1
|
Boukari I, Rourou S, Bouzazi D, Essafi-Benkhadir K, Kallel H. Strategies for improving expression of recombinant human chorionic gonadotropin in Chinese Hamster Ovary (CHO) cells. Protein Expr Purif 2025; 225:106596. [PMID: 39218246 DOI: 10.1016/j.pep.2024.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Optimizations of the gene expression cassette combined with the selection of an appropriate signal peptide are important factors that must be considered to enhance heterologous protein expression in Chinese Hamster Ovary (CHO) cells. In this study, we investigated the effectiveness of different signal peptides on the production of recombinant human chorionic gonadotropin (r-hCG) in CHO-K1 cells. Four optimized expression constructs containing four promising signal peptides were stably transfected into CHO-K1 cells. The generated CHO-K1 stable pool was then evaluated for r-hCG protein production. Interestingly, human serum albumin and human interleukin-2 signal peptides exhibited relatively greater extracellular secretion of the r-hCG with an average yield of (16.59 ± 0.02 μg/ml) and (14.80 ± 0.13 μg/ml) respectively compared to the native and murine IgGκ light chain signal peptides. The stably transfected CHO pool was further used as the cell substrate to develop an optimized upstream process followed by a downstream phase of the r-hCG. Finally, the biological activity of the purified r-hCG was assessed using in vitro bioassays. The combined data highlight that the choice of signal peptide can be imperative to ensure an optimal secretion of a recombinant protein in CHO cells. In addition, the stable pool technology was a viable approach for the production of biologically active r-hCG at a research scale with acceptable bioprocess performances and consistent product quality.
Collapse
Affiliation(s)
- Iheb Boukari
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, LR16IPT01, Biotechnology Development Group, Institut Pasteur de Tunis, University of Tunis El Manar, 1002, Tunis, Tunisia; Faculty of Sciences of Bizerte, Carthage University, 7021, Bizerte, Tunisia.
| | - Samia Rourou
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, LR16IPT01, Biotechnology Development Group, Institut Pasteur de Tunis, University of Tunis El Manar, 1002, Tunis, Tunisia
| | - Dorsaf Bouzazi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires, Institut Pasteur de Tunis, University of Tunis El Manar, 1002, Tunis, Tunisia
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, 1002, Tunis, Tunisia
| | - Héla Kallel
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, LR16IPT01, Biotechnology Development Group, Institut Pasteur de Tunis, University of Tunis El Manar, 1002, Tunis, Tunisia; Univercells SA, Belgium
| |
Collapse
|
2
|
Pamonsupornwichit T, Sornsuwan K, Juntit OA, Yasamut U, Takheaw N, Kasinrerk W, Wanachantararak P, Kodchakorn K, Nimmanpipug P, Intasai N, Tayapiwatana C. Engineered CD147-Deficient THP-1 Impairs Monocytic Myeloid-Derived Suppressor Cell Differentiation but Maintains Antibody-Dependent Cellular Phagocytosis Function for Jurkat T-ALL Cells with Humanized Anti-CD147 Antibody. Int J Mol Sci 2024; 25:6626. [PMID: 38928332 PMCID: PMC11203531 DOI: 10.3390/ijms25126626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.
Collapse
Affiliation(s)
- Thanathat Pamonsupornwichit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - On-anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Kanchanok Kodchakorn
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nutjeera Intasai
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Majumdar S, Desai R, Hans A, Dandekar P, Jain R. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol 2024:10.1007/s12033-024-01060-6. [PMID: 38363529 DOI: 10.1007/s12033-024-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
Collapse
Affiliation(s)
- Sarmishta Majumdar
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
5
|
Maghsoodi N, Zareinejad M, Golestan A, Mahmoudi Maymand E, Ramezani A. Anti-CD19/CD8 bispecific T cell engager for the potential treatment of B cell malignancies. Cell Immunol 2023; 393-394:104787. [PMID: 37976975 DOI: 10.1016/j.cellimm.2023.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The administration of blinatumomab was accompanied by several adverse effects, including activation of regulatory T-cells and cytokine storm. The objective of this study was to produce and evaluate a novel αCD8/CD19 BiTE (αCD8/CD19) with the potency to directly target CD8+T-cells. In-silico studies were utilized for determining proper folding, receptor binding, and structural stability of αCD8/CD19 protein. Western blotting and indirect surface staining were used to evaluate the size accuracy and binding potency of the purified protein. Functionality was assessed for granzyme B production, cytotoxicity, and proliferation. TheαCD8/CD19recombinant protein was produced in the CHO-K1 cell line with a final concentration of 1.94 mg/l. The αCD8/CD19 bound to CD8+and CD19+cell lines and induced significant granzyme B production, cytotoxic activity and proliferation potential in the presence of IL-2 and tumor target cells. The maximum CD8+T-cell biological activity was observed on the 10th day with 10:1 effector-to-target ratio.
