1
|
Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the Various Sources of β-Galactosidase and Its Lactose Hydrolysis Property. Curr Microbiol 2023; 80:122. [PMID: 36862237 DOI: 10.1007/s00284-023-03220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
β-Galactosidase is a glycoside hydrolase enzyme that possesses both hydrolytic and transgalactosylation properties and has several benefits and advantages in the food and dairy industries. The catalytic process of β-galactosidase involves the transfer of a sugar residue from a glycosyl donor to an acceptor via a double-displacement mechanism. Hydrolysis prevails when water acts as an acceptor, resulting in the production of lactose-free products. Transgalactosylation prevails when lactose acts as an acceptor, resulting in the production of prebiotic oligosaccharides. β-Galactosidase is also obtained from many sources including bacteria, yeast, fungi, plants, and animals. However, depending on the origin of the β-galactosidase, the monomer composition and their bonds may differ, thereby influencing their properties and prebiotic efficacy. Thus, the increasing demand for prebiotics in the food industry and the search for new oligosaccharides have compelled researchers to search for novel sources of β-galactosidase with diverse properties. In this review, we discuss the properties, catalytic mechanisms, various sources and lactose hydrolysis properties of β-galactosidase.
Collapse
Affiliation(s)
- Pooja Kalathinathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Luan S, Duan X. A Novel Thermal-Activated β-Galactosidase from Bacillus aryabhattai GEL-09 for Lactose Hydrolysis in Milk. Foods 2022; 11:foods11030372. [PMID: 35159524 PMCID: PMC8834341 DOI: 10.3390/foods11030372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
β-Galactosidase has been greatly used in the dairy industry. This study investigated a novel thermostable β-galactosidase (lacZBa) from Bacillus aryabhattai GEL-09 and evaluated the hydrolytic performance of this enzyme. Firstly, the lacZBa-encoding gene was cloned and overexpressed in Escherichia coli BL21(DE3). Phylogenetic analyses revealed that lacZBa belonged to the glycoside hydrolase family 42. Using SDS-PAGE, we determined that the molecular weight of lacZBa was ~75 kDa. Purified lacZBa exhibited a maximum activity at 45 °C, pH 6.0, and could be activated following incubation at 45 °C for several minutes. The half-life of lacZBa at 45 °C and 50 °C was 264 h and 36 h, respectively. While Co2+, Mn2+, Zn2+, Fe2+, Mg2+, and Ca2+ enhanced enzymatic activity, Cu2+ and ethylenediaminetetraacetic acid inhibited enzymatic activity. Moreover, lacZBa could hydrolyze lactose and oNPG with Km values of 85.09 and 14.38 mM. Molecular docking results revealed that lacZBa efficiently recognized and catalyzed lactose. Additionally, the hydrolysis of lactose by lacZBa was studied in lactose solution and commercial milk. Lactose was completely hydrolyzed within 4 h with 8 U/mL of lacZBa at 45 °C. These results suggested that lacZBa identified in this study has potential applications in the dairy industry.
Collapse
|
3
|
Yan Y, Guan W, Li X, Gao K, Xu X, Liu B, Zhang W, Zhang Y. β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity. Bioengineered 2021; 12:8908-8919. [PMID: 34606421 PMCID: PMC8806947 DOI: 10.1080/21655979.2021.1988370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
β-galactosidase catalyzes lactose hydrolysis and transfers reactions to produce prebiotics such as galacto-oligosaccharides (GOS) with potential applications in the food industry and pharmaceuticals. However, there is still a need for improved transgalactosylation activity of β-galactosidases and reaction conditions of GOS production in order to maximize GOS output and reduce production costs. In this study, a β-galactosidase gene, galA, from Bacillus circulans was expressed in Pichia pastoris, which not only hydrolyzed lactose but also had strong transgalactosylation activity to produce GOS. Response surface methodology was adopted to investigate the effects of temperature, enzyme concentration, pH, initial lactose concentration, and reaction time on the production of GOS and optimize the reaction conditions for GOS. The optimal pH for the enzyme was 6.0 and remained stable under neutral and basic conditions. Meanwhile, GALA showed most activity at 50°C and retained considerable activity at a lower temperature 30–40°C, indicating this enzyme could work under mild conditions. The enzyme concentration and temperature were found to be the critical parameters affecting the transgalactosylation activity. Response surface methodology showed that the optimal enzyme concentration, initial lactose concentration, temperature, pH, and reaction time were 3.03 U/mL, 500 g/L, 30°C, 5.08, and 4 h, respectively. Under such conditions, the maximum yield of GOS was 252.8 g/L, accounting for approximately 50.56% of the total sugar. This yield can be considered relatively high compared to those obtained from other sources of β-galactosidases, implying a great potential for GALA in the industrial production and application of GOS.
