1
|
Yang M, Ge X, Zhou L, Guo X, Han J, Zhang Y, Yang H. Preparation and characterization of monoclonal antibodies against porcine gasdermin D protein. Appl Microbiol Biotechnol 2024; 108:173. [PMID: 38267794 PMCID: PMC10808365 DOI: 10.1007/s00253-023-12938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Pyroptosis is a newly discovered type of pro-inflammatory programmed cell death that plays a vital role in various processes such as inflammations, immune responses, and pathogen infections. As one of the main executioners of pyroptosis, gasdermin D (GSDMD) is a membrane pore-forming protein that typically exists in a self-inhibitory state. Once activated, GSDMD will be cleaved into an N-terminal fragment with pore-forming activity, becoming the key indicator of pyroptosis activation, and a C-terminal fragment. Although commercial antibodies against human and murine GSDMD proteins are currently available, their reactivity with porcine GSDMD (pGSDMD) is poor, which limits research on the biological functions of pGSDMD and pyroptosis in pigs in vivo and in vitro. Here, five monoclonal antibodies (mAbs) were prepared by immunizing BALB/c mice with procaryotically expressed full-length pGSDMD, all of which did not cross react with human and murine GSDMD proteins. Epitope mapping demonstrated that 15H6 recognizes amino acids (aa) at positions 28-34 of pGSDMD (LQTSDRF), 19H3 recognizes 257-260aa (PPQF), 23H10 and 27A10 recognize 78-82aa (GPFYF), and 25E2 recognizes 429-435aa (PPTLLGS). The affinity constant and isotype of 15H6, 19H3, 23H10, 27A10, and 25E2 mAbs were determined to be 1.32 × 10-9, 3.66 × 10-9, 9.04 × 10-9, 1.83 × 10-9, and 8.00 × 10-8 mol/L and IgG1/κ, IgG2a/κ, IgG2a/κ, IgG1/κ, and IgG1/κ, respectively. Heavy- and light-chain variable regions sequencing showed that the heavy-chain complementarity-determining region (CDR) sequences of all five mAbs are completely different, while the light-chain CDR sequences of the four mAbs that recognize the N-terminus of pGSDMD are identical. Our prepared mAbs provide valuable materials for studying pGSDMD function and pyroptosis. KEY POINTS: • A total of five mouse anti-pGSDMD mAbs were prepared, of which four recognize the N-terminus of pGSDMD and one recognize its C-terminus. • The main performance parameters of the five mAbs, including epitope, antibody titer, affinity constant, isotype, and heavy- and light-chain CDR, were characterized. • All five mAbs specifically recognize pGSDMD protein and do not cross react with human and murine GSDMD proteins.
Collapse
Affiliation(s)
- Minhui Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| |
Collapse
|
2
|
Zhang Z, Guo W, Lu Y, Kang Q, Sui L, Liu H, Zhao Y, Zou X, Li Q. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field. Virol J 2023; 20:255. [PMID: 37924080 PMCID: PMC10623766 DOI: 10.1186/s12985-023-02217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
- Jilin Agricultural Science and Technology University, Jilin, 132109, People's Republic of China.
| |
Collapse
|
3
|
Liao S, Chen Y, Yang Y, Wang G, Wang Q, Liu J, Wu H, Luo Q, Chen Y. Detection of RNA-dependent RNA polymerase of porcine epidemic diarrhea virus. J Immunol Methods 2023; 515:113442. [PMID: 36813129 DOI: 10.1016/j.jim.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The RNA synthesis of porcine epidemic diarrhea virus (PEDV) is a sophisticated process performed by a multilingual viral replication complex, together with cellular factors. A key enzyme of this replication complex is RNA-dependent RNA polymerase (RdRp). However, there is limited knowledge about PEDV RdRp. In our present study, a polyclonal antibody against RdRp was prepared by using a prokaryotic expression vector pET-28a-RdRp to study the function of PEDV RdRp and provide a tool to investigate PEDV pathogenesis. In addition, the enzyme activity and half-life of PEDV RdRp were investigated. The result showed that the polyclonal antibody against PEDV RdRp was successfully prepared and was able to be used to detect PEDV RdRp by immunofluorescence and western blotting. Additionally, enzyme activity of PEDV RdRp reached nearly 2 pmol/μg/h and the half-life of PEDV RdRp was 5.47 h.
