1
|
Alvarado-Delgado A, Martínez-Barnetche J, Téllez-Sosa J, Rodríguez MH, Gutiérrez-Millán E, Zumaya-Estrada FA, Saldaña-Navor V, Rodríguez MC, Tello-López Á, Lanz-Mendoza H. Prediction of neuropeptide precursors and differential expression of adipokinetic hormone/corazonin-related peptide, hugin and corazonin in the brain of malaria vector Nyssorhynchus albimanus during a Plasmodium berghei infection. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100014. [PMID: 36003598 PMCID: PMC9387463 DOI: 10.1016/j.cris.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/02/2022]
Abstract
We describe precursors that predicted at least sixty neuropeptides in Ny. albimanus. At least 16 precursors are encoded in the Ny. albimanus brain. Myosuppressin neuropeptide precursor was identified in Ny albimanus. acp and hugin transcripts increased in Ny. albimanus brains infected with P. berghei.
Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.
Collapse
|
2
|
Zhou YJ, Seike H, Nagata S. Function of myosuppressin in regulating digestive function in the two-spotted cricket, Gryllus bimaculatus. Gen Comp Endocrinol 2019; 280:185-191. [PMID: 31054903 DOI: 10.1016/j.ygcen.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 01/28/2023]
Abstract
Myosuppressin is one of essential peptides controlling biological processes including feeding behavior. Here we identified and characterized the cDNAs that encode myosuppressin precursor and its receptor in the two-spotted cricket Gryllus bimaculatus. The presence of the mature peptide (Grybi-MS) was confirmed by direct measurement of adult brain. RT-PCR revealed the tissue distribution of these transcripts; myosuppressin is expressed predominantly in the brain and central nervous system, whereas its receptor is ubiquitously expressed in the cricket body. To address the function of Grybi-MS, we performed several bioassays to test concerning feeding behavior and digestive function upon exposure to Grybi-MS. Administration of synthetic Grybi-MS resulted in increased feeding motivation, accompanied by an increase in food intake. Meanwhile, the hemolymph lipid and carbohydrate titers were both elevated after Grybi-MS injection. As the intestinal contraction is significantly inhibited by the exposure to Grybi-MS, the upregulating feeding index might be complicated in the cricket body. The current data indicate that Grybi-MS modulates feeding behavior to control the physiological processes in the cricket.
Collapse
Affiliation(s)
- Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa no ha, Kashiwa City, Chiba #277-8562, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hitomi Seike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa no ha, Kashiwa City, Chiba #277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa no ha, Kashiwa City, Chiba #277-8562, Japan.
| |
Collapse
|
3
|
Targeted single-cell microchemical analysis: MS-based peptidomics of individual paraformaldehyde-fixed and immunolabeled neurons. ACTA ACUST UNITED AC 2012; 19:1010-9. [PMID: 22921068 DOI: 10.1016/j.chembiol.2012.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/20/2012] [Accepted: 05/30/2012] [Indexed: 12/11/2022]
Abstract
Pinpointing a specific cell from within a relatively uniform cell population to determine its chemical content presents a challenging bioanalytical task. Immunocytochemistry is the classical method used to localize specific molecules and, hence, selected cells. Mass spectrometry also probes endogenous molecules such as neuropeptides within a cell. Here, these two approaches are hyphenated to allow microchemical analysis of immunocytochemical-selected peptidergic neurons. This two-step strategy utilizes antibody-based localization of cells containing selected biomarkers to isolate the cell(s) of interest, followed by peptidomic analysis via mass spectrometry. Applicable to a broad range of analyte and cell types, the strategy was used to successfully profile neuropeptides from individual immunostained insect neurons stored for up to 2 weeks as well as from tissues preserved for 42 weeks.