Collapse
Affiliation(s)
- Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weishi Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyi Li
- College of Letters and Science, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Kaier Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Antarctic Rahnella inusitata: A Producer of Cold-Stable β-Galactosidase Enzymes. Int J Mol Sci 2021; 22:ijms22084144. [PMID: 33923711 PMCID: PMC8074230 DOI: 10.3390/ijms22084144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022] Open
Abstract
There has been a recent increase in the exploration of cold-active β-galactosidases, as it offers new alternatives for the dairy industry, mainly in response to the current needs of lactose-intolerant consumers. Since extremophilic microbial compounds might have unique physical and chemical properties, this research aimed to study the capacity of Antarctic bacterial strains to produce cold-active β-galactosidases. A screening revealed 81 out of 304 strains with β-galactosidase activity. The strain Se8.10.12 showed the highest enzymatic activity. Morphological, biochemical, and molecular characterization based on whole-genome sequencing confirmed it as the first Rahnella inusitata isolate from the Antarctic, which retained 41–62% of its β-galactosidase activity in the cold (4 °C–15 °C). Three β-galactosidases genes were found in the R. inusitata genome, which belong to the glycoside hydrolase families GH2 (LacZ and EbgA) and GH42 (BglY). Based on molecular docking, some of these enzymes exhibited higher lactose predicted affinity than the commercial control enzyme from Aspergillus oryzae. Hence, this work reports a new Rahnella inusitata strain from the Antarctic continent as a prominent cold-active β-galactosidase producer.
Collapse
|
5
|
Eberhardt MF, Irazoqui JM, Amadio AF. β-Galactosidases from a Sequence-Based Metagenome: Cloning, Expression, Purification and Characterization. Microorganisms 2020; 9:microorganisms9010055. [PMID: 33379234 PMCID: PMC7823827 DOI: 10.3390/microorganisms9010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds' metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries' by-products.
Collapse
|
6
|
Li S, Zhu X, Xing M. A New β-Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides. Mar Drugs 2019; 17:md17110599. [PMID: 31652852 PMCID: PMC6891550 DOI: 10.3390/md17110599] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 01/26/2023] Open
Abstract
As an important medical enzyme, β-galactosidases catalyze transgalactosylation to form prebiotic Galacto-Oligosaccharides (GOS) that assist in improving the effect of intestinal flora on human health. In this study, a new glycoside hydrolase family 2 (GH2) β-galactosidase-encoding gene, galA, was cloned from the Antarctic bacterium Alteromonas sp. ANT48 and expressed in Escherichia coli. The recombinant β-galactosidase GalA was optimal at pH 7.0 and stable at pH 6.6–7.0, which are conditions suitable for the dairy environment. Meanwhile, GalA showed most activity at 50 °C and retained more than 80% of its initial activity below 40 °C, which makes this enzyme stable in normal conditions. Molecular docking with lactose suggested that GalA could efficiently recognize and catalyze lactose substrates. Furthermore, GalA efficiently catalyzed lactose degradation and transgalactosylation of GOS in milk. A total of 90.6% of the lactose in milk could be hydrolyzed within 15 min at 40 °C, and the GOS yield reached 30.9%. These properties make GalA a good candidate for further applications.
