1
|
Yang Z, Wang X, Luo S, Li H, Xu J, Liang L, He Z, Wang G, Wu Z, Zhong N, Xiang H, Zhang Z, Guo C, Zhang Y, Yan F. Efficient production of recombinant human FVII in CHO cells using the piggyBac transposon system. Protein Expr Purif 2025; 229:106666. [PMID: 39848303 DOI: 10.1016/j.pep.2025.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/25/2025]
Abstract
As an important coagulation factor, activated coagulation factor VII (FVIIa) is mainly used to treat the bleeding of hemophilia patients who have developed inhibitory antibodies against FVIII and FIX conventional treatment. Recombinant human factor VII (rhFVII) produced in mammalian cell lines have been developed as the most important resource of FVIIa. However, cell lines express rhFVII protein derived from an exogenous expression vector at a lower level than most other proteins. In the current study, we have shown efficient rhFVII production in CHO cell lines using piggyBac (PB) transposon system. rhFVII is successfully expressed in fed-batch culture of CHO cells, and the expression of rhFVII up to 100 mg/L. Moreover, the purified secreted rhFVII was determined by SDS-PAGE and Western Blot. The coagulation activity was determined by the chromogenic Activity ELISA kit. In conclusion, this study has demonstrated that the piggyBac transposon system can be used for an efficient production of recombinant FVII.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Xueyun Wang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Shan Luo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Hui Li
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Jiangbo Xu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Linlin Liang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Zhimin He
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Guangyuan Wang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Zhuobin Wu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Nan Zhong
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Haijun Xiang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Zhan Zhang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China
| | - Caiping Guo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China.
| | - Yunjia Zhang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen, 518107, PR China.
| | - Fei Yan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, PR China.
| |
Collapse
|
2
|
Feser CJ, Williams JM, Lammers DT, Bingham JR, Eckert MJ, Tolar J, Osborn MJ. Engineering Human Cells Expressing CRISPR/Cas9-Synergistic Activation Mediators for Recombinant Protein Production. Int J Mol Sci 2023; 24:8468. [PMID: 37239814 PMCID: PMC10218281 DOI: 10.3390/ijms24108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant engineering for protein production commonly employs plasmid-based gene templates for introduction and expression of genes in a candidate cell system in vitro. Challenges to this approach include identifying cell types that can facilitate proper post-translational modifications and difficulty expressing large multimeric proteins. We hypothesized that integration of the CRISPR/Cas9-synergistic activator mediator (SAM) system into the human genome would be a powerful tool capable of robust gene expression and protein production. SAMs are comprised of a "dead" Cas9 (dCas9) linked to transcriptional activators viral particle 64 (VP64), nuclear factor-kappa-B p65 subunit (p65), and heat shock factor 1 (HSF1) and are programmable to single or multiple gene targets. We integrated the components of the SAM system into human HEK293, HKB11, SK-HEP1, and HEP-g2 cells using coagulation factor X (FX) and fibrinogen (FBN) as proof of concept. We observed upregulation of mRNA in each cell type with concomitant protein expression. Our findings demonstrate the capability of human cells stably expressing SAM for user-defined singleplex and multiplex gene targeting and highlight their broad potential utility for recombinant engineering as well as transcriptional modulation across networks for basic, translational, and clinical modeling and applications.
Collapse
Affiliation(s)
- Colby J. Feser
- Department of Pediatrics, Division of Blood and Marrow Transplantation, MMC 366 Mayo, 8366A, 420 Delaware Street SE, Minneapolis, MN 55455, USA; (C.J.F.); (J.T.)
| | - James M. Williams
- Department of General Surgery, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA; (J.M.W.); (D.T.L.); (J.R.B.); (M.J.E.)
| | - Daniel T. Lammers
- Department of General Surgery, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA; (J.M.W.); (D.T.L.); (J.R.B.); (M.J.E.)
| | - Jason R. Bingham
- Department of General Surgery, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA; (J.M.W.); (D.T.L.); (J.R.B.); (M.J.E.)
| | - Matthew J. Eckert
- Department of General Surgery, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA; (J.M.W.); (D.T.L.); (J.R.B.); (M.J.E.)
