1
|
Wang Q, Deng K, Ai J, Wang Y, Wang Y, Ren Y, Zhang N. Integrated Transcriptomic and Metabolomic Analyses Reveal the Effects of Grafting on Special Metabolites of Acanthopanax senticosus Leaves. Molecules 2023; 28:4877. [PMID: 37375432 DOI: 10.3390/molecules28124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Acanthopanax senticosus (A. senticosus) is a member of Acanthopanax Miq. and is used in traditional Chinese medicine, and it has been found that grafting technology can be used to alter plant metabolite composition and transcriptome characteristics. In this study, shoots of A. senticosus were grafted onto the rootstocks of the vigorous Acanthopanax sessiliflorus (A. sessiliflorus) to improve its varietal characteristics. In order to investigate the changes in metabolites and transcriptional patterns in grafted A. senticosus leaves (GSCL), fresh leaves were collected from 2-year-old grafted A. senticosus scions, while self-rooted seedling A. senticosus leaves (SCL) were used as controls to analyse the transcriptome and metabolome. Metabolic profiles and gene expression patterns were further identified and correlated in special metabolite target pathways. The content of chlorogenic acid and triterpenoids in the GSCL was higher than in the control, while the quercetin content was lower. All these metabolic changes were associated with changes in the expression pattern of transcripts. Our results revealed the transcriptome and metabolome characteristics of GSCL. This may help to improve leaf quality in A. senticosus cultivation, suggesting that it is feasible to improve the medicinal quality of GSCL through asexual propagation, but the long-term effects need further investigation. In conclusion, this dataset provides a useful resource for future studies on the effects of grafting on medicinal plants.
Collapse
Affiliation(s)
- Qi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| | - Kedan Deng
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jun Ai
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Yingping Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| | - Yougui Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| | - Yueying Ren
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| | - Nanqi Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| |
Collapse
|
2
|
Zhang Y, Yang L, Yang J, Hu H, Wei G, Cui J, Xu J. Transcriptome and Metabolome Analyses Reveal Differences in Terpenoid and Flavonoid Biosynthesis in Cryptomeria fortunei Needles Across Different Seasons. FRONTIERS IN PLANT SCIENCE 2022; 13:862746. [PMID: 35937363 PMCID: PMC9355645 DOI: 10.3389/fpls.2022.862746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Cryptomeria fortunei (Chinese cedar) has outstanding medicinal value due to its abundant flavonoid and terpenoid contents. The metabolite contents of C. fortunei needles differ across different seasons. However, the biosynthetic mechanism of these differentially synthesized metabolites (DSMs) is poorly understood. To improve our understanding of this process, we performed integrated non-targeted metabolomic liquid chromatography and gas chromatography mass spectrometry (LC-MS and GC-MS), and transcriptomic analyses of summer and winter needles. In winter, the C. fortunei needle ultrastructure was damaged, and the chlorophyll content and F v/F m were significantly (p < 0.05) reduced. Based on GC-MS and LC-MS, we obtained 106 and 413 DSMs, respectively; based on transcriptome analysis, we obtained a total of 41.17 Gb of clean data and assembled 33,063 unigenes, including 14,057 differentially expressed unigenes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DSMs/DEGs were significantly (p < 0.05) enriched in many biosynthesis pathways, such as terpenoids, photosynthates, and flavonoids. Integrated transcriptomic and metabonomic analyses showed that seasonal changes have the greatest impact on photosynthesis pathways, followed by terpenoid and flavonoid biosynthesis pathways. In summer Chinese cedar (SCC) needles, DXS, DXR, and ispH in the 2-methyl-pentaerythritol 4-phosphate (MEP) pathway and GGPS were highly expressed and promoted the accumulation of terpenoids, especially diterpenoids. In winter Chinese cedar (WCC) needles, 9 genes (HCT, CHS, CHI, F3H, F3'H, F3'5'H, FLS, DFR, and LAR) involved in flavonoid biosynthesis were highly expressed and promoted flavonoid accumulation. This study broadens our understanding of the metabolic and transcriptomic changes in C. fortunei needles caused by seasonal changes and provides a reference regarding the adaptive mechanisms of C. fortunei and the extraction of its metabolites.