Collapse
Affiliation(s)
- Nafiseh Maghsoodi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadrasul Zareinejad
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Ali Golestan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Elham Mahmoudi Maymand
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
6
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
7
|
Ramezani A, Zareinejad M, Mahmoudi Maymand E, Kaviani E, Ghaderi A. Production of a biosimilar version of aflibercept to improve VEGF blocker cytotoxicity on endothelial cells. Growth Factors 2023:1-12. [PMID: 37377438 DOI: 10.1080/08977194.2023.2227271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/08/2023] [Indexed: 06/29/2023]
Abstract
This project aimed to produce a biosimilar version of aflibercept (AFL) and evaluate the effect of the co-treatment of AFL with other vascular endothelial growth factor (VEGF) blocker drugs. For this purpose, the optimized gene was inserted into the pCHO1.0 plasmid and transfected into the CHO-S cell line. The final concentration of biosimilar-AFL for the selected clone was 782 mg/L. Results revealed that the inhibition potential of the biosimilar-AFL on HUVEC cells was significant at 10 and 100 nM concentrations and in a dose-dependent manner. Furthermore, co-treatment of biosimilar-AFL with Everolimus (EVR), Lenvatinib (LEN), and Sorafenib (SOR) could reduce HUVEC cell viability/proliferation, more than when used alone. When LEN and SOR were co-treated with biosimilar-AFL, their cytotoxicity increased 10-fold. The most and least efficient combination was seen when biosimilar-AFL combined with LEN and EVR, respectively. Finally, biosimilar-AFL may improve the efficiency of LEN, EVR, and SOR in reducing the VEGF effect on endothelial cells.
Collapse
Affiliation(s)
- Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadrasul Zareinejad
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Mahmoudi Maymand
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elina Kaviani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Moeinzadeh L, Ramezani A, Mehdipour F, Yazdanpanah-Samani M, Razmkhah M. Activation of T Lymphocytes with Anti-PDL1-BiTE in the Presence of Adipose-Derived Mesenchymal Stem Cells (ASCs). BIOMED RESEARCH INTERNATIONAL 2023; 2023:7692726. [PMID: 39282109 PMCID: PMC11401667 DOI: 10.1155/2023/7692726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/28/2023] [Indexed: 09/18/2024]
Abstract
Background Due to their ability to recruit immune cells to kill tumor cells directly, bispecific T cell engager antibodies (BiTE) hold great potential in T cell redirecting therapies. BiTE is able to activate T cells through CD3 and target them to tumor-expressed antigens. However, there are many components in the tumor microenvironment (TME) such as mesenchymal stem cells (MSCs) that may interfere with BiTE function. Herein, we designed an anti-PDL1-BiTE that targets programmed death ligand 1 (PDL1) and CD3 and investigated its effect on PDL1pos cancer cells in the presence or absence of adipose-derived MSCs (ASCs). Method Our anti-PDL1-BiTE comprises of VL and VH chains of anti-CD3 monoclonal antibody (mAb) linked to the VL and VH chains of anti-PDL1 mAb, which simultaneously bind to the CD3ε subunit on T cells and PDL1 on tumor cells. Flow cytometry was employed to assess the strength of binding of anti-PDL1-BiTE to tumor cells and T cells. Cytotoxicity, proliferation, and activation of peripheral blood lymphocyte (PBLs) were evaluated by CFSE assay and flow cytometry after using anti-PDL1-BiTE in the presence or absence of ASCs and their conditioned media (C.M.). Results Anti-PDL1-BiTE had the ability to induce selective lysis of PDL1pos U251-MG cancer cells while PDL1neg cells were not affected. Also, anti-PDL1-BiTE significantly stimulated peripheral blood lymphocyte (PBL) proliferation and CD69 expression. ASCs/C.M. did not show a significant effect on the biological activity of anti-PDL1-BiTE. Conclusion Overall, anti-PDL1-BiTE selectively depletes PDL1pos cells and represents a new immunotherapeutic approach. It would increase the accumulation of T cells and can improve the prognosis of PDL1pos cancers in spite of the immunomodulatory effects of ASCs and C.M.
