1
|
Sun G, Song X, Zou Y, Teng T, Jiang L, Shi B. Dietary Glucose Ameliorates Impaired Intestinal Development and Immune Homeostasis Disorders Induced by Chronic Cold Stress in Pig Model. Int J Mol Sci 2022; 23:ijms23147730. [PMID: 35887078 PMCID: PMC9317271 DOI: 10.3390/ijms23147730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
Endotherms are easily challenged by chronic cold stress. In this study, the development and injury of the small intestine in the Min pig model and Yorkshire pig model under chronic cold stress, and the molecular mechanisms by which glucose supplementation reduces small intestinal mucosal damage were investigated. The results showed that morphological structure lesions of the jejunal mucosa and ileal mucosa were visible in Yorkshire pigs under chronic cold stress. Meanwhile, the Occludin mRNA and protein expression in jejunal mucosa of Yorkshire pigs was decreased. Chronic cold stress enhanced the expression of Toll-like receptor 4 (TLR4), the myeloid differentiation main response 88 (MyD88), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), cleaved caspase-1, mature-IL-1β, and high-mobility group box 1 (HMGB 1) mRNA and protein expression in jejunal mucosa of Yorkshire pigs, whereas the mRNA and protein of Bax was triggered in ileal mucosa. In Min pigs, no such deleterious consequences were observed. Dietary glucose supplementation ameliorates small intestinal mucosal injury, declined TLR4 and MyD88 expression in jejunal mucosa. In conclusion, chronic cold stress induced the small intestinal mucosa damage in Yorkshire pigs, whereas glucose supplementation mitigated the deleterious effects of chronic cold stress on the small intestine.
Collapse
|
2
|
Osterlund EJ, Hirmiz N, Pemberton JM, Nougarède A, Liu Q, Leber B, Fang Q, Andrews DW. Efficacy and specificity of inhibitors of BCL-2 family protein interactions assessed by affinity measurements in live cells. SCIENCE ADVANCES 2022; 8:eabm7375. [PMID: 35442739 PMCID: PMC9020777 DOI: 10.1126/sciadv.abm7375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Cytoplasmic and membrane-bound BCL-2 family proteins regulate apoptosis, a form of programmed cell death, via dozens of binary protein interactions confounding measurement of the effects of inhibitors in live cells. In cancer, apoptosis is frequently dysregulated, and cell survival depends on antiapoptotic proteins binding to and inhibiting proapoptotic BH3 proteins. The clinical success of BH3 mimetic inhibitors of antiapoptotic proteins has spawned major efforts by the pharmaceutical industry to develop molecules with different specificities and higher affinities. Here, quantitative fast fluorescence lifetime imaging microscopy enabled comparison of BH3 mimetic drugs in trials and preclinical development by measuring drug effects on binding affinities of interacting protein pairs in live cells. Both selectivity and efficacy were assessed for 15 inhibitors of four antiapoptotic proteins for each of six BH3 protein ligands. While many drugs target the designed interaction, most also have unexpected selectivity and poor efficacy in cells.
Collapse
Affiliation(s)
- Elizabeth J. Osterlund
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Nehad Hirmiz
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - James M. Pemberton
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Adrien Nougarède
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Qian Liu
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - David W. Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| |
Collapse
|
3
|
Zhang J, Xu Q, Pei W, Cai L, Yu X, Jiang H, Chen J. Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. Int J Biol Macromol 2021; 193:2103-2112. [PMID: 34793815 DOI: 10.1016/j.ijbiomac.2021.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
The construction of enzyme mimics using protein protection layers possesses advantages of high biocompatibility and superior catalytic activity, which is desirable for biomedical applications including diseases diagnosis. Here, from E. coli expression system, recombinant protein of camel serum albumin (rCSA) from Camelus bactrianus was successfully obtained to encapsulate hemin via the self-assemble method without additional toxic organic reagents. As compared with that of horseradish peroxidase, the produced rCSA-hemin nanoparticles exhibited enhanced enzyme-mimicking activity and stability under harsh experimental conditions. Additionally, the steady-state kinetic analysis of rCSA-hemin in the solution revealed its higher affinity to the substrates. Therefore, a colorimetric detection method of H2O2 and glucose was constructed with a linear range of 2.5-500 μM with an LOD of 2.39 and 2.42 μM, respectively, which was also applied for the determination of glucose in the serum samples with satisfying recovery ratio ranging from 101.1% to 112.1%. The constructed camel protein-derived nanozyme system of remarkable stability holds promising potentials for the versatile biomedical uses.
Collapse
Affiliation(s)
- Jiarong Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Qilan Xu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Wei Pei
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyu Yu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Jin Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Chen Q, Li H, Yang L, Wen S, Huang X, Liu J, Guo X, Hu B, Li G, He M. Preparation of an anti-NEK2 monoclonal antibody and its application in liver cancer. BMC Biotechnol 2021; 21:62. [PMID: 34706700 PMCID: PMC8549277 DOI: 10.1186/s12896-021-00717-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Never in mitosis gene-A (NIMA)-related expressed kinase 2 (NEK2) is a serine/threonine protein kinase regulated by the cell cycle. The purpose of this study was to obtain NEK2 protein to prepare an anti-NEK2 monoclonal antibody (mAb) and explore the application of the anti-NEK2 mAb of therapeutic and diagnostic in hepatocellular carcinoma (HCC). Results The NEK2 gene sequence was cloned from the normal liver cell line HL7702, and the full-length NEK2 gene sequence was cloned into the prokaryotic expression vector pET30a and transformed into Escherichia coli BL21 (DE3) cells. The recombinant fusion protein was obtained under optimized conditions and injected in BALB/c mice to prepare an anti-NEK2 mAb. By screening, we obtained a stable hybridoma cell line named 3A3 that could stably secrete anti-NEK2 mAb. Anti-NEK2 3A3 mAb was purified from ascites fluid. The isotype was IgG1, and the affinity constant (Kaff) was 6.0 × 108 L/mol. Western blot, indirect enzyme-linked immunosorbent assay (iELISA), immunofluorescence and immunocytochemical analyses showed that the mAb could specifically recognize the NEK2 protein. MTT assays showed that the mAb 3A3 could inhibit the proliferation of HCC cells. KEGG pathway analysis showed that NEK2 might affected pathways of the cell cycle. Moreover, NEK2-related genes were mainly enriched in the S and G2 phases and might act as tumor-promoting genes by regulating the S/G2 phase transition of HCC cells. Conclusions An anti-NEK2 mAb with high potency, high affinity and high specificity was prepared by prokaryotic expression system in this study and may be used in the establishment of ELISA detection kits and targeted treatment of liver cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00717-3.
