1
|
Ghosh AK, Chen Y, Gadi RK, Sonawane A, Gamage SP, Tesmer JG. Design, synthesis, and X-ray structural studies of a series of highly potent, selective, and drug-like G protein-coupled receptor kinase 5 inhibitors. Eur J Med Chem 2025; 282:117024. [PMID: 39549325 DOI: 10.1016/j.ejmech.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
G protein-coupled receptor kinase 5 (GRK5) has emerged as a potential drug development target against heart failure and cancer. A close homolog, GRK6 represents a therapeutic target for multiple myeloma. We have rationally designed a series of highly selective, potent, noncovalent, and drug-like GRK5 inhibitors. Several inhibitors exhibited low nanomolar GRK5 inhibition and high selectivity over GRK2, and, surprisingly, some were selective for GRK6. We determined high-resolution X-ray crystal structures of several inhibitors in complex with GRK5, which provide molecular insights into the ligand-binding site interactions responsible for GRK5 selectivity and potency.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Yueyi Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ranjith Kumar Gadi
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Amol Sonawane
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sandali Piladuwa Gamage
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - JohnJ G Tesmer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Chen Y, Sonawane A, Manda R, Gadi RK, Tesmer JJG, Ghosh AK. Development of a new class of potent and highly selective G protein-coupled receptor kinase 5 inhibitors and structural insight from crystal structures of inhibitor complexes. Eur J Med Chem 2024; 264:115931. [PMID: 38016297 PMCID: PMC10841647 DOI: 10.1016/j.ejmech.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
G protein-coupled receptor kinase 5 (GRK5) is an important drug development target for heart failure, cardiac hypertrophy, and cancer. We have designed and developed a new class of highly selective, potent, and non-covalent GRK5 inhibitors. One of the inhibitors displayed GRK5 IC50 value of 10 nM and exhibited >100,000-fold selectivity over GRK2. The X-ray structure of a ketoamide-derived inhibitor-bound GRK5 showed the formation of a hemithioketal intermediate with active site Cys474 in the GRK5 active site and provided new insights into the ligand-binding site interactions responsible for high selectivity. The current studies serve as an important guide to therapeutic GRK5 inhibitor drug development.
Collapse
Affiliation(s)
- Yueyi Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Amol Sonawane
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajesh Manda
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjith Kumar Gadi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. Mol Pharmacol 2023; 104:174-186. [PMID: 37474305 PMCID: PMC11033958 DOI: 10.1124/molpharm.123.000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Qiuyan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - John J G Tesmer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| |
Collapse
|
4
|
Chen Q, Schafer CT, Mukherjee S, Gustavsson M, Agrawal P, Yao XQ, Kossiakoff AA, Handel TM, Tesmer JJG. ACKR3-arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549504. [PMID: 37502840 PMCID: PMC10370059 DOI: 10.1101/2023.07.18.549504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| | - Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| |
Collapse
|
5
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 'Senses' CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530029. [PMID: 36865154 PMCID: PMC9980177 DOI: 10.1101/2023.02.25.530029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging action mediates the availability of the chemokine CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we mapped the phosphorylation patterns and determined that GRK5 phosphorylation of ACKR3 dominates β-arrestin recruitment and chemokine scavenging over GRK2. Co-activation of CXCR4 significantly enhanced phosphorylation by GRK2 through the liberation of Gβγ. These results suggest that ACKR3 'senses' CXCR4 activation through a GRK2-dependent crosstalk mechanism. Surprisingly, we also found that despite the requirement for phosphorylation, and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet to be determined function for these adapter proteins.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Present address: Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| |
Collapse
|
6
|
Olson TL, Zhang S, Labban D, Kaschner E, Aceves M, Iyer S, Meza-Aguilar JD, Zook JD, Chun E, Craciunescu FM, Liu W, Shi CX, Stewart AK, Hansen DT, Meurice N, Fromme P. Protein expression and purification of G-protein coupled receptor kinase 6 (GRK6), toward structure-based drug design and discovery for multiple myeloma. Protein Expr Purif 2021; 185:105890. [PMID: 33971243 DOI: 10.1016/j.pep.2021.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Human G-protein coupled receptor kinase 6 (GRK6) belongs to the GRK4 kinase subfamily of the G protein-coupled receptor kinase family which comprises of GRK1, GRK2, and GRK4. These kinases phosphorylate ligand-activated G-protein coupled receptors (GPCRs), driving heterotrimeric G protein coupling, desensitization of GPCR, and β-arrestin recruitment. This reaction series mediates cellular signal pathways for cell survival, proliferation, migration and chemotaxis. GRK6 is a kinase target in multiple myeloma since it is highly expressed in myeloma cells compared to epithelial cells and has a significant role in mediating the chemotactic responses of T and B-lymphocytes. To support structure-based drug design, we describe three human GRK6 constructs, GRK6, GRK6His/EK, and GRK6His/TEV, designed for protein expression in Spodoptera frugiperda Sf9 insect cells. The first construct did not contain any purification tag whereas the other two constructs contained the His10 affinity tag, which increased purification yields. We report here that all three constructs of GRK6 were overexpressed in Sf9 insect cells and purified to homogeneity at levels that were suitable for co-crystallization of GRK6 with potential inhibitors. The yields of purified GRK6, GRK6His/EK, and GRK6His/TEV were 0.3 mg, 0.8 mg and 0.7 mg per liter of cell culture, respectively. In addition, we have shown that GRK6His/TEV with the His10 tag removed was highly homogeneous and monodisperse as observed by dynamic light scattering measurement and actively folded as exhibited by circular dichroism spectroscopy. The described methods will support the structure-based development of additional therapeutics against multiple myeloma.
Collapse
Affiliation(s)
- Tien L Olson
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shangji Zhang
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Dillon Labban
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Emily Kaschner
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Manuel Aceves
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Srivatsan Iyer
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jose Domingo Meza-Aguilar
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - James D Zook
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Eugene Chun
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Felicia M Craciunescu
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Wei Liu
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chang-Xin Shi
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85289, USA; Precision Cancer Therapeutics, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85289, USA
| | - A Keith Stewart
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85289, USA; Precision Cancer Therapeutics, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85289, USA
| | - Debra T Hansen
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; Center for Innovations in Medicine, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Nathalie Meurice
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85289, USA; Precision Cancer Therapeutics, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85289, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|