Collapse
|
4
|
Lee D, Taufique H, da Silva R, Lange AB. An unusual myosuppressin from the blood-feeding bug Rhodnius prolixus. J Exp Biol 2012; 215:2088-95. [DOI: 10.1242/jeb.067447] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The myosuppressin (MS) gene was cloned from a central nervous system (CNS) cDNA library of the hematophagous insect Rhodnius prolixus and is predicted to contain two introns and three exons. The mRNA transcribed from the myosuppressin gene encodes an 88 amino acid prepropeptide, which results in a mature decapeptide after post-translational modification. When compared with the myosuppressins isolated from other insects, the R. prolixus myosuppressin has a unique amino acid sequence (pQDIDHVFMRFamide), with isoleucine (I) in position 3 and methionine (M) in position 8. Reverse transcriptase (RT)-PCR shows that Rhopr-MS is expressed in the CNS and posterior midgut in R. prolixus and immunohistochemistry suggests that an RFamide-like peptide is present in endocrine-like cells in the midgut. Physiological assays using Rhopr-MS indicate that, despite the unusual M at position 8, it still retains myoinhibitory activity, inhibiting the frequency and reducing the amplitude of contractions in the anterior midgut and hindgut, and decreasing heart rate.
Collapse
Affiliation(s)
- Dohee Lee
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Hamza Taufique
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Rosa da Silva
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Angela B. Lange
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| |
Collapse
|
5
|
Maestro JL, Tobe SS, Belles X. Leucomyosuppressin modulates cardiac rhythm in the cockroach Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1677-1681. [PMID: 21925505 DOI: 10.1016/j.jinsphys.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 05/31/2023]
Abstract
Several lines of evidence point to leucomyosuppressin (LMS) and myosuppressin-related peptides as inhibitory modulators of heartbeat frequency in arthropods. Previous studies in Blattella germanica demonstrated that heartbeat frequency decreases after ootheca formation, and remains low during the period of ootheca transport. Subsequent work in this cockroach resulted in the characterization of LMS and the cloning and sequencing of its precursor. The present paper describes the activity of LMS on modulation of heartbeat in B. germanica. Assays using semi-isolated heart preparations revealed that LMS reduces heartbeat frequency in a dose dependent manner, at physiological concentrations. Additional experiments showed that LMS inhibits heartbeat rates in vivo. Finally, injection of dsRNA for LMS elicited a decrease in LMS mRNA to virtually undetectable levels and heartbeat frequency increased significantly in females carrying oothecae. These data suggest that LMS contributes to the modulation of cardiac rhythm in B. germanica during the reproductive cycle.
Collapse
Affiliation(s)
- José L Maestro
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
6
|
Stevens JS, Cashman CR, Smith CM, Beale KM, Towle DW, Christie AE, Dickinson PS. The peptide hormone pQDLDHVFLRFamide (crustacean myosuppressin) modulates the Homarus americanus cardiac neuromuscular system at multiple sites. ACTA ACUST UNITED AC 2010; 212:3961-76. [PMID: 19946074 DOI: 10.1242/jeb.035741] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
pQDLDHVFLRFamide is a highly conserved crustacean neuropeptide with a structure that places it within the myosuppressin subfamily of the FMRFamide-like peptides. Despite its apparent ubiquitous conservation in decapod crustaceans, the paracrine and/or endocrine roles played by pQDLDHVFLRFamide remain largely unknown. We have examined the actions of this peptide on the cardiac neuromuscular system of the American lobster Homarus americanus using four preparations: the intact animal, the heart in vitro, the isolated cardiac ganglion (CG), and a stimulated heart muscle preparation. In the intact animal, injection of myosuppressin caused a decrease in heartbeat frequency. Perfusion of the in vitro heart with pQDLDHVFLRFamide elicited a decrease in the frequency and an increase in the amplitude of heart contractions. In the isolated CG, myosuppressin induced a hyperpolarization of the resting membrane potential of cardiac motor neurons and a decrease in the cycle frequency of their bursting. In the stimulated heart muscle preparation, pQDLDHVFLRFamide increased the amplitude of the induced contractions, suggesting that myosuppressin modulates not only the CG, but also peripheral sites. For at least the in vitro heart and the isolated CG, the effects of myosuppressin were dose-dependent (10(-9) to 10(-6) mol l(-1) tested), with threshold concentrations (10(-8)-10(-7) mol l(-1)) consistent with the peptide serving as a circulating hormone. Although cycle frequency, a parameter directly determined by the CG, consistently decreased when pQDLDHVFLRFamide was applied to all preparation types, the magnitudes of this decrease differed, suggesting the possibility that, because myosuppressin modulates the CG and the periphery, it also alters peripheral feedback to the CG.
