1
|
Wang P, Pei X, Zhou W, Zhao Y, Gu P, Li Y, Gao J. Research and application progress of microbial β-mannanases: a mini-review. World J Microbiol Biotechnol 2024; 40:169. [PMID: 38630389 DOI: 10.1007/s11274-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. β-Mannanase is the principal mannan-degrading enzyme, which breaks down the β-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of β-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial β-mannanases are reviewed, the future research directions for microbial β-mannanases are also outlined.
Collapse
Affiliation(s)
- Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Xiaohui Pei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, PR China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd, Taian, 271400, PR China
| | - Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, 273399, PR China.
| |
Collapse
|
2
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
3
|
Sadaqat B, Dar MA, Sha C, Abomohra A, Shao W, Yong YC. Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies. World J Microbiol Biotechnol 2024; 40:130. [PMID: 38460032 DOI: 10.1007/s11274-024-03912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
β-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable β-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic β-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.
Collapse
Affiliation(s)
- Beenish Sadaqat
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
- Department of Biochemistry and Structural Biology, Lund University, Box 124, 22100, Lund, Sweden
| | - Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Chong Sha
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Weilan Shao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| |
Collapse
|
4
|
Expression and Surface Display of an Acidic Cold-Active Chitosanase in Pichia pastoris Using Multi-Copy Expression and High-Density Cultivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030800. [PMID: 35164064 PMCID: PMC8839494 DOI: 10.3390/molecules27030800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Chitosanase hydrolyzes β-(1,4)-linked glycosidic bonds are used in chitosan chains to release oligosaccharide mixtures. Here, we cloned and expressed a cold-adapted chitosanase (CDA, Genbank: MW094131) using multi-copy expression plasmids (CDA1/2/3/4) in Pichia pastoris. We identified elevated CDA expression levels in multi-copy strains, with strain PCDA4 selected for high-density fermentation and enzyme-activity studies. The high-density fermentation approach generated a CDA yield of 20014.8 U/mL, with temperature and pH optimization experiments revealing the highest CDA activity at 20 °C and 5.0, respectively. CDA was stable at 10 °C and 20 °C. Thus, CDA could be used at low temperatures. CDA was then displayed on P. pastoris using multi-copy expression plasmids. Then, multi-copy strains were constructed and labelled as PCDA(1-3)-AGα1. Further studies showed that the expression of CDA(1-3)-AGα1 in multi-copy strains was increased, and that strain PCDA3-AGα1 was chosen for high-density fermentation and enzyme activity studies. By using a multi-copy expression and high-density fermentation approach, we observed CDA-AGα1 expression yields of 102415 U/g dry cell weight. These data showed that the displayed CDA exhibited improved thermostability and was more stable over wider temperature and pH ranges than free CDA. In addition, displayed CDA could be reused. Thus, the data showed that displaying enzymes on P. pastoris may have applications in industrial settings.
Collapse
|
5
|
Zhang Y, Li Z, Li L, Rao B, Ma L, Wang Y. A Method for Rapid Screening, Expression, and Purification of Antimicrobial Peptides. Microorganisms 2021; 9:microorganisms9091858. [PMID: 34576753 PMCID: PMC8469748 DOI: 10.3390/microorganisms9091858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a method for the rapid screening, expression and purification of antimicrobial peptides (AMPs) was developed. AMP genes were fused to a heat-resistant CL7 tag using the SLOPE method, and cloned into Escherichia coli and Pichia pastoris expression vectors. Twenty E. coli and ten P. pastoris expression vectors were constructed. Expression supernatants were heated, heteroproteins were removed, and fusion proteins were purified by nickel affinity (Ni-NTA) chromatography. Fusion proteins were digested on the column using human rhinovirus (HRV) 3C protease, and AMPs were released and further purified. Five AMPs (1, 2, 6, 13, 16) were purified using the E. coli expression system, and one AMP (13) was purified using the P. pastoris expression system. Inhibition zone and minimum inhibitory concentration (MIC) tests confirmed that one P. pastoris⌐-derived and two E. coli-derived AMPs have the inhibition activity. The MIC of AMP 13 and 16 from E. coli was 24.2 μM, and the MIC of AMP 13 from P. pastoris was 8.1 μM. The combination of prokaryotic and eukaryotic expression systems expands the universality of the developed method, facilitating screening of a large number of biologically active AMPs, establishing an AMP library, and producing AMPs by industrialised biological methods.
Collapse
Affiliation(s)
- Yingli Zhang
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan 430062, China; (Y.Z.); (Z.L.); (L.L.); (L.M.)
| | - Zhongchen Li
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan 430062, China; (Y.Z.); (Z.L.); (L.L.); (L.M.)