Collapse
Affiliation(s)
- Qiuli Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Sha Wen
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Huang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Jiajuan Liu
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoping Guo
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Bing Hu
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China. .,Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China. .,Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
5
|
Mushtaq AU, Ådén J, Clifton LA, Wacklin-Knecht H, Campana M, Dingeldein APG, Persson C, Sparrman T, Gröbner G. Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation. Commun Biol 2021; 4:507. [PMID: 33907308 PMCID: PMC8079415 DOI: 10.1038/s42003-021-02032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, ESS, Lund, Sweden
- Department of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Mario Campana
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science&Innovation Campus, Didcot, Oxfordshire, UK
| | | | - Cecilia Persson
- The Swedish NMR Center, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
6
|
Insight into Functional Membrane Proteins by Solution NMR: The Human Bcl-2 Protein-A Promising Cancer Drug Target. Molecules 2021; 26:molecules26051467. [PMID: 33800399 PMCID: PMC7962812 DOI: 10.3390/molecules26051467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Evasion from programmed cell death (apoptosis) is the main hallmark of cancer and a major cause of resistance to therapy. Many tumors simply ensure survival by over-expressing the cell-protecting (anti-apoptotic) Bcl-2 membrane protein involved in apoptotic regulation. However, the molecular mechanism by which Bcl-2 protein in its mitochondrial outer membrane location protects cells remains elusive due to the absence of structural insight; and current strategies to therapeutically interfere with these Bcl-2 sensitive cancers are limited. Here, we present an NMR-based approach to enable structural insight into Bcl-2 function; an approach also ideal as a fragment-based drug discovery platform for further identification and development of promising molecular Bcl-2 inhibitors. By using solution NMR spectroscopy on fully functional intact human Bcl-2 protein in a membrane-mimicking micellar environment, and constructs with specific functions remaining, we present a strategy for structure determination and specific drug screening of functional subunits of the Bcl-2 protein as targets. Using 19F NMR and a specific fragment library (Bionet) with fluorinated compounds we can successfully identify various binders and validate our strategy in the hunt for novel Bcl-2 selective cancer drug strategies to treat currently incurable Bcl-2 sensitive tumors.
Collapse
|
7
|
Yang MT, Lee XX, Huang BH, Chien LH, Wang CC, Chan KH. Effects of Two-Week Betaine Supplementation on Apoptosis, Oxidative Stress, and Aerobic Capacity after Exhaustive Endurance Exercise. Antioxidants (Basel) 2020; 9:E1189. [PMID: 33260915 PMCID: PMC7760816 DOI: 10.3390/antiox9121189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
This study evaluated the effects of 2 weeks of betaine supplementation on apoptosis, oxidative stress, and aerobic capacity after exhaustive endurance exercise (EEE). A double-blind, crossover, and counterbalanced design was adopted, with 10 healthy male participants asked to consume betaine (1.25 g of betaine mixed with 300 mL of sports beverage, twice per day for 2 weeks) or placebo (300 mL of sports beverage). All participants performed a graded exercise test on a treadmill to determine the maximal oxygen consumption (VO2max) before supplementation and then performed the EEE test at an intensity of 80% VO2max after 2 weeks of supplementation. The time to exhaustion, peak oxygen consumption, maximal heart rate, and average heart rate were recorded during the EEE test. Venous blood samples were drawn before, immediately after, and 3 h after the EEE test to assess apoptosis and the mitochondrial transmembrane potential (MTP) decline of lymphocytes as well as the concentrations of thiobarbituric acid reactive substance and protein carbonyl. The results indicated that lymphocyte apoptosis was significantly higher immediately after and 3 h after EEE than before exercise in participants in the placebo trial. However, lymphocyte apoptosis exhibited no significant differences among the three time points in participants in the betaine trial. Moreover, apoptosis in the betaine trial was significantly lower immediately after and 3 h after exercise compared with the placebo trial. No differences were noted for other variables. Thus, 2 weeks of betaine supplementation can effectively attenuate lymphocyte apoptosis, which is elevated by EEE. However, betaine supplementation exhibited no effects on MTP decline, oxidative stress, or aerobic capacity.
Collapse
Affiliation(s)
- Ming-Ta Yang
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan;
| | - Xiu-Xin Lee
- Department of Primary Care Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
| | - Bo-Huei Huang
- Charles Perkins Centre, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia;
| | - Li-Hui Chien
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan;
| | - Chia-Chi Wang
- Office of Physical Education, National Taipei University of Business, Taipei 10051, Taiwan;
| | - Kuei-Hui Chan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan;
| |
Collapse
|