Collapse
Affiliation(s)
- Suya Liao
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yijing Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yulan Yang
- Xinchang County Bureau of Agriculture and Rural Affairs, Xinchang 312500, PR China
| | - Guanhua Wang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Qihang Wang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Jiaxin Liu
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Haowen Wu
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Qiyuan Luo
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yun Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
4
|
Ni M, Zhang Y, Zheng J, Cui Z. HSP40 mediated TLR-Dorsal-AMPs pathway in Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108536. [PMID: 36639068 DOI: 10.1016/j.fsi.2023.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Heat shock protein 40 (HSP40) is a kind of molecular chaperone involved in various immune responses. However, the exact roles of HSP40 in immune defense against bacteria remain largely unclear. In this study, the activation function of a type Ⅰ HSP40 from Portunus trituberculatus (PtHSP40-Ⅰ) in the TLR pathway was investigated. The results showed that PtHSP40-Ⅰ can bind to lipopolysaccharide (LPS) and peptidoglycan (PGN). The PtHSP40-Ⅰ also exhibited binding activity toward the extracellular leucine-rich repeat (LRR) domain of Toll-like receptor (TLR). Moreover, the PtHSP40-Ⅰ could promote the transcription factor Dorsal translocated from cytoplasm into the nucleus in hemocytes and participated in regulating the expression of anti-lipopolysaccharide factor (ALF) and crustin. These findings provided insights into the activation mechanisms of TLR pathway mediated by HSP40 and offered basic theory of disease control in P. trituberculatus aquaculture.
Collapse
Affiliation(s)
- Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
5
|
Characterization of Chlamydia muridarum TC0668 Protein: Localization, Expression, and Inflammation-Inducing Effects on Host Cell. Curr Microbiol 2022; 79:325. [PMID: 36125608 PMCID: PMC9485785 DOI: 10.1007/s00284-022-03018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
The objective of this study is to elucidate the basic biological properties and function of TC0668 in vitro. Laser confocal microscopy and immune-electron microscopy were used to detect localization of TC0668 in Chlamydia-infected human epithelial cells, while the expression phase was investigated by qRT-PCR and western blot analysis. Protein array technology was employed to evaluate differences in cytokine secretion between cells infected with tc0668 single mutants and those infected with tc0668 null mutants. We found that TC0668 is restricted to the chlamydial inclusion. Translation and transcription of TC0668 were detected at 4 h and peaked at 16 h during the life cycle of Chlamydia in vitro. The cytokines produced by tc0668 single mutant infected cultures compared with tc0668 null mutant group indicated that 36 cytokines were downregulated, while 10 were up-regulated significantly. C. muridarum bearing a single tc0668 gene mutation have decreased urogenital pathogenicity that is explained by the effects of the mutation on the regulation of inflammation-related cytokine secretion.
Collapse
|
6
|
Song Y, Song J, Wang M, Wang J, Ma B, Zhang W. Porcine Gasdermin D Is a Substrate of Caspase-1 and an Executioner of Pyroptosis. Front Immunol 2022; 13:828911. [PMID: 35359964 PMCID: PMC8964005 DOI: 10.3389/fimmu.2022.828911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gasdermin (GSDM) family proteins were recently identified as the executioner of pyroptosis. The mechanism of pyroptosis mediated by gasdermin D (GSDMD) (a member of GSDM family) in humans and mice is well understood. In pyroptosis, mouse and human GSDMDs are cleaved by activated proinflammatory caspases (caspase-1, 4, 5, or 11) to produce anamino-terminal domain (GSDMD-NT) and a carboxyl-terminal domain (GSDMD-CT). The GSDMD-NT drives cell membrane rupture, which leads to the pyroptotic death of the cells. The expression of porcine GSDMD (pGSDMD) has recently been determined, but the activation and regulation mechanism of pGSDMD and its ability to mediate pyroptosis are largely unknown. In the present study, the activation of porcine caspase-1 (pcaspase-1) and cleavage of pGSDMD occurred in the duodenum and jejunum of a piglet challenged with enterotoxigenic Escherichia coli were first determined. Then the capability of pcaspase-1 to cleave pGSDMD was determined in a cell-free system and in human embryonic kidney cells. The pGSDMD cleavage by pcaspase-1 occurred after the pGSDMD molecule’s 276Phenylalanine-Glutamine-Serine-Aspartic acid279 motif. The pGSDMD-NT generated from the pGSDMD cleavage by pcaspase-1 showed the ability to drive cell membrane rupture in eukaryotic cells. When expressed in E. coli competent cells, pGSDMD-NT showed bactericidal activity. These results suggest that pGSDMD is a substate of pcaspase-1 and an executioner of pyroptosis. Our work sheds light on pGSDMD’s activation mechanisms and functions.
Collapse
Affiliation(s)
- Yueyang Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Jiameng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Meng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Junwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Bo Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| |
Collapse
|