- Department of Surgery, University of North Carolina, 160 Dental Circle, Chapel Hill, NC 27599, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, MMC 366 Mayo, 8366A, 420 Delaware Street SE, Minneapolis, MN 55455, USA; (C.J.F.); (J.T.)
| | - Mark J. Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, MMC 366 Mayo, 8366A, 420 Delaware Street SE, Minneapolis, MN 55455, USA; (C.J.F.); (J.T.)
| |
Collapse
|
3
|
Sloan AR, Lee-Poturalski C, Hoffman HC, Harris PL, Elder TE, Richardson B, Kerstetter-Fogle A, Cioffi G, Schroer J, Desai A, Cameron M, Barnholtz-Sloan J, Rich J, Jankowsky E, Sen Gupta A, Sloan AE. Glioma stem cells activate platelets by plasma-independent thrombin production to promote glioblastoma tumorigenesis. Neurooncol Adv 2022; 4:vdac172. [PMID: 36452274 PMCID: PMC9700385 DOI: 10.1093/noajnl/vdac172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The interaction between platelets and cancer cells has been underexplored in solid tumor models that do not metastasize, for example, glioblastoma (GBM) where metastasis is rare. Histologically, it is known that glioma stem cells (GSCs) are found in perivascular and pseudsopalisading regions of GBM, which are also areas of platelet localization. High platelet counts have been associated with poor clinical outcomes in many cancers. While platelets are known to promote the progression of other tumors, mechanisms by which platelets influence GBM oncogenesis are unknown. Here, we aimed to understand how the bidirectional interaction between platelets and GSCs drives GBM oncogenesis. Methods Male and female NSG mice were transplanted with GSC lines and treated with antiplatelet and anti-thrombin inhibitors. Immunofluorescence, qPCR, and Western blots were used to determine expression of coagulation mechanism in GBM tissue and subsequent GSC lines. Results We show that GSCs activate platelets by endogenous production of all the factors of the intrinsic and extrinsic coagulation cascades in a plasma-independent manner. Therefore, GSCs produce thrombin resulting in platelet activation. We further demonstrate that the endogenous coagulation cascades of these cancer stem cells are tumorigenic: they activate platelets to promote stemness and proliferation in vitro and pharmacological inhibition delays tumor growth in vivo. Conclusions Our findings uncover a specific preferential relationship between platelets and GSCs that drive GBM malignancies and identify a therapeutically targetable novel interaction.
Collapse
Affiliation(s)
- Anthony R Sloan
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christine Lee-Poturalski
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harry C Hoffman
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peggy L Harris
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Theresa E Elder
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Brian Richardson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amber Kerstetter-Fogle
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Julia Schroer
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Ansh Desai
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Cameron
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jill Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland, USA
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeremy Rich
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eckhard Jankowsky
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anirban Sen Gupta
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland, Ohio, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Piedmont Health, Atlanta Georgia, USA
| |
Collapse
|
4
|
Sousa Bomfim A, Corrêa de Freitas MC, Picanço Castro V, Abreu Soares Neto M, Pádua R, Covas DT, Sousa Russo EM. Generation of hyperfunctional recombinant human factor IX variants expressed in human cell line SK-Hep-1. Biotechnol Lett 2020; 43:143-152. [PMID: 33130980 DOI: 10.1007/s10529-020-03040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To develop recombinant factor IX (FIX) variants with augmented clotting activity. RESULTS We generated three new variants, FIX-YKALW, FIX-ALL and FIX-LLW, expressed in SK-Hep-1 cells and characterized in vitro and in vivo. FIX-YKALW showed the highest antigen expression level among the variants (2.17 µg-mL), followed by FIX-LLW (1.5 µg-mL) and FIX-ALL (0.9 µg-mL). The expression level of FIX variants was two-five fold lower than FIX-wild-type (FIX-WT) (4.37 µg-mL). However, the biological activities of FIX variants were 15-31 times greater than FIX-WT in the chromogenic assay. Moreover, the new variants FIX-YKALW, FIX-LLW and FIX-ALL also presented higher specific activity than FIX-WT (17, 20 and 29-fold higher, respectively). FIX variants demonstrated a better clotting time than FIX-WT. In hemophilia B mice, we observed that FIX-YKALW promoted hemostatic protection. CONCLUSION We have developed three improved FIX proteins with potential for use in protein replacement therapy for hemophilia B.