Collapse
Affiliation(s)
- J S Stevens
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L. Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 2010; 31:27-43. [PMID: 19852991 PMCID: PMC2815327 DOI: 10.1016/j.peptides.2009.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/10/2009] [Accepted: 10/12/2009] [Indexed: 11/28/2022]
Abstract
The shrimp Litopenaeus vannamei is arguably the most important aquacultured crustacean, being the subject of a multi-billion dollar industry worldwide. To extend our knowledge of peptidergic control in this species, we conducted an investigation combining transcriptomics and mass spectrometry to identify its neuropeptides. Specifically, in silico searches of the L. vannamei EST database were conducted to identify putative prepro-hormone-encoding transcripts, with the mature peptides contained within the deduced precursors predicted via online software programs and homology to known isoforms. MALDI-FT mass spectrometry was used to screen tissue fragments and extracts via accurate mass measurements for the predicted peptides, as well as for known ones from other species. ESI-Q-TOF tandem mass spectrometry was used to de novo sequence peptides from tissue extracts. In total 120 peptides were characterized using this combined approach, including 5 identified both by transcriptomics and by mass spectrometry (e.g. pQTFQYSRGWTNamide, Arg(7)-corazonin, and pQDLDHVFLRFamide, a myosuppressin), 49 predicted via transcriptomics only (e.g. pQIRYHQCYFNPISCF and pQIRYHQCYFIPVSCF, two C-type allatostatins, and RYLPT, authentic proctolin), and 66 identified solely by mass spectrometry (e.g. the orcokinin NFDEIDRAGMGFA). While some of the characterized peptides were known L. vannamei isoforms (e.g. the pyrokinins DFAFSPRLamide and ADFAFNPRLamide), most were novel, either for this species (e.g. pEGFYSQRYamide, an RYamide) or in general (e.g. the tachykinin-related peptides APAGFLGMRamide, APSGFNGMRamide and APSGFLDMRamide). Collectively, our data not only expand greatly the number of known L. vannamei neuropeptides, but also provide a foundation for future investigations of the physiological roles played by them in this commercially important species.
Collapse
Affiliation(s)
- Mingming Ma
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Ashley L. Gard
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Feng Xiang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Junhua Wang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Naveed Davoodian
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Petra H. Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822 USA
| | - Spencer R. Malecha
- Deparment of Human Nutrition, Food and Animal Science, College of Tropical Agriculture and Human, Resources, University of Hawaii at Manoa, 1955 East West Road, Honolulu, Hawaii 96822 USA
| | - Andrew E. Christie
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396 USA
| |
Collapse
|
8
|
Audsley N, Weaver RJ. Neuropeptides associated with the regulation of feeding in insects. Gen Comp Endocrinol 2009; 162:93-104. [PMID: 18775723 DOI: 10.1016/j.ygcen.2008.08.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/01/2008] [Accepted: 08/03/2008] [Indexed: 11/18/2022]
Abstract
The stomatogastric nervous system plays a pivotal role in feeding behaviour. Central to this system is the frontal ganglion, which is responsible for foregut motor activity, and hence the passage of food through the gut. Many insect peptides, which exhibit myoactivity on the visceral muscles of the gut in vitro, have been detected in the stomatogastric nervous system by immunochemical or mass spectrometric techniques. This localisation of myoactive peptides, particularly in the frontal ganglion, implies roles for these peptides in the neural control and modulation of feeding in insects. Insect sulfakinins, tachykinins, allatotropin and proctolin have all been shown to stimulate the foregut muscles, whereas myosuppressins, myoinhibitory peptides and allatostatins all inhibited spontaneous contractions of the foregut in a variety of insects. Some of these peptides, when injected, inhibited feeding in vivo. Both the A-type and B-type allatostatins suppressed feeding activity when injected into the cockroach, Blattella germanica and the Manduca sexta C-type allatostatin and allatotropin inhibited feeding when injected into the larvae of two noctuid moths, Lacanobia oleracea and Spodoptera frugiperda, respectively. Injection of sulfakinins into the fly Phormia regina, the locust Schistocera gregaria and the cockroach B. germanica also suppressed feeding, whereas silencing the sulfakinin gene through the injection of double stranded RNA resulted in an increase in food consumption in the cricket Gryllus bimaculatus. The regulation of feeding in insects is clearly very complex, and involves the interaction of a number of mechanisms, one of which is the release, either centrally or locally, of neuropeptides. However, the role of neuropeptides, their mechanisms of action, interactions with each other, and their release are still poorly understood. It is also unclear why insects possess such a number of different peptides, some with multiples copies or homologues, which stimulate or inhibit gut motility, and how their release, sometimes from the same neurone, is regulated. These neuropeptides may also act at sites other than visceral muscles, such as centrally through the brain or on gut stretch receptors.