Collapse
Affiliation(s)
- Leila Moeinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Yazdanpanah-Samani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Triggering of lymphocytes by CD28, 4-1BB, and PD-1 checkpoints to enhance the immune response capacities. PLoS One 2022; 17:e0275777. [PMID: 36480493 PMCID: PMC9731445 DOI: 10.1371/journal.pone.0275777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/24/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor infiltrating lymphocytes (TILs) usually become exhausted and dysfunctional owing to chronic contact with tumor cells and overexpression of multiple inhibitor receptors. Activation of TILs by targeting the inhibitory and stimulatory checkpoints has emerged as one of the most promising immunotherapy prospectively. We investigated whether triggering of CD28, 4-1BB, and PD-1 checkpoints simultaneously or alone could enhance the immune response capacity of lymphocytes. In this regard, anti-PD-1, CD80-Fc, and 4-1BBL-Fc proteins were designed and produced in CHO-K1 cells as an expression host. Following confirmation of the Fc fusion proteins' ability to bind to native targets expressed on engineered CHO-K1 cells (CHO-K1/hPD-1, CHO-K1/hCD28, CHO-K1/hCTLA4, and CHO-K1/h4-1BB), the effects of each protein, on its own and in various combinations, were assessed in vitro on T cell proliferation, cytotoxicity, and cytokines secretion using the Mixed lymphocyte reaction (MLR) assay, 7-AAD/CFSE cell-mediated cytotoxicity assay, and a LEGENDplex™ Human Th Cytokine Panel, respectively. MLR results demonstrated that T cell proliferation in the presence of the combinations of anti-PD-1/CD80-Fc, CD80-Fc/4-1BBL-Fc, and anti-PD-1/CD80-Fc/4-1BBL-Fc proteins was significantly higher than in the untreated condition (1.83-, 1.91-, and 2.02-fold respectively). Furthermore, anti-PD-1 (17%), 4-1BBL-Fc (19.2%), anti-PD-1/CD80-Fc (18.6%), anti-PD-1/4-1BBL-Fc (21%), CD80-Fc/4-1BBL-Fc (18.5%), and anti-PD-1/CD80-Fc/4-1BBL-Fc (17.3%) significantly enhanced cytotoxicity activity compared to untreated condition (7.8%). However, concerning the cytokine production, CD80-Fc and 4-1BBL-Fc alone or in combination significantly increased the secretion of IFN-γ, TNF-α, and IL-2 compared with the untreated conditions. In conclusion, this research establishes that the various combinations of produced anti-PD-1, CD80-Fc, and 4-1BBL-Fc proteins can noticeably induce the immune response in vitro. Each of these combinations may be effective in killing or destroying cancer cells depending on the type and stage of cancer.
Collapse
|
10
|
Park JH, Lee HM, Jin EJ, Lee EJ, Kang YJ, Kim S, Yoo SS, Lee GM, Kim YG. Development of an in vitro screening system for synthetic signal peptide in mammalian cell-based protein production. Appl Microbiol Biotechnol 2022; 106:3571-3582. [PMID: 35581431 DOI: 10.1007/s00253-022-11955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Optimizing appropriate signal peptides in mammalian cell-based protein production is crucial given that most recombinant proteins produced in mammalian cells are thought to be secreted proteins. Until now, most studies on signal peptide in mammalian cells have replaced native signal peptides with well-known heterologous signal peptides and bioinformatics-based signal peptides. In the present study, we successfully established an in vitro screening system for synthetic signal peptide in CHO cells by combining a degenerate codon-based oligonucleotides library, a site-specific integration system, and a FACS-based antibody detection assay. Three new signal peptides were screened using this new screening system, confirming to have structural properties as signal peptides by the SignalP web server, a neural network-based algorithm that quantifies the signal peptide-ness of amino acid sequences. The novel signal peptides selected in this study increased Fc-fusion protein production in CHO cells by increasing specific protein productivity, whereas they did not negatively affect cell growth. Particularly, the SP-#149 clone showed the highest qp, 0.73 ± 0.01 pg/cell/day from day 1 to day 4, representing a 1.47-fold increase over the native signal peptide in a serum-free suspension culture mode. In addition, replacing native signal peptide with the novel signal peptides did not significantly affect sialylated N-glycan formation, N-terminal cleavage pattern, and biological function of Fc-fusion protein produced in CHO cells. The overall results indicate the utility of a novel in vitro screening system for synthetic signal peptide for mammalian cell-based protein production. KEY POINTS: • An in vitro screening system for synthetic signal peptide in mammalian cells was established • This system combined a degenerate codon-based library, site-specific integration, and a FACS-based detection assay • The novel signal peptides selected in this study could increase Fc-fusion protein production in mammalian cells.