Collapse
Affiliation(s)
- Shangyong Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xiangjie Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Mengxin Xing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Yao C, Sun J, Wang W, Zhuang Z, Liu J, Hao J. A novel cold-adapted β-galactosidase from Alteromonas sp. ML117 cleaves milk lactose effectively at low temperature. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Faraji H, Ramezani M, Mashkani B, Sadeghnia HR, Benhangi HM, Hosseini Teshnizi S, Soltani F. Comparison of expression optimization of new derivative of staphylokinase (SAK-2RGD-TTI) with the rSAK. Biotechnol Prog 2019; 35:e2819. [PMID: 30972956 DOI: 10.1002/btpr.2819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 11/06/2022]
Abstract
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3-4 days. The highest expression was obtained at the range of 2-3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25-37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7-9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.
Collapse
Affiliation(s)
- Habibollah Faraji
- Department of Laboratory Sciences, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Neurocognitive Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid M Benhangi
- Department of Toxicology, Islamic Azad University, Shahreza, Isfahan, Iran
| | - Saeed Hosseini Teshnizi
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Molafilabi A, Shahabi M, Rafatpanah H, Mashkani B. Production of Universal Group O Red Blood Cells by Alpha- N-Acetylgalactosaminidase Enzyme Expressed in Pichia pastoris. Indian J Hematol Blood Transfus 2019; 35:125-130. [PMID: 30828159 DOI: 10.1007/s12288-018-0999-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022] Open
Abstract
Enzymatic removal of blood groups antigens A and B is an efficient method for production of universal red blood cells. In this research, an α-N-acetylgalactosaminidase (NAGA) enzyme was expressed in Pichia pastoris for digestion of the A blood antigen. DNA sequence of the gene NAGA, originally expressed in Elizabethkingia meningosepticum (NAGA-EM), was ordered for optimization and synthesis. It was then expressed in P. pastoris (KM71H and GS115 strains). Expression of the recombinant NAGA was evaluated by dot blot, SDS-PAGE, and Western blotting. The activity of the enzyme was measured using a synthetic substrate in addition to the conversion of group A red blood cells to the O cells. Expression of NAGA-EM with an apparent molecular mass of 55 kDa was verified by dot blot, SDS-PAGE and Western blot analysis. The maximum enzyme activity in the supernatant of KM71H was higher than that in the GS115 (250 vs. 200 U/ml). Treated group A RBCs did not react with the anti-A antiserum or with the sera from individuals with blood groups B and O. The results of this study indicated that NAGA-EM is an efficient enzyme for production of universal O blood cells.
Collapse
Affiliation(s)
- Azam Molafilabi
- 1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO Bldg, Hemmat Exp. Way, 1449613111 Tehran, Iran
| | - Majid Shahabi
- 1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO Bldg, Hemmat Exp. Way, 1449613111 Tehran, Iran
| | - Houshang Rafatpanah
- 2Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| | - Baratali Mashkani
- 3Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| |
Collapse
|
10
|
Liu P, Wang W, Zhao J, Wei D. Screening novel β-galactosidases from a sequence-based metagenome and characterization of an alkaline β-galactosidase for the enzymatic synthesis of galactooligosaccharides. Protein Expr Purif 2018; 155:104-111. [PMID: 30529535 DOI: 10.1016/j.pep.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023]
Abstract
βgalactosidases have wide industrial applications in lactose hydrolysis and transglycosylation reactions. Therefore, there is a need to mine novel and high-quality β-galactosidases with good tolerance and novel features from harsh environments and genomic databases. In this study, an Escherichia coli β-galactosidase-deficient host, ΔlacZ(DE3)pRARE, was constructed by the CRISPR-Cas9 system for screening active β-galactosidases. Of thirty selected β-galactosidases, twelve novel enzymes showed β-galactosidase activity, four of which were purified for further study. BGal_375 exhibited maximal activity at pH 8 and 50 °C. The concentrations of two types of galactooligosaccharides, tri- and tetra-saccharides, produced by BGal_375, reached 64.53 g/l and 8.32 g/l, respectively. BGal_375 displayed a Km value of 1.65 mM and kcat value of 53 s-1 for p-nitrophenyl-β-d-galactopyranoside (pNPG). BGal_137, BGal_144-3, and BGal_145-2 showed promising hydrolytic activity for pNPG. BGal_137 is a homodimer while BGal_144-3, BGal_145-2, and BGal_375 were all monomeric. This study provided an efficient solution for the identification of new β-galactosidases from metagenomic data, and an alkaline β-galactosidase efficient for the synthesis of galactooligosaccharides was obtained, which is important for potential industrial applications.