Collapse
Affiliation(s)
- N Audsley
- Environmental Biology Group, Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | |
Collapse
|
9
|
Matthews HJ, Audsley N, Weaver RJ. In vitro and in vivo effects of myo-active peptides on larvae of the tomato moth Lacanobia oleracea and the cotton leaf worm Spodoptera littoralis (Lepidoptera; Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:60-69. [PMID: 18780345 DOI: 10.1002/arch.20265] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides from five different neuropeptide families [Manduca sexta allatostatin (Manse-AS), and Manse-AS deletion analogue(5-15), M. sexta allatotropin (Manse-AT), leucomyosuppressin, perisulfakinin, and myoinhibitory peptide I (MIP I)] were assayed for their ability to affect the development and food consumption of penultimate and last larval instars of two lepidopteran species, L. oleracea and S. littoralis. Injections of Manse-AS deletion analogue(5-15), Manse-AT, perisulfakinin, and MIP I had no observable effects on development, food consumption, or mortality compared to controls. Single injections of Manse-AS significantly reduced the weight gain and increased mortality of L. oleracea and S. littoralis larvae compared to controls. By contrast, feeding Manse-AS to L. oleracea had no such effects. These differences were probably due to the degradation of the peptide by digestive enzymes in the foregut of L. oleracea. In studies in vitro, perisulfakinin, and MIP I had no effect on the spontaneous foregut contractions of L. oleracea larvae. Leucomyosuppressin, however, had myoinhibitory effects on the foregut. Single injections of leucomyosuppressin significantly reduced the weight gain and food consumption of L. oleracea and S. littoralis larvae and increased mortality. These data suggest that the deleterious effects observed in vivo were due to the myoinhibition by Manse-AS and leucomyosuppressin of the normal peristaltic movements of the gut either by the intact peptide or by its cleavage products resulting from degradation in the haemolymph.
Collapse
Affiliation(s)
- H J Matthews
- Central Science Laboratory, Sand Hutton, York, United Kingdom.
| | | | | |
Collapse
|
10
|
Christie AE. In silico analyses of peptide paracrines/hormones in Aphidoidea. Gen Comp Endocrinol 2008; 159:67-79. [PMID: 18725225 DOI: 10.1016/j.ygcen.2008.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/29/2008] [Indexed: 01/22/2023]
Abstract
The Aphidoidea is an insect superfamily comprising most of the known aphid species. While small in size, these animals are of considerable economic importance as many members of this taxon are serious agricultural pests, inflicting physical damage upon crop plants and serving as vectors in the transmission of viral plant diseases. In terms of identifying the paracrines/hormones used to modulate behavior, particularly peptides, members of the Aphidoidea have largely been ignored, as it is not tractable to isolate the large pools of tissue needed for standard biochemical investigations. Here, a bioinformatics approach to peptide discovery has been used to overcome this limitation of scale. Specifically, in silico searches of publicly accessible aphidoidean ESTs were conducted to identify transcripts encoding putative peptides precursors, with the mature peptides contained within them deduced using peptide processing software and homology to known arthropod sequences. In total, 39 ESTs encoding putative peptides precursors were identified from four aphid species: Acyrthosiphon pisum (14 ESTs), Aphis gossypii (four ESTs), Myzus persicae (20 ESTs) and Toxoptera citricida (one EST). These precursors included ones predicted to encode isoforms of B-type allatostatin, crustacean cardioactive peptide, FMRFamide-related peptide (both myosuppressin and short neuropeptide F subfamilies), insect kinin, orcokinin, proctolin, pyrokinin/periviscerokinin/pheromone biosynthesis activating neuropeptide, SIFamide and tachykinin-related peptide. In total, 83 peptides were characterized from the identified precursors, most novel, including two B-type allatostatins possessing the variant -WX(7)Wamide motif, two N-terminally extended proctolin isoforms and an N-terminally truncated and substituted SIFamide. Collectively, these results expand greatly the number of known/predicted aphid peptide paracrines/hormones, and provide a strong foundation for future molecular and physiological investigations of peptidergic control in this insect group.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