Collapse
Affiliation(s)
- Aline Sousa Bomfim
- Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil. .,Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil. .,Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue, Block R, Room 7, Ribeirão Preto, SP, ZIP 14040-903, Brazil.
| | | | - Virgínia Picanço Castro
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| | - Mario Abreu Soares Neto
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| | - Ricardo Pádua
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil.,Department of Medical Clinic, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Elisa Maria Sousa Russo
- Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Pongjantarasatian S, Kadegasem P, Sasanakul W, Sa-ngiamsuntorn K, Borwornpinyo S, Sirachainan N, Chuansumrit A, Tanratana P, Hongeng S. Coagulant activity of recombinant human factor VII produced by lentiviral human F7 gene transfer in immortalized hepatocyte-like cell line. PLoS One 2019; 14:e0220825. [PMID: 31381603 PMCID: PMC6681952 DOI: 10.1371/journal.pone.0220825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have the potential to differentiate into hepatocyte-like cells, indicating that these cells may be the new target cell of interest to produce biopharmaceuticals. Our group recently established a hMSC-derived immortalized hepatocyte-like cell line (imHC) that demonstrates several liver-specific phenotypes. However, the ability of imHC to produce coagulation factors has not been characterized. Here, we examined the potential for imHC as a source of coagulation protein production by investigating the ability of imHC to produce human factor VII (FVII) using a lentiviral transduction system. Our results showed that imHC secreted a low amount of FVII (~22 ng/mL) into culture supernatant. Moreover, FVII from the transduced imHC (0.11 ± 0.005 IU/mL) demonstrated a similar coagulant activity compared with FVII from transduced HEK293T cells (0.12 ± 0.004 IU/mL) as determined by chromogenic assay. We demonstrate for the first time, to the best of our knowledge, that imHC produced FVII, albeit at a low level, indicating the unique characteristic of hepatocytes. Our study suggests the possibility of using imHC for the production of coagulation proteins.
Collapse
Affiliation(s)
| | - Praguywan Kadegasem
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Werasak Sasanakul
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pansakorn Tanratana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Suradej Hongeng
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Rekena A, Didrihsone E, Vegere K. The role of magnetic field in the biopharmaceutical production: Current perspectives. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 22:e00334. [PMID: 31011551 PMCID: PMC6460295 DOI: 10.1016/j.btre.2019.e00334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 01/02/2023]
Abstract
Current scientific evidence on the influence of magnetic field on mammalian cell lines used for industrial production of biopharmaceuticals, on human cell lines and on potential cell lines for the biopharmaceutical production is presented in this review. A novel magnetic coupling induced agitation could be the best solution to eliminate sources of contamination in stirred tank bioreactors which is especially important for mammalian cell cultures. Nevertheless, the side effect of magnetically-coupled stirring mechanism is that cells are exposed to the generated magnetic field. The influence of magnetic field on biological systems has been investigated for several decades. The research continues nowadays as well, investigating the influence of various types of magnetic field in a variety of experimental setups. In the context of bioreactors, only the lower frequencies and intensities of the magnetic field are relevant.
Collapse
Affiliation(s)
- Alina Rekena
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV1007, Latvia
| | - Elina Didrihsone
- Bioengineering Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes 27, Riga, LV1006, Latvia
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, Riga, LV-1048, Latvia
| | - Kristine Vegere
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV1007, Latvia
- Water Research Laboratory, Faculty of Civil Engineering, Riga Technical University, Paula Valdena 1-205, Riga, LV1048, Latvia
| |
Collapse
|