Collapse
|
3
|
Yan W, Cao S, Wu Y, Ye Z, Zhang C, Yao G, Yu J, Yang D, Zhang J. Integrated Analysis of Physiological, mRNA Sequencing, and miRNA Sequencing Data Reveals a Specific Mechanism for the Response to Continuous Cropping Obstacles in Pogostemon cablin Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:853110. [PMID: 35432413 PMCID: PMC9010791 DOI: 10.3389/fpls.2022.853110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 06/02/2023]
Abstract
Pogostemon cablin (patchouli) is a commercially important medicinal and industrial crop grown worldwide for its medicinal and aromatic properties. Patchoulol and pogostone, derived from the essential oil of patchouli, are considered valuable components in the cosmetic and pharmaceutical industries. Due to its high application value in the clinic and industry, the demand for patchouli is constantly growing. Unfortunately, patchouli cultivation has suffered due to severe continuous cropping obstacles, resulting in a significant decline in yield and quality. Moreover, the physiological and transcriptional changes in patchouli in response to continuous cropping obstacles remain unclear. This has greatly restricted the development of the patchouli industry. To explore the mechanism underlying the rapid response of patchouli roots to continuous cropping stress, integrated analysis of the transcriptome and miRNA profiles of patchouli roots under continuous and noncontinuous cropping conditions in different growth periods was conducted using RNA sequencing (RNA-seq) and miRNA-seq and complemented with physiological data. The physiological and biochemical results showed that continuous cropping significantly inhibited root growth, decreased root activity, and increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the levels of osmoregulators (malondialdehyde, soluble protein, soluble sugar, and proline). Subsequently, we found 4,238, 3,494, and 7,290 upregulated and 4,176, 3,202, and 8,599 downregulated differentially expressed genes (DEGs) in the three growth periods of continuously cropped patchouli, many of which were associated with primary carbon and nitrogen metabolism, defense responses, secondary metabolite biosynthesis, and transcription factors. Based on miRNA-seq, 927 known miRNAs and 130 novel miRNAs were identified, among which 67 differentially expressed miRNAs (DEMIs) belonging to 24 miRNA families were induced or repressed by continuous cropping. By combining transcriptome and miRNA profiling, we obtained 47 miRNA-target gene pairs, consisting of 18 DEMIs and 43 DEGs, that likely play important roles in the continuous cropping response of patchouli. The information provided in this study will contribute to clarifying the intricate mechanism underlying the patchouli response to continuous cropping obstacles. In addition, the candidate miRNAs and genes can provide a new strategy for breeding continuous cropping-tolerant patchouli.