Collapse
Affiliation(s)
- Jong-Ho Park
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Eun-Ju Jin
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Ju Kang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Sungkyun Kim
- Choong Ang Vaccine Laboratory Co., Ltd. (CAVAC), 1476-37 Yuseong-daero, Yuseong-gu, Daejeon, Korea
| | - Sung-Sick Yoo
- Choong Ang Vaccine Laboratory Co., Ltd. (CAVAC), 1476-37 Yuseong-daero, Yuseong-gu, Daejeon, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
11
|
Zhang JH, Shan LL, Liang F, Du CY, Li JJ. Strategies and Considerations for Improving Recombinant Antibody Production and Quality in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:856049. [PMID: 35316944 PMCID: PMC8934426 DOI: 10.3389/fbioe.2022.856049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Recombinant antibodies are rapidly developing therapeutic agents; approximately 40 novel antibody molecules enter clinical trials each year, most of which are produced from Chinese hamster ovary (CHO) cells. However, one of the major bottlenecks restricting the development of antibody drugs is how to perform high-level expression and production of recombinant antibodies. The high-efficiency expression and quality of recombinant antibodies in CHO cells is determined by multiple factors. This review provides a comprehensive overview of several state-of-the-art approaches, such as optimization of gene sequence of antibody, construction and optimization of high-efficiency expression vector, using antibody expression system, transformation of host cell lines, and glycosylation modification. Finally, the authors discuss the potential of large-scale production of recombinant antibodies and development of culture processes for biopharmaceutical manufacturing in the future.
Collapse
Affiliation(s)
- Jun-He Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Jun-He Zhang,
| | - Lin-Lin Shan
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Chen-Yang Du
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Jing-Jing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
4H12, a Murine Monoclonal Antibody Directed against Myosin Heavy Chain-9 Expressed on Acinar Cell Carcinoma of Pancreas with Potential Therapeutic Application. IRANIAN BIOMEDICAL JOURNAL 2021; 25:310-22. [PMID: 34425650 PMCID: PMC8487684 DOI: 10.52547/ibj.25.5.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: PACC is a rare type of pancreatic exocrine neoplasm that is frequently diagnosed at late stages with a high rate of metastasis. Identification of new biomarkers for PACC can improve our knowledge of its biology, early detection, or targeted therapy. In this study, hybridoma technology was used to generate mAbs against Faraz-ICR, a pancreatic acinar cell carcinoma cell line. Methods: Cell ELISA and flow cytometry were used for screening, and the 4H12 hybridoma clone was selected for further analysis. The 4H12 mAb was specific for MYH9 as determined by Immunoprecipitation, Western blot, and mass spectrometry. Results: This antibody reacted variably with other cancer cells, in comparison to Faraz-ICR cell. Besides, by immunohistochemical staining, the acinar cell tumor, which was the source of Faraz-ICR, showed high MYH9 expression. Among 21 PDAC cases, nine (42.8%) expressed MYH9 with low intensity, while 10 (47.8%) and 2 (9.5%) cases expressed MYH9 with moderate to strong intensities, respectively. The 4H12 mAb inhibited the proliferation of Faraz-ICR cells in a dose-dependent manner from 0.75 to 12.5 μg/ml concentrations (p < 0.0001 and p < 0.002). IC50 values were achieved at 12.09 ± 4.19 µg/ml and 7.74 ± 4.28 µg/ml after 24- and 48-h treatment, respectively. Conclusion: Our data suggest that the 4H12 mAb can serve as a tool for investigating the role of MYH9 pancreatic cancer biology and prognosis.