Collapse
Affiliation(s)
- Pei Liu
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Xavier JR, Ramana KV, Sharma RK. β-galactosidase: Biotechnological applications in food processing. J Food Biochem 2018. [DOI: 10.1111/jfbc.12564] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janifer Raj Xavier
- Food Biotechnology Division, Defence Food Research Laboratory; Defence Research and Development Organization; Mysore Karnataka India
| | - Karna Venkata Ramana
- Food Biotechnology Division, Defence Food Research Laboratory; Defence Research and Development Organization; Mysore Karnataka India
| | - Rakesh Kumar Sharma
- Defence Food Research Laboratory; Defence Research and Development Organization; Mysore Karnataka India
| |
Collapse
|
12
|
Li RK, Chen Z, Ying XJ, Ng TB, Ye XY. A novel GH16 beta-agarase isolated from a marine bacterium, Microbulbifer sp. BN3 and its characterization and high-level expression in Pichia pastoris. Int J Biol Macromol 2018; 119:1164-1170. [PMID: 30107160 DOI: 10.1016/j.ijbiomac.2018.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/20/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
An agar-degrading bacterium, strain BN3, was isolated from a coastal soil sample collected in Taiwan Strait, China and identified to be a novel species of the genus Microbulbifer. The gene (N3-1) encoding for a novel β-agarase from the isolate was cloned and sequenced. It encoded a mature protein with 274 amino acids and a calculated molecular mass of 34.3 kDa. The deduced amino acid sequence manifested sequence similarity (61-84% identity) to characterized β-agarases in the glycoside hydrolase family 16. The recombinant agarase was hyper-produced extracellularly using Pichia pastoris as the host. After induction in a shake flask for 96 h, the yield of recombinant N3-1 protein reached 0.406 mg/mL, and the enzyme activity attained 502.1 U/mL. The enzyme purified by ion exchange chromatography displayed a specific activity of 6447 U/mg at pH 6.0 and 50 °C. The optimal pH and temperature for agarase activity were approximately 6 and 50 °C, respectively. The pattern of agarose hydrolysis showed that the enzyme was an endo-type β-agarase, capable of hydrolyzing agarose and Gracilaria lemaneiformis, with neoagarobiose and neoagarotetraose as the final main products.
Collapse
Affiliation(s)
- Ren-Kuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China; National Engineering Laboratory for High-efficient Enzyme Expression, PR China
| | - Zeng Chen
- National Engineering Laboratory for High-efficient Enzyme Expression, PR China
| | - Xi-Juan Ying
- National Engineering Laboratory for High-efficient Enzyme Expression, PR China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiu-Yun Ye
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China; National Engineering Laboratory for High-efficient Enzyme Expression, PR China.
| |
Collapse
|
13
|
Pellizza L, Smal C, Rodrigo G, Arán M. Codon usage clusters correlation: towards protein solubility prediction in heterologous expression systems in E. coli. Sci Rep 2018; 8:10618. [PMID: 30006617 PMCID: PMC6045634 DOI: 10.1038/s41598-018-29035-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Production of soluble recombinant proteins is crucial to the development of industry and basic research. However, the aggregation due to the incorrect folding of the nascent polypeptides is still a mayor bottleneck. Understanding the factors governing protein solubility is important to grasp the underlying mechanisms and improve the design of recombinant proteins. Here we show a quantitative study of the expression and solubility of a set of proteins from Bizionia argentinensis. Through the analysis of different features known to modulate protein production, we defined two parameters based on the %MinMax algorithm to compare codon usage clusters between the host and the target genes. We demonstrate that the absolute difference between all %MinMax frequencies of the host and the target gene is significantly negatively correlated with protein expression levels. But most importantly, a strong positive correlation between solubility and the degree of conservation of codons usage clusters is observed for two independent datasets. Moreover, we evince that this correlation is higher in codon usage clusters involved in less compact protein secondary structure regions. Our results provide important tools for protein design and support the notion that codon usage may dictate translation rate and modulate co-translational folding.