Collapse
|
4
|
Yan W, Ye Z, Cao S, Yao G, Yu J, Yang D, Chen P, Zhang J, Wu Y. Transcriptome analysis of two Pogostemon cablin chemotypes reveals genes related to patchouli alcohol biosynthesis. PeerJ 2021; 9:e12025. [PMID: 34527441 PMCID: PMC8403477 DOI: 10.7717/peerj.12025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/25/2023] Open
Abstract
Pogostemon cablin, a medicinally and economically important perennial herb, is cultivated around the world due to its medicinal and aromatic properties. Different P. cablin cultivars exhibit different morphological traits and patchouli oil components and contents (especially patchouli alcohol (PA) and pogostone (PO)). According to the signature constituent of the leaf, P. cablin was classified into two different chemotypes, including PA-type and PO-type. To better understand the molecular mechanisms of PA biosynthesis, the transcriptomes of Chinese-cultivated P. cablin cv. PA-type “Nanxiang” (NX) and PO-type “Paixiang” (PX) were analyzed and compared with ribonucleic acid sequencing (RNA-Seq) technology. We obtained a total of 36.83 G clean bases from the two chemotypes, compared them with seven databases and revealed 45,394 annotated unigenes. Thirty-six candidate unigenes participating in the biosynthesis of PA were found in the P. cablin transcriptomes. Overall, 8,390 differentially expressed unigenes were identified between the chemotypes, including 2,467 upregulated and 5,923 downregulated unigenes. Furthermore, six and nine differentially expressed genes (DEGs) were mapped to the terpenoid backbone biosynthetic and sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. One key sesquiterpene synthase gene involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, encoding patchoulol synthase variant 1, was significantly upregulated in NX. Additionally, GC-MS analysis of the two chemotypes in this study showed that the content of PA in NX was significantly higher than that of PX, while the content of PO showed the opposite phenotype. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the DEG expression tendency was consistent with the transcriptome sequencing results. Overall, 23 AP2/ERF, 13 bHLH, 11 MYB, 11 NAC, three Trihelix, 10 WRKY and three bZIP genes that were differentially expressed may act as regulators of terpenoid biosynthesis. Altogether, 8,314 SSRs were recognized within 6,825 unigenes, with a distribution frequency of 18.32%, among which 1,202 unigenes contained more than one SSR. The transcriptomic characteristics of the two P. cablin chemotypes are comprehensively reported in this study, and these results will contribute to a better understanding of the molecular mechanism of PA biosynthesis. Our transcriptome data also provide a valuable genetic resource for further studies on P. cablin.
Collapse
Affiliation(s)
- Wuping Yan
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Zhouchen Ye
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Shijia Cao
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Ping Chen
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| |
Collapse
|
5
|
Srinath M, Bindu BBV, Shailaja A, Giri CC. Isolation, characterization and in silico analysis of 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) gene from Andrographis paniculata (Burm. f) Nees. Mol Biol Rep 2019; 47:639-654. [PMID: 31781917 DOI: 10.1007/s11033-019-05172-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
3-Hydroxy-3-methylglutaryl-coenzymeA reductase (HMGR), the first rate-limiting enzyme of Mevalonate (MVA) pathway was isolated from Andrographis paniculata (ApHMGR) and expressed in bacterial cells. Full length ApHMGR (1937 bp) was submitted to NCBI with accession number MG271748.1. The open reading frame (ORF) was flanked by a 31-bp 5'-UTR, 118-bp 3'-UTR and ApHMGR contained a 1787 bp ORF encoding protein of 595 amino acids. ApHMGR protein was approximately 64 kDa, with isoelectric point of 5.75. Isolated ApHMGR was cloned into pET102 vector and expressed in E. coli BL21 (DE 3) cells, and characterized by SDS-PAGE. HPLC analysis for andrographolide content in leaf, stem and root of A. paniculata revealed highest in leaf tissue. The expression patterns of ApHMGR in different plant tissues using qRT-PCR revealed high in root tissue correlating with HPLC data. Three dimensional (3D) structural model of ApHMGR displayed 90% of the amino acids in most favored regions of the Ramachandran plot with 93% overall quality factor. ApHMGR was highly conserved with plant specific N-terminal membrane domains and C-terminal catalytic regions. Phylogenetic analysis showed A. paniculata sharing common ancestor with Handroanthus impetiginosus. 3D model of ApHMGR was screened for the interaction with substrates NADPH, HMG CoA and inhibitor using Auto Dock Vina. In silico analysis revealed that full length ApHMGR had extensive similarities to other plant HMGRs. The present communication reports the isolation of full length HMGR from A. paniculata, its heterologous expression in bacterial cells and in silico structural and functional characterization providing valuable genomic information for future molecular interventions.
Collapse
Affiliation(s)
- Mote Srinath
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | | | - Ayeti Shailaja
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | - Charu Chandra Giri
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|