Collapse
|
13
|
Ramezani A, Asgari A, Kaviani E, Hosseini A, Ghaderi A. Tatibody, a recombinant antibody with higher internalization potency. Mol Immunol 2021; 135:320-328. [PMID: 33971510 DOI: 10.1016/j.molimm.2021.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Using antibody drug conjugates (ADC) which can exclusively bind to their target cells and upon internalization release their toxic agent, is one of the most effective methods for killing tumor cells. Therefore, increasing the internalization rate is an important factor for tumor treatment in this case. The aim of the present study was to develop a new variant of pertuzumab (an anti-ErbB2 humanized antibody) with higher internalization rate that can be a good candidate for the production of ADC. To this end, the Human Immunodeficiency Virus TAT Protein Transduction Domain (TAT-PTD) was replaced into the structure of the pertuzumab. At first, the best site in antibody heavy chain constant region for the replacement of TAT-PTD was predicted through computational methods. Then, the resulting recombinant antibody, of which TAT-PTD was located at amino acid position 130-140 and named Tatibody, was produced in CHO-S cell line. Finally, its physicochemical properties and biological activities were evaluated and compared with pertuzumab. Results showed that the binding ability of Tatibody to the ErbB2 receptor is similar to that of pertuzumab, but its internalization potency is 3.6 fold higher and can be used as a good candidate for ADC construction.
Collapse
Affiliation(s)
- Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Elina Kaviani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Ling WL, Su CTT, Lua WH, Poh JJ, Ng YL, Wipat A, Gan SKE. Essentially Leading Antibody Production: An Investigation of Amino Acids, Myeloma, and Natural V-Region Signal Peptides in Producing Pertuzumab and Trastuzumab Variants. Front Immunol 2020; 11:604318. [PMID: 33365032 PMCID: PMC7750424 DOI: 10.3389/fimmu.2020.604318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
Boosting the production of recombinant therapeutic antibodies is crucial in both academic and industry settings. In this work, we investigated the usage of varying signal peptides by antibody V-genes and their roles in recombinant transient production, systematically comparing myeloma and the native signal peptides of both heavy and light chains in 168 antibody permutation variants. We found that amino acids count and types (essential or non-essential) were important factors in a logistic regression equation model for predicting transient co-transfection protein production rates. Deeper analysis revealed that the culture media were often incomplete and that the supplementation of essential amino acids can improve the recombinant protein yield. While these findings are derived from transient HEK293 expression, they also provide insights to the usage of the large repertoire of antibody signal peptides, where by varying the number of specific amino acids in the signal peptides attached to the variable regions, bottlenecks in amino acid availability can be mitigated.
Collapse
Affiliation(s)
- Wei-Li Ling
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Newcastle Research and Innovation Institute (NewRIIS), Singapore, Singapore
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wai-Heng Lua
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuen-Ling Ng
- Newcastle Research and Innovation Institute (NewRIIS), Singapore, Singapore
| | - Anil Wipat
- School of Computing, Newcastle University, Singapore, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
15
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
16
|
In vitro cytotoxic effect of Trastuzumab in combination with Pertuzumab in breast cancer cells is improved by interleukin-2 activated NK cells. Mol Biol Rep 2019; 46:6205-6213. [PMID: 31493284 DOI: 10.1007/s11033-019-05059-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Targeting erb-b2 receptor tyrosine kinase 2 (ERBB2) using the combination of Trastuzumab and Pertuzumab has demonstrated promising results in breast cancer therapy. It has further been revealed that interleukin-2 (IL-2) can activate Natural Killer cells (NK cells) and elevate their cytotoxic potency against tumor cells. In this study, we explored the cytotoxic effect of recombinant human IL-2 in combination with Trastuzumab and Pertuzumab on the ERBB2 positive (SK-BR-3) and negative (MDA-MB-231) breast cancer cell lines. The cytotoxicity level of IL-2 activated NK cells (approximately 75%) were significantly higher than untreated cells (approximately 55%) in the presence of Trastuzumab and Pertuzumab against SK-BR-3 cells, while no difference was observed in the case of MDA-MB-231 cells (about 15%).
Collapse
|
17
|
Ramezani A, Ghaderi A. Using a Dihydrofolate Reductase-Based Strategy for Producing the Biosimilar Version of Pertuzumab in CHO-S Cells. Monoclon Antib Immunodiagn Immunother 2018; 37:26-37. [DOI: 10.1089/mab.2017.0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|