11
|
Antifeeding properties of myosuppressin in a generalist phytophagous leafworm, Spodoptera littoralis (Boisduval). ACTA ACUST UNITED AC 2008; 148:68-75. [DOI: 10.1016/j.regpep.2008.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 11/21/2022]
|
12
|
Stemmler EA, Cashman CR, Messinger DI, Gardner NP, Dickinson PS, Christie AE. High-mass-resolution direct-tissue MALDI-FTMS reveals broad conservation of three neuropeptides (APSGFLGMRamide, GYRKPPFNGSIFamide and pQDLDHVFLRFamide) across members of seven decapod crustaean infraorders. Peptides 2007; 28:2104-15. [PMID: 17928104 DOI: 10.1016/j.peptides.2007.08.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/19/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) has become an important method for identifying peptides in neural tissues. The ultra-high-mass resolution and mass accuracy of MALDI-FTMS, in combination with in-cell accumulation techniques, can be used to advantage for the analysis of complex mixtures of peptides directly from tissue fragments or extracts. Given the diversity within the decapods, as well as the large number of extant species readily available for analysis, this group of animals represents an optimal model in which to examine phylogenetic conservation and evolution of neuropeptides and neuropeptide families. Surprisingly, no large comparative studies have previously been undertaken. Here, we have initiated such an investigation, which encompasses 32 species spanning seven decapod infraorders. Two peptides, APSGFLGMRamide and pQDLDHVFLRFamide, were detected in all species. A third peptide, GYRKPPFNGSIFamide, was detected in all species except members of the Astacidean genus Homarus, where a Val(1) variant was present. Our finding that these peptides are ubiquitously (or nearly ubiquitously) conserved in decapod neural tissues not only suggests important conserved functions for them, but also provides an intrinsic calibrant set for future MALDI-FTMS assessments of other peptides in this crustacean order.
Collapse
Affiliation(s)
- Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Mousley A, Maule AG, Halton DW, Marks NJ. Inter-phyla studies on neuropeptides: the potential for broad-spectrum anthelmintic and/or endectocide discovery. Parasitology 2007; 131 Suppl:S143-67. [PMID: 16569287 DOI: 10.1017/s0031182005008553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.
Collapse
Affiliation(s)
- A Mousley
- Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
14
|
Schöller S, Belmont M, Cazzamali G, Hauser F, Williamson M, Grimmelikhuijzen CJP. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 2005; 327:29-34. [PMID: 15629425 DOI: 10.1016/j.bbrc.2004.11.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Indexed: 10/26/2022]
Abstract
The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6 x 10(-8)M). The receptor was not activated by a library of 35 other insect neuropeptides and monoamines, including neuropeptides that resembled myosuppressin in their C-terminal moiety, such as PDRNFLRFamide (Anopheles FMRFamide-3), other Anopheles FMRFamide peptides, or neuropeptide F-like peptides, showing that the receptor was quite selective for myosuppressin. These results also showed that the myosuppressin receptor needs a much larger portion than the C-terminal FLRFamide sequence for its activation. The insect myosuppressins are often grouped together with the insect FMRFamides under the name FaRPs (FMRFamide-related peptides). However, this is not justified anymore, because the insect myosuppressin receptor/ligand couple is both functionally and evolutionarily fully unrelated to the insect FMRFamide receptor/ligand couple. To our knowledge, this is the first report on the molecular identification of a mosquito neuropeptide receptor.
Collapse
Affiliation(s)
- Susanne Schöller
- Department of Cell Biology and Comparative Zoology, Institute of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|