Collapse
Affiliation(s)
- Leonardo Pellizza
- Laboratory of Nuclear Magnetic Resonance, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, CABA, Argentina
| | - Clara Smal
- Laboratory of Nuclear Magnetic Resonance, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, CABA, Argentina
| | - Guido Rodrigo
- Laboratory of Nuclear Magnetic Resonance, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, CABA, Argentina
| | - Martín Arán
- Laboratory of Nuclear Magnetic Resonance, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, CABA, Argentina.
| |
Collapse
|
14
|
Karimi E, Faraji H, Hamidi Alamdari D, Souktanloo M, Mojarrad M, Ashman LK, Mashkani B. Overexpression of functional human FLT3 ligand in Pichia pastoris. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s000368381704007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Saqib S, Akram A, Halim SA, Tassaduq R. Sources of β-galactosidase and its applications in food industry. 3 Biotech 2017; 7:79. [PMID: 28500401 DOI: 10.1007/s13205-017-0645-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
The enzyme β-galactosidases have been isolated from various sources such as bacteria, fungi, yeast, vegetables, and recombinant sources. This enzyme holds importance due to its wide applications in food industries to manufacture lactose-hydrolyzed products for lactose-intolerant people and the formation of glycosylated products. Absorption of undigested lactose in small intestine requires the activity of this enzyme; hence, the deficiency of this enzyme leads to lactose intolerance. Lactose intolerance affects around 70% of world's adult population, while the prevalence rate of lactose intolerance is 60% in Pakistan. β-Galactosidases are not only used to manufacture lactose-free products but also employed to treat whey, and used in prebiotics. This review focuses on various sources of β-galactosidase and highlights the importance of β-galactosidases in food industries.
Collapse
|
16
|
Faraji H, Ramezani M, Sadeghnia HR, Abnous K, Soltani F, Mashkani B. High-level expression of a biologically active staphylokinase in Pichia pastoris. Prep Biochem Biotechnol 2016; 47:379-387. [PMID: 27813714 DOI: 10.1080/10826068.2016.1252924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Staphylokinase (SAK) as the third generation thrombolytic molecule is a promising agent for the treatment of thrombosis. SAK variant of SAKфC was expressed in Pichia pastoris strains KM71H and GS115. The codon adaptation index of SAK was improved from 0.75 to 0.89. The expression of recombinant SAK (rSAK) reached to its maximum (310 mg/L of the culture medium) after 48-hr stimulation with 3% methanol and remained steady until day 5. The maximum activity of the enzyme was at pH 8.6 and 37°C. It was highly active at temperatures 20-37°C and pH ranges of 6.8-9 (relative residual activity more than 80%). It was determined that rSAK was 73.8% of the total proteins secreted by P. pastoris KM71H into the culture media. The specific activities of rSAK were measured as 9,002 and 21,042 U/mg for the nonpurified and purified proteins, respectively. The quantity of the purified protein (>99% purity) was 720 µg/mL with a purification factor of 2.34. Western blot analysis showed two bands of nearly 22 and 18.6 kDa. It was concluded that P. pastoris is a proper host for expression of biologically active and endotoxin-free rSAK due to its high expression and low protein impurity in culture supernatant.
Collapse
Affiliation(s)
- Habibollah Faraji
- a Department of Medical Biotechnology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- b Pharmaceutical Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Hamid Reza Sadeghnia
- c Neurocognitive Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of New Sciences and Technology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khalil Abnous
- e Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,f Department of Medicinal Chemistry , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fatemeh Soltani
- g Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Baratali Mashkani
- h Department of Medical Biochemistry, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|