Australia.,e Commonwealth Scientific and Industrial Research Organization, Livestock Industries, Australian Animal Health Laboratory , Geelong , Victoria , Australia
| | - Roland Marquet
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | | |
Collapse
|
20
|
A non-cleavable hexahistidine affinity tag at the carboxyl-terminus of the HIV-1 Pr55 Gag polyprotein alters nucleic acid binding properties. Protein Expr Purif 2016; 130:137-145. [PMID: 27721079 DOI: 10.1016/j.pep.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
HIV Gag (Pr55Gag), a multidomain polyprotein that orchestrates the assembly and release of the human immunodeficiency virus (HIV), is an active target of antiretroviral inhibitor development. However, highly pure, stable, recombinant Pr55Gag has been difficult to produce in quantities sufficient for biophysical studies due to its susceptibility to proteolysis by cellular proteases during purification. Stability has been improved by using a construct that omits the p6 domain (Δp6). In vivo, p6 is crucial to the budding process and interacts with protein complexes in the ESCRT (Endosomal Sorting Complexes Required for Transport) pathway, it has been difficult to study its role in the context of Gag using in vitro approaches. Here we report the generation of a full length Gag construct containing a tobacco etch virus (TEV)-cleavable C-terminal hexahistidine tag, allowing a detailed comparison of its nucleic acid binding properties with other constructs, including untagged, Δp6, and C-terminally tagged (TEV-cleavable and non-cleavable) Gags, respectively. We have developed a standard expression and purification protocol that minimizes nucleic acid contamination and produces milligram quantities of full length Gag for in vitro studies and compound screening purposes. We found that the presence of a carboxyl-terminal hexahistidine tag changes the nucleic binding properties compared to the proteins that did not contain the tag (full length protein that was either untagged or reulted from removal of the tag during purification). The HIV Gag expression and purification protocol described herein provides a facile method of obtaining large quantities of high quality protein for investigators who wish to study the full length protein or the effect of the p6 domain on the biophysical properties of Gag.
Collapse
|
21
|
The Life-Cycle of the HIV-1 Gag-RNA Complex. Viruses 2016; 8:v8090248. [PMID: 27626439 PMCID: PMC5035962 DOI: 10.3390/v8090248] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.
Collapse
|
22
|
Mekdad HE, Boutant E, Karnib H, Biedma ME, Sharma KK, Malytska I, Laumond G, Roy M, Réal E, Paillart JC, Moog C, Darlix JL, Mély Y, de Rocquigny H. Characterization of the interaction between the HIV-1 Gag structural polyprotein and the cellular ribosomal protein L7 and its implication in viral nucleic acid remodeling. Retrovirology 2016; 13:54. [PMID: 27515235 PMCID: PMC4982112 DOI: 10.1186/s12977-016-0287-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background In HIV-1 infected cells, the integrated viral DNA is transcribed by the host cell machinery to generate the full length HIV-1 RNA (FL RNA) that serves as mRNA encoding for the Gag and GagPol precursors. Virion formation is orchestrated by Gag, and the current view is that a specific interaction between newly made Gag molecules and FL RNA initiates the process. This in turn would cause FL RNA dimerization by the NC domain of Gag (GagNC). However the RNA chaperoning activity of unprocessed Gag is low as compared to the mature NC protein. This prompted us to search for GagNC co-factors. Results Here we report that RPL7, a major ribosomal protein involved in translation regulation, is a partner of Gag via its interaction with the NC domain. This interaction is mediated by the NC zinc fingers and the N- and C-termini of RPL7, respectively, but seems independent of RNA binding, Gag oligomerization and its interaction with the plasma membrane. Interestingly, RPL7 is shown for the first time to exhibit a potent DNA/RNA chaperone activity higher than that of Gag. In addition, Gag and RPL7 can function in concert to drive rapid nucleic acid hybridization. Conclusions Our results show that GagNC interacts with the ribosomal protein RPL7 endowed with nucleic acid chaperone activity, favoring the notion that RPL7 could be a Gag helper chaperoning factor possibly contributing to the start of Gag assembly. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0287-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hala El Mekdad
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Emmanuel Boutant
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Hassan Karnib
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Marina E Biedma
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Kamal Kant Sharma
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Iuliia Malytska
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Géraldine Laumond
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Marion Roy
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Eléonore Réal
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Christiane Moog
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Jean Luc Darlix
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France.
| |
Collapse
|
23
|
Mutational interference mapping experiment (MIME) for studying RNA structure and function. Nat Methods 2015; 12:866-72. [PMID: 26237229 DOI: 10.1038/nmeth.3490] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/16/2015] [Indexed: 11/08/2022]
Abstract
RNA regulates many biological processes; however, identifying functional RNA sequences and structures is complex and time-consuming. We introduce a method, mutational interference mapping experiment (MIME), to identify, at single-nucleotide resolution, the primary sequence and secondary structures of an RNA molecule that are crucial for its function. MIME is based on random mutagenesis of the RNA target followed by functional selection and next-generation sequencing. Our analytical approach allows the recovery of quantitative binding parameters and permits the identification of base-pairing partners directly from the sequencing data. We used this method to map the binding site of the human immunodeficiency virus-1 (HIV-1) Pr55(Gag) protein on the viral genomic RNA in vitro, and showed that, by analyzing permitted base-pairing patterns, we could model RNA structure motifs that are crucial for protein binding.
Collapse
|
24
|
Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Saha A, Gumna J, Garfinkel DJ, Purzycka KJ. Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions. Nucleic Acids Res 2015; 43:7414-31. [PMID: 26160887 PMCID: PMC4551931 DOI: 10.1093/nar/gkv695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.
Collapse
Affiliation(s)
- Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julita Gumna
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
25
|
Specific recognition of the HIV-1 genomic RNA by the Gag precursor. Nat Commun 2014; 5:4304. [PMID: 24986025 DOI: 10.1038/ncomms5304] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 06/05/2014] [Indexed: 11/08/2022] Open
Abstract
During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA.
Collapse
|