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan 430062, China; (Y.Z.); (Z.L.); (L.L.); (L.M.)
| | - Ben Rao
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, China;
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan 430062, China; (Y.Z.); (Z.L.); (L.L.); (L.M.)
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan 430062, China; (Y.Z.); (Z.L.); (L.L.); (L.M.)
- Correspondence:
| |
Collapse
|
6
|
Ronghua Z, Xianqing L, Fang L, Qing D, Wei C, YaPing W, Ben R. High-level Expression of an Acidic and Thermostable Chitosanase in Pichia pastoris Using Multi-copy Expression Strains and High-cell-density Cultivation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Vandermies M, Fickers P. Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms 2019; 7:E40. [PMID: 30704141 PMCID: PMC6406515 DOI: 10.3390/microorganisms7020040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Recombinant protein production represents a multibillion-dollar market. Therefore, it constitutes an important research field both in academia and industry. The use of yeast as a cell factory presents several advantages such as ease of genetic manipulation, growth at high cell density, and the possibility of post-translational modifications. Yarrowia lipolytica is considered as one of the most attractive hosts due to its ability to metabolize raw substrate, to express genes at a high level, and to secrete protein in large amounts. In recent years, several reviews have been dedicated to genetic tools developed for this purpose. Though the construction of efficient cell factories for recombinant protein synthesis is important, the development of an efficient process for recombinant protein production in a bioreactor constitutes an equally vital aspect. Indeed, a sports car cannot drive fast on a gravel road. The aim of this review is to provide a comprehensive snapshot of process tools to consider for recombinant protein production in bioreactor using Y. lipolytica as a cell factory, in order to facilitate the decision-making for future strain and process engineering.
Collapse
Affiliation(s)
- Marie Vandermies
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| |
Collapse
|
8
|
Zhou C, Xue Y, Ma Y. Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10. Microb Cell Fact 2018; 17:124. [PMID: 30098601 PMCID: PMC6087540 DOI: 10.1186/s12934-018-0973-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND β-Mannanase catalyzes the cleavage of β-1,4-linked internal linkages of mannan backbone randomly to produce new chain ends. Alkaline and thermostable β-mannanases provide obvious advantages for many applications in biobleaching of pulp and paper, detergent industry, oil grilling operation and enzymatic production of mannooligosaccharides. However, only a few of them are commercially exploited as wild or recombinant enzymes, and none heterologous and secretory expression of alkaline β-mannanase in Bacillus subtilis expression system was reported. Alkaliphilic Bacillus clausii S10 showed high β-mannanase activity at alkaline condition. In this study, this β-mannanase was cloned, purified and characterized. The high-level secretory expression in B. subtilis was also studied. RESULTS A thermo-alkaline β-mannanase (BcManA) gene encoding a 317-amino acid protein from alkaliphilic Bacillus clausii strain was cloned and expressed in Escherichia coli. The purified mature BcManA exhibited maximum activity at pH 9.5 and 75 °C with good stability at pH 7.0-11.5 and below 80 °C. BcManA demonstrated high cleavage capability on polysaccharides containing β-1,4-mannosidic linkages, such as konjac glucomannan, locust bean gum, guar gum and sesbania gum. The highest specific activity of 2366.2 U mg-1 was observed on konjac glucomannan with the Km and kcat value of 0.62 g l-1 and 1238.9 s-1, respectively. The hydrolysis products were mainly oligosaccharides with a higher degree of polymerization than biose. BcManA also cleaved manno-oligosaccharides with polymerization degree more than 3 without transglycosylation. Furthermore, six signal peptides and two strong promoters were used for efficiently secreted expression optimization in B. subtilis WB600 and the highest extracellular activity of 2374 U ml-1 with secretory rate of 98.5% was obtained using SPlipA and P43 after 72 h cultivation in 2 × SR medium. By medium optimization using cheap nitrogen and carbon source of peanut meal and glucose, the extracellular activity reached 6041 U ml-1 after 72 h cultivation with 6% inoculum size by shake flask fermentation. CONCLUSIONS The thermo-alkaline β-mannanase BcManA showed good thermal and pH stability and high catalytic efficiency towards konjac glucomannan and locust bean gum, which distinguished from other reported β-mannanases and was a promising thermo-alkaline β-mannanase for potential industrial application. The extracellular BcManA yield of 6041 U ml-1, which was to date the highest reported yield by flask shake, was obtained in B. subtilis with constitutive expression vector. This is the first report for secretory expression of alkaline β-mannanase in B. subtilis protein expression system, which would significantly cut down the production cost of this enzyme. Also this research would be helpful for secretory expression of other β-mannanases in B. subtilis.
Collapse
Affiliation(s)
- Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|